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Abstract. We consider the numerical solution of projected Lyapunov equations using Krylov
subspace iterative methods. Such equations play a fundamental role in balanced truncation model
reduction of descriptor systems. We present generalizations of the extended block and global Arnoldi
methods to projected Lyapunov equations and compare these methods with the alternating direction
implicit method with respect to performance on different examples. A deflation strategy is also
proposed to overcome possible breakdown in the recurrence.
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1. Introduction. Consider the projected continuous-time algebraic Lyapunov
equation (PCALE)

EXAT +AXET = −PlBBTPTl , X = PrXP
T
r , (1.1)

where E, A ∈ Rn,n and B ∈ Rn,m are given matrices and X ∈ Rn,n is an unknown
matrix. Furthermore, Pr and Pl are the spectral projectors onto the right and left
deflating subspaces of a regular pencil λE−A corresponding to the finite eigenvalues
along the right and left deflating subspaces associated with the eigenvalue at infini-
ty. We assume that the pencil λE − A is stable, i.e., all its finite eigenvalues have
negative real part. In this case, the PCALE (1.1) has a unique symmetric, positive
semidefinite solution X, see [38]. Projected Lyapunov equations arise in stability ana-
lysis and many control problems for differential-algebraic equations or descriptor sys-
tems including the characterization of the controllability and observability properties,
computing the H2 and Hankel system norms and balancing-related model reduction
[3, 38, 39, 40].

If E = I is an identity matrix, then Pr = Pl = I and (1.1) is a standard Lyapunov
equation. Such equations of small to medium size can be numerically solved using
the Bartels-Stewart method [1] or the Hammarling method [15] that are based on
the reduction of A to Schur form. For solving Lyapunov equations, one can also
employ the sign function method [7, 23, 29], especially, when the hierarchical matrix
format can be exploited [2, 12] or when dense large Lyapunov equations are solved
on parallel computers [4]. Finally, several iterative methods such as the alternating
direction implicit (ADI) method [5, 24, 25, 27], the cyclic Smith method [13, 27]
and Krylov subspace type methods [16, 18, 19, 21, 30, 34] have been developed for
large-scale Lyapunov equations over the last twenty years. All these methods except
for Krylov subspace methods have been extended to projected Lyapunov equations
[37, 41, 42].

Krylov subspace methods are attractive when dealing with sparse and large coef-
ficient matrices A and E. The general framework consists in projecting the original
problem onto a much smaller subspace, giving rise to a reduced-order linear equation
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of the same type, then solving this equation and projecting back the result. The small
size equation is obtained by imposing an extra condition on the required approximate
solution. All methods proposed for the standard Lyapunov equation differ either for
the choice of approximation/projection space, or for the extra condition. We will
discuss the most common choices in Section 2. Dealing with the projected equation
provides an additional challenge, as E is in general singular. In this case, the approxi-
mation space needs to remain in the correct deflating spaces of the pencil λE−A, and,
thus, the algorithms have to be modified accordingly. We will investigate extensions
of several variants of known projection-type methods to the PCALE (1.1). In particu-
lar, we consider the block and global Krylov subspace methods [18, 21], the extended
Krylov subspace method [34], a combination of them [16], and also recently developed
preconditioning with the classical ADI method [19]. Note that when B is a column
vector, then the first two methods are equivalent. We will use computational costs
and time evaluations to compare these methods, highlighting the most characteristic
features. We note that such a detailed comparison among these methods appears to
be new also for the standard Lyapunov equation. Finally, the singularity of E may
significantly affect the robustness of some of the methods, as the basis vectors may
become almost linearly dependent. We devise a new deflation strategy that makes
the extended block Krylov subspace method more reliable by curing near breakdown
due to quasi-linear dependence.

The paper is organized as follows. In Section 2, we consider Galerkin-type appro-
ximation to the solution of the PCALE (1.1). In Section 3, we extend the block
and global Krylov subspace methods based on the Arnoldi process to solve this equa-
tion. A combination of these methods with an extended Krylov subspace approach
is presented in Sections 4 and 5. A deflation technique and stopping criteria for new
methods are also discussed there. In Section 6, we review the low-rank ADI method
and extend an ADI-preconditioned global Arnoldi algorithm to the PCALE (1.1).
In Section 7, we report some results of numerical experiments to demonstrate the
properties of the presented iterative methods and to compare them.

Notation and definitions. Throughout the paper the open left half-plane is
denoted by C−. The matrix AT stands for the transpose of A, and A−T = (A−1)T .
An identity matrix of order n is denoted by In or simply by I. We denote by
A(i : k, j : l) a submatrix of A ∈ Rn,m that contains its rows i to k and columns
j to l. The image and the trace of a matrix A are denoted by imA and trace(A),
respectively. A Frobenius inner product of the matrices A,B ∈ Rn,m is defined as
〈A,B〉F = trace(BTA) and ‖A‖F =

√
〈A,A〉F is the Frobenius matrix norm. The

spectral matrix norm of A ∈ Rn,m is denoted by ‖A‖2. The Kronecker product of
the matrices A = [aij ] ∈ Rn,m and B ∈ Rp,q is defined as A ⊗ B = [aijB] ∈ Rnp,mq.
Finally, the �-product of A = [A1, . . . , Ak] ∈ Rn,km and B = [B1, . . . , Bl] ∈ Rn,lm

is defined as AT �B = [trace(ATi Bj)]
j=1,...,l
i=1,...,k ∈ Rk,l. The matrix A = [A1, . . . , Ak] is

called F-orthonormal if AT �A = Ik.

In the sequel, we will need some generalized inverses. A Drazin inverse AD of
a matrix A ∈ Rn,n is defined as a unique solution of the following system of matrix
equations

ADAAD = AD, AAD = ADA, Aν+1AD = Aν .

Furthermore, a matrix A− is called a reflexive generalized inverse of A ∈ Rn,n with
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respect to projectors P1 and P2, if it is a unique solution of the matrix equations

A−AA− = A−, AA− = P1, A−A = P2.

We refer to [9] for detailed properties of these generalized inverses.

2. Order reduction by projection. This section serves as introduction to
the methods we will describe in detail in the next sections. All these approaches
determine an approximate solution by an iterative process. The approximation space
is a subspace of possibly much smaller dimension than that of the original problem,
and the space dimension grows at each iteration, that is, the approximation spaces
are nested. To avoid notational complications, here and in the following we will
avoid explicitly labeling the involved matrices when not strictly necessary. Therefore,
quantities such as the basis matrices will be defined within the described context.

If the pencil λE − A is stable, then A is nonsingular and the PCALE (1.1) can
be written as the projected standard Lyapunov equation

FX +XFT = −GGT , X = PrXP
T
r , (2.1)

where F =A−1E and G = PrA
−1B. Here we utilized the fact that APr = PlA. Now

we can use a standard projection technique to determine the solution of (2.1). Let V
be a subspace of imPr and let V ∈ Rn,k be a matrix with orthonormal columns that
span V, i.e., imV = V. We seek an approximate solution in the form X ≈ V Y V T ,
where Y ∈ Rk,k has to be determined. Let

R(V Y V T ) := F (V Y V T ) + (V Y V T )FT +GGT

be the residual associated with V Y V T . Then the Galerkin orthogonality condition
V TR(V Y V T )V = 0 yields the following reduced Lyapunov equation

(V TFV )Y + Y (V TFV )T = −V TGGTV.

