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In this paper we present a balanced truncation based strategy for the numerical solution of optimal
control problems governed by nonlinear evolution partial differential equations. The idea consists
in utilizing a balanced truncation model reduction method for the efficient solution of the semi-
discretized adjoint system, while the nonlinear state equations are fully solved. Our strategy is
analyzed as a descent method in function spaces and global convergence results are presented. In
combination with a Broyden-Fletcher-Goldfarb-Shanno update also superlinear convergence is veri-
fied. Numerical examples are given to illustrate the behaviour of the proposed method for different
problems.
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1 Introduction

Model reduction techniques have been intensively investigated as a tool
for the fast solution and optimization of evolution partial differential equa-
tions (PDEs). Among other methodologies, proper orthogonal decomposition
(POD) and balanced truncation have been applied for the simulation of a wide
range of phenomena including coherent structures, molecular dynamics and
fluid flow, e.g., [1, 4, 16, 22, 35].

Proper orthogonal decomposition is currently the commonly used model re-
duction technique for nonlinear systems. The key idea of the POD method
consists in choosing appropriate snapshots that are used to compute the re-
duced basis. A reduced-order model is then determined by Galerkin projection
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utilizing these basis functions. In the optimal control context, the application
of this technique to the state equation and the cost functional yields a lower
dimensional optimization problem which is usually easier to solve than the
original one. Such a reduced-order problem is governed by ordinary differential
equations and, consequently, numerical methods for the solution of finite di-
mensional optimal control problems or, after discretization in time, large-scale
optimization routines are utilized. Note that the selection of the snapshots is
highly problem-specific and has to be performed several times if optimization
methods are involved, see e.g., [16, 10].

On the other hand, the balanced truncation model reduction approach has
been previously proposed for linear time-invariant control systems [24, 7] and
then extended to nonlinear systems in [19, 29, 32]. Balanced truncation me-
thods for linear systems employ numerical linear algebra techniques and can
be applied to large-scale problems [4, 5], whereas computational issues of ba-
lanced truncation algorithms for nonlinear systems remain a challenge. The
connection between POD and balanced truncation is discussed in [30, 39].

In this paper, we propose an alternative approach for evaluating adjoints in
the context of optimization methods for the solution of optimal control prob-
lems governed by nonlinear PDE. The idea consists in applying the balanced
truncation method for the dimension reduction of the semi-discretized adjoint
system, which is linear with respect to the adjoint variables. Since no reduc-
tion of the nonlinear state equation takes place, the model reduction error
is present only in the adjoint system. In contrast to gradient evaluation tech-
niques, see [8,9], the balanced truncation model reduction of the adjoint system
makes it possible to obtain appropriate error bounds that allow a convergence
analysis of the underlying optimization method. Here such an analysis is pre-
sented for descent methods including the Broyden-Fletcher-Goldfarb-Shanno
method and leaving Newton-type methods for future work.

Note that the adjoint system contains time-varying linear terms coming from
the nonlinearity in the state equation. To reduce the order of such a system
we could apply the balanced truncation method adopted for the linear time-
varying systems [31, 33, 38]. However, the time-varying terms depend on the
state variable that changes at every iteration step of the optimization process.
To avoid re-computing the reduced-order adjoint system for different state
variables, we suggest to perform model reduction once by projecting the ad-
joint system onto a lower dimensional subspace. This subspace is determined
using the balanced truncation method applied to the time-invariant system
obtained from the adjoint system by dropping the state-dependent terms. Un-
der some restrictions on the size of these terms and the model reduction error
we can guarantee convergence of the descent method.

The efficiency of the balanced truncation model reduction method strongly
depends on the size of the control parameters and the observation domain. In
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this method, two matrix Lyapunov equations have to be solved. This may be
quite expensive for large-scale problems if the number of inputs and outputs is
large. However, for small number of inputs and outputs, the right-hand side of
the Lyapunov equations has low rank. In this case there exist efficient iterative
methods for solving such equations of very large state space dimensions, see
[3, 21, 25].