If V TFV is stable, i.e., all its eigenvalues have negative real part, then this equation
has a unique symmetric, positive semidefinite solution Y , see [11]. For k � n, such
a solution can be computed using direct methods (cf., e.g., [1, 15]) based on the Schur
form of the small matrix V TFV . An alternative approach for computing Y is the
minimization of the residual norm ‖R(V Y V T )‖F . In this case, Y will satisfy another
matrix equation, see [18, 30] for details. Since the latter is more computationally
involved, we will consider in the sequel the Galerkin projection only.

The accuracy of the approximate solution V Y V T ≈ X highly depends on the
choice of V. If V = imV approximates well the solution space, then we can expect that
V Y V T is a good approximation to the solution of (2.1) and also of the PCALE (1.1).
It should be noted that the matrix V Y V T satisfies the second equation in (1.1) and
also in (2.1) exactly since imV ⊂ imPr.

3. Krylov subspace methods. For standard Lyapunov equations with E = I
and Pr = Pl = I, the subspace V was chosen in [17, 18, 30] as a block Krylov subspace

K�
k (F,G) = blockspan{G, FG, . . . , F k−1G }

=

{
k∑
i=0

F iGΘi, Θi ∈ Rm,m
}
,
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where G ∈ Rn,m; see, e.g., [14] for a more detailed description of block Krylov sub-
spaces. This choice was originally justified by the fact that under certain hypotheses
and for sufficiently large k, such a space contains the exact solution. A complete con-
vergence theory for Galerkin-type methods based on this space was recently developed
in [35]. In the framework of Section 2, we note that K�

k (F,G) ⊆ K�
k+1(F,G). The

block Arnoldi procedure [31] can be used to build and expand a basis for the subspace:
starting with V such that V TV = I and imV = imG, at step k + 1 the basis matrix
V is updated from that at the previous step by adding vectors after orthogonalization
with respect to the basis vectors already computed. For this choice of space, an ap-
proximation to the solution of the PCALE (1.1) is obtained as XBA = V Y V T , where
Y solves the reduced Lyapunov equation

HY + Y HT = −B̂B̂T (3.1)

with a block upper Hessenberg matrix H = V TA−1EV and B̂ = V TPrA
−1B.

In the global Arnoldi method [20], the approximation space is given by

K̃k(F,G) =

{
k∑
i=0

F iGθi, θi ∈ R

}
.

Note that K̃k(F,G) can be obtained from K�
k (F,G) by requiring that each Θi is

a multiple of the identity, i.e., Θi = θiI.

A basis matrix whose columns span K̃k(F,G) is obtained by requiring that the
block columns be F-orthonormal. As in the standard block Krylov space, this re-
quirement can be imposed during the iterative construction of the basis vectors. Note
that for problems where G is a single column vector, the block Arnoldi and the global
Arnoldi methods coincide. Due to the special orthogonality condition, the matrices
involved in the projection phase take a special structure. Let V be the matrix whose
F-orthonormal columns span K̃k(F,G). An approximate solution of the PCALE (1.1)
can be determined as

XGA = V (Y ⊗ Im)V T ,

where Y is a symmetric solution of the Lyapunov equation

TY + Y TT = −‖PrA−1B‖2F e1e
T
1 (3.2)

with upper Hessenberg T =V T � (A−1EV ) ∈ Rk,k and e1 = [ 1, 0, . . . , 0 ]T ∈ Rk. The
matrix T has lower dimension than the projected matrix in the block Krylov sub-
space (k instead of km), so that solving the reduced Lyapunov equation (3.2) may
be significantly cheaper than (3.1). This is possibly the main advantage of the global
approach, compared to that based on the much richer block Krylov subspace.

A drawback of Krylov subspace methods is that they often converge slowly and
relatively many iterations need be performed to determine an approximate solution
with high accuracy [35]. For increasing k, the storage requirements for the dense
basis matrix V is excessive and the computation of X ≈ V Y V T becomes expensive.
In the next sections, we describe state-of-the-art and very recent methods that tend
to overcome these difficulties, and that have now superseded these basic approaches
for solving the standard Lyapunov equation.
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4. Extended Krylov subspace methods. In [34], it was proposed to use the
extended block Krylov subspace

K�
k (F,G) +K�

k (F−1, G)

as approximation space, noticing that powers in F and F−1 may have a beneficial
effect on the speed of convergence, and thus on the performed number of iterations.
We observe that F−1 is not explicitly required, but only its action to a vector, so
that either direct or iterative solves can be employed. A complete account on the
convergence properties of the solver based on this extended Krylov subspace was very
recently developed in [22].

In the context of the PCALE (1.1) with singular E, the matrix F = A−1E is
not invertible so that it seems that the space K�

k (F−1, G) could not be constructed.
Fortunately, this problem can be circumvented and we present a generalization of the
extended Krylov subspace method to the PCALE (1.1).

For this purpose, we transform the pencil λE −A into the Weierstrass canonical
form

E = Tl

[
Inf 0
0 E∞

]
Tr, A = Tl

[
Af 0
0 In∞

]
Tr, (4.1)

where Tl and Tr are the left and right nonsingular transformation matrices [11]. The
eigenvalues of Af are the finite eigenvalues of λE − A, and a nilpotent matrix E∞
corresponds to an eigenvalue at infinity. Using (4.1), the projectors Pr and Pl can be
represented as

Pr = T−1
r

[
Inf 0
0 0

]
Tr, Pl = Tl

[
Inf 0
0 0

]
T−1
l , (4.2)

and the matrix F = A−1E takes the form

F = T−1
r

[
A−1
f 0

0 E∞

]
Tr. (4.3)

Since the inverse of F does not exist, we consider the Drazin inverse FD of F that
can be written due to (4.3) as

FD = T−1
r

[
Af 0
0 0

]
Tr

see, e.g., [9]. On the other hand, we have FD = E−A, where

E− = T−1
r

[
I 0
0 0

]
T−1
l

is a reflexive generalized inverse of E with respect to the projectors Pl and Pr. This
representation can be obtained from the definition of E− and relations (4.1) and (4.2).
Note that the matrix E− has already been employed in [8, 36] for computing a partial
realization for descriptor systems and also the largest eigenvalues of a matrix pencil
using Krylov subspace methods.

Thus, similar to the case E = I in [34], we propose to compute an approximate
solution VkY V

T
k to the PCALE (1.1), where a Galerkin orthogonality is enforced, and

Vk has orthonormal columns that span the extended block Krylov subspace

K�
k (A−1E,PrA

−1B) +K�
k (E−A,E−B).
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An outline of the extended block Arnoldi method for (1.1) is given in Algorithm 4.1.

Algorithm 4.1. The extended block Arnoldi method for the PCALE.

Given E,A ∈ Rn,n, B ∈ Rn,m and the spectral projectors Pl and Pr, compute
an approximate solution Xk of the PCALE (1.1).