The outline of the paper is as follows. In Section 2, the optimal control
problem for two classes of nonlinear PDE is stated and the gradient of the
cost functional for the infinite dimensional problem and the semi-discretized
control problem are characterized. A general descent algorithm is also given
and its convergence is analyzed. In Section 3, we briefly describe the balanced
truncation model reduction approach and present the balanced truncation
descent method for solving the semi-discretized optimal control problem. Suf-
ficient conditions for the convergence of this method are investigated. Finally,
in Section 4, numerical experiments are carried out in order to illustrate the
efficiency of the proposed method.

2 Optimal control problem

Throughout the paper let (· , ·)H denote the inner product and ‖ · ‖H the norm
in a Hilbert space H. The topological dual of H is denoted by H ′ and the
duality pairing is written as 〈·, ·〉H′,H . Let H1 and H2 be two Hilbert spaces
and let L(H1, H2) be the set of linear operators mapping H1 into H2. We will
denote by A⋆ the adjoint operator of A ∈ L(H1, H2). The space of n × m
real matrices is denoted by R

n,m, the matrix A⊤ stands for the transpose of
A ∈ R

n,m and ‖ · ‖ denotes the Euclidean vector norm or the spectral matrix
norm.

2.1 State equation

Let V and H be two Hilbert spaces such that V →֒ H →֒ V ′ with dense and
continuous injections and let Ω ⊂ R

d, d = 1, 2, 3, be a regular bounded domain
with a boundary Γ. We consider a general evolution equation

∂y

∂t
+ A y + N (y) = f in (0, T ) × Ω,

y(0, x) = g(x) in Ω,
(1)

where f ∈ L2(0, T ; H), g ∈ H and A : V → V ′ is a linear elliptic operator.
Furthermore, N : V → V ′ is a nonlinear operator given either by a polynomial
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operator of the type

N (y) =
2l−1
∑

j=0

bjy
j, (2)

with positive integer l and positive b2l−1, or by

N (y) = N2(y, y), (3)

where N2(v, w) is a bilinear operator such that

(N2(v, w), w)H = 0, ∀v, w ∈ V,

|(N2(v, w), z)H | ≤ c1 ‖v‖θ1

H
‖v‖1−θ1

V
‖w‖

V
‖z‖θ1

V
‖z‖1−θ1

H
, ∀v, w, z ∈ V,

‖N2(v, w)‖
H

+ ‖N2(w, v)‖
H

≤ c2 ‖v‖V
‖w‖1−θ2

V
‖Aw‖θ2

H
, ∀v ∈ V, w ∈ DA,

‖N2(v, w)‖
H

≤ c3 ‖v‖θ3

H
‖v‖1−θ3

V
‖w‖1−θ3

V
‖Aw‖θ3

H
, ∀v ∈ V, w∈DA.

(4)

Here θi ∈ [0, 1) and ci, i = 1, 2, 3, are positive constants, and DA denotes the
domain of A. Note that the boundary conditions in (1) are considered to be
included in the definition of the spaces.

Example 2.1 Polynomial operators arises, for example, in the study of su-
perconductivity of fluids, see [36, p. 98]. Specifically, we have the equations

∂y

∂t
− D∆y = (1 − |y|2)y

with appropriate initial and boundary conditions. Here D is a diagonal ma-
trix with positive diagonal elements. The goal is to determine a function
y ∈ L2(0, T ; V ) that satisfies this system on a bounded domain Ω.

Example 2.2 Bilinear operators satisfying (4) arise in fluid dynamics, see
[36]. A classical example is given by the evolutionary Navier-Stokes equations

∂y

∂t
− ν∆y + (y · ∇)y + ∇p = f,

div y = 0,
y|Γ = 0, y(0, x) = g(x),

where y is the velocity field, p is the pressure and ν is the viscosity coefficient
of the fluid. The bilinear operator in this case is defined in the space V = {v ∈
(H1

0 (Ω))d : div v = 0} as N2(v, w) = (v · ∇)w.
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We consider the evolution equation (1) in the following weak form

d

dt
〈y, ϕ〉V ′,V + 〈A y, ϕ〉V ′,V + 〈N (y), ϕ〉V ′,V = 〈f, ϕ〉V ′,V ,

y(0) = g,
(5)

with ϕ ∈ V . A function y ∈ L2(0, T ; V ) is a weak solution of the state equation
(1) if it satisfies (5) for all ϕ ∈ V in a distributional sense on (0, T ). In the
following theorem existence and uniqueness results for the state equation with
nonlinear operators as in (2) and (4) are summarized.