1. Compute the QR decomposition [E−B, PrA
−1B ] = V̂1H1,0, where the matrix

V̂1 ∈ Rn,2m has orthonormal columns and H1,0 ∈ R2m,2m is upper triangular.

2. Set V1 := V̂1, V1,1 := V̂1[ Im, 0 ]T and V1,2 := V̂1[ 0, Im ]T .
3. FOR j = 1, 2, . . . , k

(a) Compute V (j) = [E−AVj,1, A
−1EVj,2 ].

(b) FOR i = 1, 2, . . . , j % Modified block Gram-Schmidt orthogonal.
Hi,j := V̂ Ti V

(j);

V (j) := V (j) − V̂iHi,j;
END FOR

(c) Compute the QR decomposition V (j) = V̂j+1Hj+1,j, where the matrix

V̂j+1 ∈ Rn,2m has orthonormal columns and Hj+1,j ∈ R2m,2m is upper
triangular.

(d) Set Vj+1 := [Vj , V̂j+1], Vj+1,1 := V̂j+1[Im, 0]T , Vj+1,2 := V̂j+1[0, Im]T .
(e) Solve the Lyapunov equation

ΦjYj + YjΦ
T
j = −BjBTj , (4.4)

where Φj = V Tj E
−AVj and Bj = V Tj E

−B.
END FOR

4. Compute Xk = VkYkV
T
k .

We now derive some recursive relations that can be used to significantly reduce
the computational cost of this algorithm. First of all we show that the matrices Bj
and Φj at Step 3(e) can be obtained as a by-product of the iteration with no additional
matrix-vector products with E− and A and inner products with long vectors.

Let J2mk,j = [ 0, . . . , 0, Im, 0, . . . , 0 ]T ∈ R2mk,m be formed from the identity ma-
trix I2mk by removing the first m(j − 1) and the last m(2k − j) columns and let
J2mk,j:j+i = [ J2mk,j . . . , J2mk,j+i ] ∈ R2mk,m(i+1). Then the relation [E−B, PrA

−1B ] =

V̂1H1,0 at Step 1 of Algorithm 4.1 implies that

E−B = V̂1H1,0J2m,1 = VjJ2mj,1:2H1,0J2m,1.

Hence, Bj = V Tj E
−B = J2mj,1:2H1,0J2m,1 ∈ R2mj,m. Steps 3(a)-(c) can be shortly

written as

[E−AVj,1, A
−1EVj,2 ]−

j∑
i=1

V̂jHi,j = V̂j+1Hj+1,j . (4.5)

Then for the matrices V (i) = [E−AVi,1, A
−1EVi,2 ], i = 1, . . . , j, we have

[V (1), . . . , V (j) ] = VjHj + V̂j+1Hj+1,jJ
T
2mj,2j−1:2j = Vj+1Hj ,



KRYLOV SUBSPACE METHODS FOR PROJECTED LYAPUNOV EQUATIONS 7

where

Hj =



H1,1 · · · H1,j−1 H1,j

H2,1
. . . H2,j−1 H2,j

. . .
. . .

...
Hj,j−1 Hj,j

Hj+1,j

 =

[
Hj

Hj+1,jJ
T
2mj,2j−1:2j

]
∈ R2m(j+1),2mj

(4.6)
and Hj ∈ R2mj,2mj is block upper Hessenberg. The following theorem shows that the
matrix

Φj = V Tj+1E
−AVj =

[
Φj

Φj+1,jJ
T
2mj,2j−1:2j

]
∈ R2m(j+1),2mj

and, hence, also Φj can be obtained from Hj in an inexpensive way.
Theorem 4.2. Let Hj be as in (4.6) such that Hi+1,i, i = 0, . . . , j, are upper

triangular and nonsingular and let

H−1
i+1,i =

[
S

(i)
11 S

(i)
12

0 S
(i)
22

]
, S

(i)
11 , S

(i)
22 ∈ Rm,m.

Then the odd column blocks of the matrix Φj = V Tj+1E
−AVj = [ Φ̂1, . . . , Φ̂2j ] with

Φ̂i ∈ R2m(j+1),m satisfy

Φ̂2i−1 = ΦjJ2mj,2i−1 = HjJ2mj,2i−1, i = 1, . . . , j,

while the even column blocks of Φj have the form

Φ̂2 = HjJ2mj,1(S
(0)
11 )−1S

(0)
12 + J2m(j+1),1(S

(0)
11 )−1S

(0)
22 ,

Φ̂2i = Φ̂2i−1(S
(i−1)
11 )−1S

(i−1)
12 +

(
J2m(j+1),2i−2−

[
Φi−1

0

]
Hi−1J2m(i−1),2i−2

)
S

(i−1)
22 ,

for i = 2, . . . , j.
Proof. The result can be proved analogously to [34, Proposition 3.2].
Having Φj and Bj , the small dimensional Lyapunov equation (4.4) at Step 3(e)

of Algorithm 4.1 can be solved by the Bartels-Stewart method [1]. Note that Φj has
a block upper Hessenberg form that can be exploited to further reduce the computa-
tional effort. If all eigenvalues of Φj have negative real part, then the solution of (4.4)
is a symmetric, positive semidefinite matrix. In this case, we can use the Hammarling
method [15] to compute the Cholesky factor Zj of Yj = ZjZ

T
j rather than Yj . Then

the approximate solution of the PCALE (1.1) can be obtained also in factored form
Xk = (VkZk)(VkZk)T . Let Zk = [U1k, U2k ]diag(Σ1k,Σ2k)[W1k, W2k ]T be a singular
value decomposition (SVD), where [U1k, U2k ] and [W1k, W2k ] are orthogonal, Σ1k

and Σ2k are diagonal with ‖Σ2k‖2 ≤ ε‖Σ1k‖2 for some small threshold ε. Then we
can determine the approximate solution of (1.1) in the compressed form X ≈ ZZT

with the low-rank Cholesky factor Z = VkU1kΣ1k.

Remark 4.3. For E = I, the solvability of the Lyapunov equation (4.4) is
guaranteed if the matrix A is dissipative, i.e., A + AT < 0. An extension of this
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condition to the matrix pencil case is that E = ET ≥ 0 and vT (A+AT )v < 0 for
all vectors v such that Ev 6= 0. Unfortunately, we were unable to show that these
dissipativity conditions together imply the existence of the solution of (4.4). The
conditions above imply that if λE −A is stable, then λV TEV − V TAV is also stable
for all V such that imV ⊆ imPr. In order to guarantee the solvability of (4.4), we
need, however, that V TE−AV is stable. Of course, one could assume that E−A is
dissipative. But this condition is difficult to verify in practice.

A major difficulty in the iterative solution of large-scale projected Lyapunov equa-
tions is that the projectors Pr and Pl are required. Fortunately, in many applications
such as semi-explicit problems of index one, Stokes-like problems, constrained multi-
body dynamics and circuit equations, the matrices E and A have some special block
structure. This structure can be exploited to construct these projectors also in block
form [28, 42]. Of course, we will never store these matrices. Instead, we compute
projector-vector products block-wise. Furthermore, we can use the structure of E to
determine the matrix-vector products z = E−b, see [8]. Generally, these products can
be computed by solving the linear systems

Ez = Plb, z = Prz

using iterative methods. Analogously, the matrix A−1 does not have to be determined
explicitly. Instead, we can employ a sparse LU factorization or solve the linear systems
Az = b iteratively.

Remark 4.4. In exact arithmetic, the basis matrix Vj satisfies Vj = PrVj and,
hence, the second equation in (1.1) is fulfilled for the low-rank approximation VjYjV

T
j .

However, in finite precision arithmetic, a drift-off effect may occur. In this case, we
need to project Vj onto the image of Pr by pre-multiplication with Pr. In order to
limit the additional computation cost we can do this, for example, at every second or
third iteration step.

4.1. Stopping criterion. The iteration in Algorithm 4.1 can be stopped as soon
as a normalized residual norm η(Xk) = ‖Rk‖F /‖PlBBTPTl ‖F with the residual

Rk = AXkE
T + EXkA

T + PlBB
TPTl (4.7)

satisfies the condition η(Xk) ≤ tol with a user-defined tolerance tol. The following
theorem shows how to verify this condition without computing the approximation Xk.

Theorem 4.5. Let Xk = VkYkV
T
k be an approximate solution of the PCALE

(1.1) computed by Algorithm 4.1 and let Rk be as in (4.7). Then

‖E−Rk(E−)T ‖F =
√

2 ‖JT2m(k+1),2k+1ΦkYk‖F =: δEBA, (4.8)

‖Rk‖F ≤
√

2 ‖E‖2F ‖JT2m(k+1),2k+1ΦkYk‖F . (4.9)

Proof. We have

E−AVk = VkΦk + V̂k+1Φk+1,kJ
T
2mk,2k−1:2k = Vk+1Φk. (4.10)

Taking into account that E−Pl = E−, E−E = Pr and Xk = PrXkP
T
r , we obtain

E−Rk(E−)T = E−AXk +Xk(E−A)T + E−BBT (E−)T .
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Substituting Xk = VkYkX
T
k and E−B = VkBk in this equation and using (4.10), we

have

E−Rk(E−)T = Vk+1ΦkYkV
T
k + VkYkΦTk V

T
k+1 + VkBkB

T
k V

T
k

= Vk+1

[
0 YkJ2mk,2k−1:2kΦTk+1,k

Φk+1,kJ
T
2mk,2k−1:2kYk 0

]
V Tk+1.

Thus, ‖E−Rk(E−)T ‖F =
√

2 ‖Φk+1,kJ
T
2mk,2k−1:2kYk‖F . Since

Φk+1,kJ
T
2mk,2k−1:2k = JT2m(k+1),2k+1:2k+2Φk, JT2m(k+1),2k+2Φk = 0,

we have (4.8). Estimate (4.9) follows then from Rk = EE−Rk(E−)TET .
Theorem 4.5 suggests that the following stopping criterion could be used in

Algorithm 4.1:

Stop if ‖E−Rk(E−)T ‖F /‖E−BBT (E−)T ‖F ≤ tol.

Here E−Rk(E−)T is the residual for the projected Lyapunov equation

E−AX +X(E−A)T = −E−BBT (E−)T , X = PrXP
T
r ,

which is equivalent to (1.1). The verification of this condition does not require the
approximate solution Xk, but only its projection Yk. Therefore, Xk need only be
computed after convergence is achieved.

As a final remark, we note that instead of the Lyapunov equation (4.4), in Algo-
rithm 4.1 we could solve the Lyapunov equation

Φ̃jYj + YjΦ̃
T
j = −B̃jB̃Tj , (4.11)

where Φ̃j = V Tj A
−1EVj , B̃j = V Tj PrA

−1B. The matrices Φ̃j = V Tj+1A
−1EVj could

again be determined recursively from Hj . In this case, the iteration could be termi-
nated once the condition

‖A−1RkA
−T ‖F

‖PrA−1BBTA−TPTr ‖F
=

√
2‖JT2m(k+1),2k+1Φ̃kYk‖F
‖PrA−1BBTA−TPTr ‖F

≤ tol

were fulfilled for a prescribed tolerance tol. Note that A−1RkA
−T is the residual

matrix for the projected Lyapunov equation (2.1). To limit the number of explored
variants, we do not pursue this alternative in the following.

4.2. Deflation procedure for (quasi-)loss of rank in the basis. A well-
known problem of block Krylov subspace methods is that loss of rank in the basis may
occur. Near loss of rank is also problematic, since this influences the final accuracy
attainable by the iteration [14].

In the extended block Arnoldi method this drawback is even more severe, since two
block recurrences need to make progress. To improve the robustness of the method,
we have implemented a deflation strategy that eliminates almost linearly dependent
blocks in each of the two sequences, and also ensures that the two blocks are sufficiently
linearly independent, so that really new information is added to the space.

Step 3(c) of Algorithm 4.1 is thus replaced by a modified rank revealing type
procedure as follows (here ε0 is a fixed threshold chosen a priori):
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(i) Set V
(j)
1 = V (j)[ Im, 0 ]T and V

(j)
2 = V (j)[ 0, Im ]T .

(ii) Compute the economical SVD V
(j)
1 = U1Σ1W

T
1 , where U1 and W1 have

orthonormal columns and Σ1 = diag(σ11, . . . , σm1).
(iii) Determine the first j1 singular values such that σi1 > ε0σ11, i= 1, . . . , j1, and

set Û1 = U1( : , 1 : j1), Ŝ1 = Σ1(1 : j1, : )WT
1 .

(iv) Compute the economical SVD V
(j)
2 = U2Σ2W

T
2 , where U2 and W2 have

orthonormal columns and Σ2 = diag(σ12, . . . , σm2).
(v) Determine the first j2 singular values such that σi2 > ε0σ12, i= 1, . . . , j2, and

set Û2 = U2( : , 1 : j2), Ŝ2 = Σ2(1 : j2, : )WT
2 .

(vi) Compute the Gram-Schmidt orthogonalization [Û1, Û2]Ĥ = V̂ .
(vii) Retain only the set I of columns of V̂ whose diagonal elements in the matrix

Ĥ are greater than ε0 and get the final V̂j+1 = V̂ ( : , I) and Hj+1,j = Ĥ(I, :

)diag(Ŝ1, Ŝ2).

This procedure shows that the dimensions of V̂j+1 and Hj+1,j may vary (decrease)
as the iteration proceeds. This will be the same for all blocks in Hj , whose dimensions
vary with j. In particular, the number of deflated columns in the even and odd
recurrences, i.e., value of j1 and j2 at steps (iii) and (v) above, may be different. This
structure needs to be taken into account when updating the matrix Φj . A MATLAB
implementation of this technical step is reported in the Appendix.

5. Extended global Arnoldi method. In the extended global Arnoldi me-
thod, an F-orthonormal basis matrix Vk ∈ Rn,2km is constructed whose columns span
subspaces

K̃k(A−1E,PrA
−1B) + K̃k(E−A,E−B).