Theorem 2.3 Consider (5) with a linear elliptic operator A and g ∈ H.

(i) Let V = H1
0 (Ω), H = L2(Ω), f ∈ L2(0, T ; H) and let N be as in (2).

There exists a unique solution y ∈ L2(0, T ; V ) ∩ L2l(0, T ; L2l(Ω)) for all
T > 0. Moreover, if g ∈ V, then y ∈ C(0, T ; V ) ∩ L2l(0, T ; H2(Ω)) for all
T > 0.

(ii) Let N (y) = N2(y, y) with N2 satisfying (4). If f ∈ H, then there exists
a unique solution y ∈ C([0, T ]; H)∩L2(0, T ; V ) for all T > 0. Additionally,
if g ∈ V, then y ∈ C([0, T ]; V ) ∩ L2(0, T ;DA) for all T > 0.

Proof The results are obtained by applying a Faedo-Galerkin technique. For
the complete proofs we refer to [36] and [16], respectively. �

2.2 Control problem

Let U and Y be the Hilbert control and observation spaces, respectively. We
consider the following abstract tracking type optimal control problem

minimize J(y, u) =
1

2

∫ T

0
‖Cy − z‖2

Y dt +
α

2

∫ T

0
‖u‖2

U dt

subject to
∂y

∂t
+ A y + N (y) = Bu in (0, T ) × Ω,

y(0, x) = g(x) in Ω,

(6)

where α > 0, g ∈ H and z ∈ Y is a desired state. The operators B : U → V ′

and C : V → Y are the linear continuous control and observation operators,
respectively. In practice, the control acts often on a subdomain of Ω only and
not the whole state y is available for measurements. In this case the control and
observation operators are just the extension and restriction operators, respec-
tively. We will assume that the optimal control problem (6) admits an optimal
solution, that is, there exists an optimal pair (y∗, u∗) that minimizes the cost
functional J .
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Let the control-to-state operator

G : L2(0, T ; U) → L2(0, T ; V ),
u 7→ y(u)

be twice Fréchet differentiable. Moreover, we assume that its first derivative
at the optimal solution G′(u∗) is a bijective linear operator. Then the first
derivative ŷ := G′(u)v is characterized by the solution of the equation

∂ŷ

∂t
+ Aŷ + N ′(y)ŷ = Bv, ŷ(0) = 0, (7)

where N ′(y) is the Fréchet derivative of the operator N at y (see [37,
Satz 5.10]). The cost functional in the optimal control problem (6) can, thus,
be expressed in reduced form as

J (u) := J(G(u), u) =
1

2

T
∫

0

‖CG(u) − z‖2
Y dt +

α

2

T
∫

0

‖u‖2
U dt. (8)

A first-order optimality condition for min
u

J (u) is then given by

∫ T

0
(J ′(u∗), v)U dt = 0 for all v ∈ U, (9)

where J ′(u∗) stands for the Riesz representative of the Fréchet derivative
of J at the optimal control u∗. To characterize this derivative, let us proceed
formally from (8). Using the chain rule, we get that

∫ T

0
(J ′(u), v)U dt =

∫ T

0
〈C⋆(Cy − z), ŷ〉V ′,V dt + α

∫ T

0
(u, v)U dt. (10)

Introducing an adjoint state p ∈ L2(0, T ; V ) as the unique weak solution of

−∂p

∂t
+ A⋆p + N ′(y)⋆p = −C⋆(Cy − z), p(T ) = 0, (11)
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we have

∫ T

0
(J ′(u), v)U dt =

∫ T

0
〈∂p

∂t
−A⋆p −N ′(y)⋆p, ŷ〉V ′,V dt + α

∫ T

0
(u, v)U dt

=

∫ T

0
〈∂p

∂t
, ŷ〉V ′,V dt −

∫ T

0
〈Aŷ + N ′(y)ŷ, p〉V ′,V dt + α

∫ T

0
(u, v)U dt.