First, the matrix V1 is determined from the global QR decomposition

[E−B, PrA
−1B ] = Ṽ1(S ⊗ Im),

where Ṽ1 = [V1,1, V1,2 ] ∈ Rn,2m is F-orthonormal, i.e., Ṽ T1 �Ṽ1 =I2 and S=[spq] ∈ R2,2

is upper triangular. The global QR decomposition can be computed as

s11 = ‖E−B‖F , V1,1 = E−B/s11,

s12 = trace(V T1,1PrA
−1B), Ṽ1,2 = PrA

−1B − s12V1,1,

s22 = ‖Ṽ1,2‖F , V1,2 = Ṽ1,2/s22.

(5.1)

Then in the j-th global Arnoldi step, the block matrix [E−AVj,1, A
−1EVj,2 ] is

F-orthonormalized with respect to Vj = [Ṽ1, . . . , Ṽj ]. Similarly to the standard case
[16], we get the Arnoldi-like recurrence

[E−AVj,1, A
−1EVj,2 ]−

j∑
i=1

Ṽi(Ti,j ⊗ Im) = Ṽj+1(Tj+1,j ⊗ Im)

with Ti,j = Ṽ Ti � [E−AVj,1, A
−1EVj,2 ] ∈ R2,2 for i = 1, . . . , j+ 1. We summarize the

extended global Arnoldi method for the PCALE (1.1) in Algorithm 5.1.
Algorithm 5.1. The extended global Arnoldi method for the PCALE.
Given E,A ∈ Rn,n, B ∈ Rn,m and the spectral projectors Pl and Pr, compute

an approximate solution Xk of the PCALE (1.1).
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1. Compute the global QR decomposition [E−B, PrA
−1B ] = Ṽ1(S ⊗ Im), where

Ṽ1 ∈ Rn,2m is F-orthonormal and S = [spq] ∈ R2,2 is upper triangular.

2. Set V1 := Ṽ1, V1,1 := Ṽ1[Im, 0]T and V1,2 := Ṽ1[0, Im]T .
3. FOR j = 1, . . . , k

(a) Compute V (j) = [E−AVj,1, A
−1EVj,2 ].

(b) FOR i = 1, . . . , j % Modified global Gram-Schmidt orthogonal.
Ti,j := Ṽ Ti � V (j);

V (j) := V (j) − Ṽi(Ti,j ⊗ Im);
END FOR

(c) Compute the global QR decomposition V (j) = Ṽj+1(Tj+1,j ⊗ Im), where

Ṽj+1 is F-orthonormal and Tj+1,j ∈ R2,2 is upper triangular.

(d) Set Vj+1 := [Vj , Ṽj+1], Vj+1,1 := Ṽj+1[Im, 0]T , Vj+1,1 := Ṽj+1[0, Im]T .
(e) Solve the Lyapunov equation

ΨjYj + YjΨ
T
j = −s2

11e
2j
1 (e2j

1 )T , (5.2)

where Ψj = V Tj � (E−AVj) ∈ R2j,2j and e2j
1 = [1, 0, . . . , 0]T ∈ R2j.

END FOR
4. Compute Xk = Vk(Yk ⊗ Im)V Tk .

One can show that T j = [Ti,l]
l=1,...,j
i=1,...,j+1 and

Ψj = V Tj+1E
−AVj =

[
Ψj

Ψj+1,jJ
T
2j,2j−1:2j

]
are both the 2(j + 1) × 2j upper block Hessenberg matrices. The following theo-
rem shows that the columns of Ψj can be determined from T j without additional
multiplication with E−A.

Theorem 5.2. Let the matrix T j = [Ti,l]
l=1,...,j
i=1,...,j+1 with Ti,l = [tpq]

q=2l−1,2l
p=2i−1,2i be

as in Algorithm 5.1. Then the odd columns of Ψj = V Tj+1E
−AVj = [ψ1, . . . , ψ2j ] ∈

R2(j+1),2j satisfy

ψ2i−1 = T je
2j
2i−1, i = 1, . . . , j,

while the even columns of Ψj have the form

ψ2 =
(
s11e

2(j+1)
1 − s12T je

2j
1

)
/s22,

ψ2i =
(
e

2(j+1)
2(i−1) − [ψ1, . . . ψ2i−1]T (1 : 2i− 1, 2(i− 1))

)
/t2i,2(i−1), i = 2, . . . , j,

where eki denotes the i-th column of Ik and sil are as in (5.1).
Proof. The result can be proved analogously to [16, Proposition 1].
The following theorem shows that the stopping criterion in Algorithm 5.1 can be

based on an inexpensive estimation of the residual E−Rk(E−)T .
Theorem 5.3. Let Xk = Vk(Yk ⊗ Im)V Tk be an approximate solution of the

PCALE (1.1) computed by Algorithm 5.1 and let

Rk = AXkE
T + EXkE

T + PlBB
TPTl

be an associated residual. Then

‖E−Rk(E−)T ‖F ≤
√

2 ‖(e2(k+1)
2k+1 )TΨkYk‖F =: δEGA, (5.3)

‖Rk‖F ≤
√

2 ‖E‖2F ‖(e
2(k+1)
2k+1 )TΨkYk‖F . (5.4)
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Table 5.1
Computational costs for Algorithms 4.1 and 5.1

Algorithm 4.1 Algorithm 5.1
Step 1 4nm2 + 6nm 10nm
Step 3(b) (16nm2 + 2nm)j 18nmj
Step 3(c) 4nm2 + 6nm 10nm
Step 3(d) 200m3j3 200j3

Proof. Estimate (5.3) can be proved analogously to [16, Proposition 3]. Estimate
(5.4) follows from Rk = EE−Rk(E−)TET .

By solving the Lyapunov equation (5.2) for the Cholesky factor Zj of Yj = ZjZ
T
j ,

j = 1, . . . , k, and computing the SVD

Zk = [U1k, U2k ]diag(Σ1k,Σ2k)[W1k, W2k ]T

with ‖Σ2k‖2 ≤ ε‖Σ1k‖2, the approximate solution of the PCALE (1.1) can be deter-
mined in the factored form X ≈ ZZT , where Z = Vk

(
(U1kΣ1k)⊗ Im

)
.

We now compare the computational complexity of the extended block and global
Arnoldi methods. The computation of the QR decomposition via the Gram-Schmidt
orthogonalization in Steps 1 and 3(c) of Algorithm 4.1 costs 4nm2+6nm flops, whereas
the global QR decomposition in Algorithm 5.1 costs 10nm flops disregarding the com-
putation of E−B and PrA

−1B in both algorithms. The modified block Gram-Schmidt
orthogonalization in Algorithm 4.1 requires (16nm2 + 2nm)j flops at the j-th itera-
tion, while the computation of the modified global Gram-Schmidt orthogonalization in
Algorithm 5.1 costs 18nmj flops. The computation of V (j) at Step 3(a) in both algo-
rithms costs the same amount of flops. Finally, solving the Lyapunov equations (4.4)
and (5.2) using the Bartels-Stewart or Hammarling method costs at most 200m3j3

and 200j3, respectively. Here, we do not take into account the (minor) computational
cost for generating the matrices Φj and Ψj . We collect the counting of costs for the
extended block and global Arnoldi algorithms in Table 5.1.

The values in the table show that for the same number of iterations, Step 3(d)
may be significantly more expensive for Algorithm 4.1 than for Algorithm 5.1, if the
number of columns in B is large. In fact, it was suggested already in [34] to perform
Step 3(d) periodically, and not at every iteration, especially when convergence is slow,
i.e., j is large. We should notice, however, that Algorithm 4.1 may converge signifi-
cantly earlier than Algorithm 5.1, that is fewer iterations need to be performed, thus
overcoming the higher cost of solving the reduced Lyapunov equation at Step 3(d).

6. ADI-preconditioned Krylov subspace methods. In order to accelerate
the convergence of the global Arnoldi method, a preconditioning technique based
on the ADI method was proposed in [19] for standard Lyapunov equations. This
technique can also be extended to the PCALE (1.1).

First, we briefly describe the ADI method that was previously proposed for stan-
dard Lyapunov equations in [5, 24, 25, 27] and then generalized to projected Lyapunov
equations in [42]. The generalized ADI iteration for the PCALE (1.1) is given by

(E + τkA)Xk−1/2A
T +AXk−1(E − τkA)T = −PlBBTPTl ,

(E + τkA)XT
k A

T +AXT
k−1/2(E − τkA)T = −PlBBTPTl

(6.1)
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with an initial matrix X0 = 0 and shift parameters τ1, . . . , τk ∈ C−. If the pencil
λE − A is stable, then Xk converges towards the solution of the PCALE (1.1). The
rate of convergence depends strongly on the choice of the shift parameters. The
optimal shift parameters can be determined by solving the generalized ADI minimax
problem

{τ1, . . . , τq} = arg min
{τ1,...,τq}∈C−

max
t∈Spf(E,A)

|(1− τ1t) · . . . · (1− τ q t)|
|(1 + τ1t) · . . . · (1 + τq t)|

,

where Spf (E,A) denotes the finite spectrum of the pencil λE − A. Similarly to
[27], the suboptimal ADI parameters can be obtained from a set of largest and smal-
lest in modulus approximate finite eigenvalues of λE − A computed by an Arnoldi
procedure. Other parameter selection techniques developed for standard Lyapunov
equations [32, 43] can also be used for the PCALE (1.1).

A low-rank approximation to the solution of the PCALE (1.1) can be computed
in factored form X ≈ ZkZ

T
k using a low-rank version of the ADI method (LR-ADI)

as presented in Algorithm 6.1.

Algorithm 6.1. The generalized LR-ADI for the PCALE.

Given E,A ∈ Rn,n, B ∈ Rn,m, projector Pl, parameters τ1, . . . , τq ∈ C−, compute
a low-rank approximation X≈ZkZTk to the solution of the PCALE (1.1).

1. Compute Z(1) =
√
−2Re(τ1) (E + τ1A)−1PlB and set Z1 := Z(1).

2. FOR j = 2, 3, . . . , k

Z(j) =

√
Re(τj)

Re(τj−1)

(
I − (τ j−1 + τj)(E + τjA)−1A

)
Z(j−1);

Zj = [Zj−1, Z
(j) ];

END FOR

The ADI iteration can be stopped as soon as ‖Rk‖F /‖PlBBTPTl ‖F ≤ tol with
Rk = EZkZ

T
k A

T + AZkZ
T
k E

T + PlBB
TPTl . If the number of shift parameters is

smaller than the number of iterations required to attain a prescribed tolerance, then
we reuse these parameters in a cyclic manner. Note that computing the normalized
residuals η(Zk) even via the efficient methods proposed in [27, 32] can still be quite
expensive for large-scale problems. The stopping criterion in Algorithm 6.1 can also
be based on the condition ‖Z(k)‖F /‖Zk‖F ≤ tol which is much cheaper to verify than
that based on the residual. However, in this case, more iterations are usually required
to achieve the tolerance tol.

Equation (1.1) can be written in an equivalent form as a projected discrete-time
Lyapunov equation

A`XA
T
` −X = −Z`ZT` , X = PrXP

T
r , (6.2)

where A` = Pr(E + τ`A)−1(E − τ `A) · . . . · (E + τ1A)−1(E − τ1A) and Z` ∈ Rn,`m is
the `-th ADI iterate from Algorithm 6.1. Then we can solve this equation using the
block or global Arnoldi method. In the block Arnoldi method, the solution of (6.2)
is approximated by Xk = VkỸkV

T
k , where Ỹk satisfies the discrete-time Lyapunov

equation

H̃kỸkH̃
T
k − Ỹk = −B̃kB̃Tk
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with a block upper Hessenberg matrix H̃ = V Tk A`Vk = [H̃ij ] ∈ Rk`m,k`m and

B̃k = V Tk Z` ∈ Rk`m,`m. The norm of the residual Rk,` = A`XkA
T
` − Xk + Z`Z

T
`

of the Lyapunov equation (6.2) can be determined as

‖Rk,`‖F = ‖H̃k+1,kJ
T
k Ỹ [
√

2H̃T
k , JkH̃

T
k+1,k ]‖F =: δADI−BA, (6.3)

where Jk denotes a matrix of the last `m columns of the identity matrix Ik`m, see
[18] for details.

In the global Arnoldi method, the solution of the Lyapunov equation (6.2) is
approximated by Xk = Vk(Ỹk⊗I`m)V Tk , where Ỹk satisfies the discrete-time Lyapunov
equation

T̃kỸkT̃
T
k − Ỹk = −‖Z`‖2F e1e

T
1

with an upper Hessenberg matrix T̃k = V Tk � (A`Vk) = [t̃ij ] ∈ Rk,k. Similarly to [19],
we obtain the following estimate of the residual

‖Rk,`‖F ≤ t̃k+1,k

√
2‖T̃kỸkek‖22 + t̃2k+1,k(eTk Ỹkek)2 =: δADI−GA, (6.4)

where ek = [0, . . . , 0, 1]T ∈ Rk. Thus, the iteration can be stopped as soon as
δADI−GA/‖Z`ZT` ‖F exceeds a prescribed tolerance tol.

The Lyapunov equation (6.2) can also be solved using the extended block
(or global) Arnoldi method. It should, however, be noted that if the ADI shift parame-
ters τj are close to finite eigenvalues of λE−A, then the matrix A` is ill-conditioned.
In this case, small roundoff errors may have a dramatic effect on the convergence of
the algorithm.

7. Numerical examples. In this section we present some results of numeri-
cal experiments to demonstrate the properties of the presented iterative methods
for projected Lyapunov equations. Comparisons with respect to the computational
complexity and accuracy were performed for the generalized LR-ADI method, the ex-
tended block Arnoldi method (EBA), the extended global Arnoldi method (EGA), the
ADI-preconditioned block Arnoldi method (ADI(`)-BA) and the ADI-preconditioned
global Arnoldi method (ADI(`)-GA) with ` ADI-preconditioning steps. The PCALE
to be solved arises in balanced truncation model reduction of the descriptor system

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

(7.1)

where E, A ∈ Rn,n, B ∈ Rn,m, C ∈ Rp,n, x ∈ Rn is the state, u ∈ Rm is the input
and y ∈ Rp is the output. All computations were done on Intel Core 2 CPU 6400 @
2.13GHz RAM 2GB using MATLAB 7.9 with machine precision ε ≈ 2.22× 10−16.

For the LR-ADI iteration, the ADI parameters were determined using the heuris-
tic procedure [27] with the search parameters (q, ql, qs), where q is the number of the
ADI shifts, ql is the number of the largest in modulus finite eigenvalues and qs is the
number of the smallest in modulus finite eigenvalues of λE − A. These eigenvalues
were computed by an Arnoldi process applied to E−A and A−1E, respectively. In all
cases we only report the best obtained results among the many choices of (q, ql, qs)
we tested. In fact, this step required significant tuning as the performance of these
methods varied wildly with these values.
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As stopping criteria in the different methods, unless stated otherwise, we used
the following conditions

LR-ADI:
‖Rk‖F

‖PlBBTPTl ‖F
≤ tol,

EBA:
‖E−Rk(E−)T ‖F
‖E−BBT (E−)T ‖F

=
δEBA

‖E−BBT (E−)T ‖F
≤ tol,

EGA:
‖E−Rk(E−)T ‖F
‖E−BBT (E−)T ‖F

≤ δEGA
‖E−BBT (E−)T ‖F

≤ tol,

ADI(`)-BA:
‖Rk,`‖F
‖Z`ZT` ‖F

=
δADI−BA
‖Z`ZT` ‖F

≤ tol,

ADI(`)-GA:
‖Rk,`‖F
‖Z`ZT` ‖F

≤ δADI−GA
‖Z`ZT` ‖F

≤ tol,

where δEBA, δEGA, δADI−BA and δADI−GA are defined in (4.8), (5.3), (6.3) and (6.4),
respectively. In the Krylov subspace methods, the reduced Lyapunov equation was
solved at every other iteration.

Example 7.1. Consider the 2D instationary Stokes equation describing the
flow of an incompressible fluid in a square domain, see [33, Section 3.7.1] for details.
The spatial discretization of this equation by the finite volume method on a uniform
staggered grid leads to the descriptor system (7.1) with a matrix pencil λE−A which
has real finite eigenvalues only. The matrix B ∈ Rn,5 results from the distributed
control.

In Figure 7.1(a), we compare the computational time of all five methods for prob-
lems of different dimensions obtained by varying the mesh resolution. Note that
the cost for computing the ADI parameters is included in the overall cost of the
LR-ADI method. The iterations were stopped when either the normalized residual
norm or its upper bound (in case of the global Arnoldi iteration) exceeded the toler-
ance tol = 10−12. Figure 7.1(a) shows that the EBA method outperforms all other
methods in terms of CPU time, while the ADI(2)-GA method is the most expensive
for larger problems.

We investigate further this example by presenting the convergence history for the
different methods for the problem dimension n = 29799 in Figure 7.1(b). One can see
that although the ADI(2)-BA and ADI(2)-GA methods require fewer iterations than
other methods, it does not imply that they are less expensive in terms of execution
time. This can be explained by the fact that after ADI preconditioning with ` = 2 the
global Arnoldi algorithm is applied to the Lyapunov equation (6.2) with Z2 ∈ Rn,10

and the large number of columns in Z2 makes the ADI(2)-GA method expensive.
In addition to timings, Table 7.1 reports the final normalized residuals, the number
of iterations, the dimension of the solution space and the rank of the approximate
solution after column compression with the threshold ε = 10−12 for the different
methods. Comparing the EBA and EGA methods, we can conclude that although
the EBA method requires more operations at every iteration step, it converges in
fewer iterations than the EGA method, resulting in less computation time. Moreover,
the rank of the approximate solution is also in favor of the EBA method.

Example 7.2. Consider a constrained damped mass-spring system with g masses,
see [26]. The i-th mass of weight mi is connected to the (i+1)-st mass by a spring and
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(a) (b)

Fig. 7.1. Stokes equation. (a) CPU time for problems of different dimensions; (b) Convergence
history for problem of dimension n = 29799.

Table 7.1
Stokes equation: performance of the different iterative methods

LR-ADI EBA EGA ADI(2)-BA ADI(2)-GA
CPU time (sec) 85.53 63.82 71.48 75.83 100.82

Residuals/Estimates 5.93 · 10−13 3.82 · 10−13 8.25 · 10−13 4.67 · 10−14 9.77 · 10−14

Number of iterations 26 36 42 18 22
Dim. of solution space 130 360 420 180 220
Rank of solution 130 85 105 85 130

a damper with constants ki and di, respectively, and also to the ground by another
spring and damper with constants δi and κi, respectively. Additionally, we assume
that the first mass is connected to the last one by a rigid bar and it can be influenced
by a control. The vibration of this system is described by the descriptor system
(7.1) with a column vector B and a matrix pencil λE − A which has complex finite
eigenvalues. The system parameters are g = 20862, m1 = . . . = mg = 100 and

k1 = . . . = kg−1 = k = 2, κ1 = . . . = κg = κ = 4,
d1 = . . . = dg−1 = d = 5, δ1 = . . . = δg = δ = 10.

Problem (1.1) is thus of dimension n = 41725. Figure 7.2(a) shows the normalized
residuals ‖Rk‖F /‖PlBBTPTl ‖F for the LR-ADI method as well as

η1(Xk) =
‖E−Rk(E−)T ‖F
‖E−BBT(E−)T ‖F

and η2(Xk) =
‖A−1RkA

−T ‖F
‖PrA−1BBTA−TPTr ‖F

for the EBA method based on the reduced Lyapunov equations (4.4) and (4.11), re-
spectively (cf. the final remark in Section 4.1). We do not consider here the EGA
method since it coincides with the EBA method. One can see that both methods con-
verge very quickly. However, the LR-ADI method delivers the approximate solution
in 13.47 sec, while the computation of the solution using the EBA method takes in
both variants 2.19 sec only. Note that in this example, the second version of the EBA
method is preferable, since it requires fewer iterations to meet the chosen stopping
criterion.

As a second test with these data, we consider changing the damping constants to
d = 0.5 and δ = 1. The convergence of the LR-ADI method becomes much slower and
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the EBA method does not provide a satisfactory solution for a tolerance tol = 10−10,
see Figure 7.2(b). We should add, however, that this behavior is highly expected,
since the matrix E−A appears not to be dissipative. The residual curves for the EBA
method are broken after 24 and 26 iterations, respectively, since in both cases the
subsequent reduced Lyapunov equations were unstable.

(a) (b)

Fig. 7.2. Mechanical systems. Convergence history for the problems with different damping
parameters: (a) d = 5, δ = 10 and (b) d = 0.5, δ = 1.

Example 7.3. We consider now RC circuits that can be modeled via modified
nodal analysis by the descriptor system (7.1). First, we investigate the importance of
the deflation for systems with many inputs. For an RC circuit with 109 capacitors,
2910 resistors and 4 voltage sources, we have the problem of dimension n = 540 and
m = 4. For this problem, the EBA method without deflation does not converge. How-
ever, incorporating the deflation procedure as described in Section 4.2 with a threshold
ε0 = 10−7 completely cures the problem: not only the EBA method converges, but it
outperforms all other methods, cf. Table 7.2.

In this table, we also present the results for another RC circuit with 12005 capac-
itors, 12016 resistors and 8 voltage sources. The corresponding system has dimension
n = 12021 and m = 8. Figure 7.3(a) shows the residual curves for the different meth-
ods. We see that although the EBA and ADI(2)-BA methods have both the same
number of iterations, the first method is less expensive with respect to time than the
second one.

Finally, we compare in this example the ADI(`)-BA and ADI(`)-GA methods for
different `. Figure 7.3(b) shows the normalized residuals for ` = 1 and 2. One can see
that the preconditioning with two ADI steps improves the performance of the block
and global Arnoldi methods considerably. A further increasing of ` results, usually, in
more expensive computations. We also observed that both methods are very sensitive
to the choice of the ADI parameters in the preconditioning step.

8. Conclusion. In this paper we adapted known methods for solving large-scale
Lyapunov equations to the case of the projected Lyapunov equation, when a low-rank
solution is sought. These methods are based on the block and global Arnoldi processes
combined with the extended Krylov subspace approach and the ADI iteration. For the
extended block Arnoldi method, a new deflation procedure was devised to overcome
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(a) (b)

Fig. 7.3. Electrical circuit, n = 12021. (a) Convergence history for different methods.
(b) Convergence history for the ADI(`)-BA and ADI(`)-GA methods with ` = 1 and 2.

Table 7.2
Electrical circuits: performance of the different iterative methods

LR-ADI EBA+Defl EGA ADI(2)-BA ADI(2)-GA

n = 540, m = 4
CPU time (sec) 1.17 0.48 0.84 0.96 1.66

Residuals/Estimates 7.34 · 10−11 1.77 · 10−13 5.28 · 10−11 3.35 · 10−13 4.01 · 10−11

Number of iterations 31 18 26 14 26
Dim. of solution space 124 80 208 112 208
Rank of the solution 124 28 68 28 80

n = 12021, m = 8
CPU time (sec) 144.89 61.28 147.20 79.76 108.75

Residuals/Estimates 3.40 · 10−9 9.80 · 10−9 7.31 · 10−5 4.52 · 10−9 7.30 · 10−9

Number of iterations 54 42 78 42 70
Dim. of solution space 432 672 1248 672 1120
Rank of the solution 432 154 240 154 288

possible (near)breakdown problems during the iteration, significantly increasing the
robustness of the method. Note that the presence of singular coefficient matrices
highly increases the occurrence of near breakdown, making the implementation of
a deflation strategy mandatory.

The reported numerical experiments clearly show the competitiveness of the devel-
oped parameter-free Krylov subspace methods with respect to the classical LR-ADI
method in terms of computation time, accuracy and memory requirements, when
applied to several problems of distinct structure. We would like to stress that the
parameter tuning in the preprocessing of ADI may be extremely tricky, as the ADI
performance is dramatically affected by non-optimal parameters.

Within the extended family, our experiments showed that the extended block
Arnoldi method usually requires fewer iterations than the extended global Arnoldi
method to achieve a prescribed residual accuracy. This results in savings in both
memory and computation time.

We did not consider here a combination of the ADI method and Galerkin projec-
tion as it was proposed in [6]. In all our experiments, this method was more expensive
than Krylov subspace methods. A venue in a similar direction we would like to explore
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is the use of general rational Krylov subspace methods, which combine the strength
of rational functions with that of projection type schemes, see [10].

Further investigations would include an extension of the convergence results for
standard Lyapunov equations [22, 35] to projected Lyapunov equations as well as com-
putational issues such as restarting, memory-reducing strategies and preconditioning
techniques. We should mention that there are some difficult problems for which none
of the existing iterative methods provides an approximate solution with an acceptable
accuracy although the exact solution has low numerical rank. This implies the neces-
sity to continue research to develop even more robust solvers for large-scale projected
Lyapunov equations.
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DFG Research Center Matheon in Berlin.

Appendix A. In this appendix, we reproduce the code for performing the defla-
tion step in the extended block Arnoldi method. The procedure replaces Step 3(c) of
Algorithm 4.1, and it starts with: Up = V (j), nu1, nu2 the current number of blocks in
the two sequences, defltol the chosen deflation tolerance, js the current basis size,
and AUp2 = E−AV1,2. Note that certain indices are updated at each iteration using
the new dimensions of the two blocks. In particular, these are the initial settings for
some of them: j=1; jms=1; js=nu1+nu2; jm=nu1; jxm=nu2; jx1m=1.

[uu1,ss1,vv1]=svd(Up(:,1:nu1),0);

[uu2,ss2,vv2]=svd(Up(:,nu1+1:nu1+nu2),0);

if (nu1>1),

k01=find(diag(ss1/ss1(1))>=defltol);

elseif (nu1==0)

k01=[];

else

k01=1;

end

if (nu2>1),

k02=find(diag(ss2/ss2(1))>=defltol);

elseif (nu2==0)

k02=[];

else

k02=1;

end

P=[uu1(:,k01),uu2(:,k02)];

rr=blkdiag(ss1(k01,:)*vv1’,ss2(k02,:)*vv2’);

[S,Up]=gram_sh(P);

Si=inv(S);

id=find(diag(Si)<defltol); Si(id,:)=[];

rr=Si*rr; Up(:,id)=[];

id1=find(id<=length(k01)); id2=find(id>length(k01));

if (~isempty(id1)),k01(id(id1))=[];end

if (~isempty(id2)),k02(id(id2)-length(k01))=[];end

nu1old=nu1; nu2old=nu2;

nu1=length(k01); nu2=length(k02);

nu =nu1+nu2;

rrn=rr(:,[k01;nu1old+k02]);
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H(js+1:js+nu,jms:js)=rr;

U(:,js+1:js+nu)=Up;

I=speye(js+nu);

if (nu>0)

if (j==1),

kk2=nu1old+nu2old+nu1;

l(1:kk2,1:nu2old)=U(:,1:kk2)’*AUp2;

else

l(1:js+nu,jxm-nu2old+1:jxm)= ...

l(1:js+nu,jxm-nu2old+1:jxm)+H(1:js+nu,jms:jms-1+nu1old)*rho;

end

end

% even columns

Phi(1:js+nu1,jms+nu1old:jms-1+nu1old+nu2old)= ...

l(1:js+nu1,jxm-nu2old+1:jxm);

% odd columns

Phi(1:js+nu,jms:jms-1+nu1old)=H(1:js+nu,jms:jms-1+nu1old);

if (nu>0)

g1=I(1:js+nu,js-nu2old+1:js)- ...

Phi(1:js+nu,1:js)*H(1:js,js-nu2old+1:js);

g1=g1(:,k02);

l(1:js+nu,jxm+1:jxm+nu2)=g1*pinv(rrn(nu1+1:nu,nu1+1:nu));

rho=-rrn(1:nu1,nu1+1:nu)*pinv(rrn(nu1+1:nu,nu1+1:nu));

end

j =j+1; jxm=jxm+nu2; jx1m=jx1m+nu2;

jms=js+1; jm =js+nu1; js =js+nu1+nu2;
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