Using integration by parts in time [6, p. 477] we obtain that

∫ T

0
(J ′(u), v)U dt = (p(T ), ŷ(T ))H − (p(0), ŷ(0))H

−
∫ T

0
〈∂ŷ

∂t
, p〉V ′,V dt −

∫ T

0
〈Aŷ + N ′(y)ŷ, p〉V ′,V dt + α

∫ T

0
(u, v)U dt,

which, considering the initial condition for ŷ in (7) and the final condition for
p in (11), implies

∫ T

0
(J ′(u), v)U dt = −

∫ T

0
〈∂ŷ

∂t
+ Aŷ + N ′(y)ŷ, p〉V ′,V dt + α

∫ T

0
(u, v)U dt.

Utilizing (7) we obtain that

∫ T

0
(J ′(u), v)U dt = −

∫ T

0
(Bv, p)H dt + α

∫ T

0
(u, v)U dt

and, therefore,

J ′(u) = αu − B⋆p in U.

The characterization of the derivative of the cost functional plays a key role not
only in the necessary optimality condition but also in the different optimization
algorithms.

2.3 Semi-discretized optimal control problem

By utilizing a space discretization scheme such as a finite difference or a finite
element method, we obtain from (6) the following large-scale optimal control
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problem

minimize J(y, u)=
1

2

∫ T

0
(Cy − z)⊤Q(Cy − z)dt +

α

2

∫ T

0
u⊤Ru dt (12)

subject to Eẏ = Ay + N(y) + Bu, y(0) = y0, (13)

where A ∈ R
n,n is a stiffness matrix, B ∈ R

n,m is an input matrix, C ∈ R
q,n

is an output matrix, and matrices E ∈ R
n,n, Q ∈ R

q,q and R ∈ R
m,m are

symmetric, positive definite. Additionally, y ∈ R
n, y0 ∈ R

n, z ∈ R
q and

u ∈ R
m are the semi-discretized state, initial state, desired state and control,

respectively, and ẏ denotes the time derivative of y.
A function y is called a solution to (13) if it is absolutely continuous on

[0, T ] and satisfies (13) in integral form

y(t) = y0 +

∫ t

0
(E−1Ay + E−1N (y) + E−1Bu) dτ. (14)

The operator N : R
n → R

n is a semi-discretized version of the nonlinear
operator −N of type (2) or (3), (4). It has one of the following forms

N(y) =
2l−1
∑

j=0

bjy
j or N (y) = diag(y)Dy,

where the power operation is to be understood componentwise and D ∈ R
n,n.

The operator N is, therefore, twice differentiable. Consequently, when con-
sidered from C([0, T ]) to C([0, T ]), N constitutes a superposition operator,
which is also twice Fréchet differentiable (cf. [18]). From the differentiabil-
ity and the particular structure of the operator N under consideration, the
following estimates follow

∥

∥N ′(y(t))ŷ(t)
∥

∥ ≤ κ1(y(t)) ‖ŷ(t)‖ for all t ∈ [0, T ], (15)
∥

∥N ′′(y(t))[ŷ(t)]2
∥

∥ ≤ κ2(y(t)) ‖ŷ(t)‖2 for all t ∈ [0, T ], (16)

with κ1(y(t)) > 0 and κ2(y(t)) > 0. In the case of the bilinear operator
satisfying (4), we obtain that

κ1(y(t)) = Kb,1‖y(t)‖, κ2(y(t)) = Kb,2,

for some constants Kb,1 > 0 and Kb,2 > 0 that are independent of y. For the
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polynomial operator satisfying (2), we have

κ1(y(t)) ≤ K̂p,1 + Kp,1‖y(t)‖2l−2, κ2(y) ≤ K̂p,2 + Kp,2‖y(t)‖2l−3

for some constants K̂p,i, Kp,i > 0, i = 1, 2, that are also independent of
y. In general, for both types of operators, there exist constants γi > 0 and
K̂i, Ki ≥ 0 such that

κ1(y(t)) ≤ K̂1 + K1‖y‖γ1

L∞(0,T ) =: κ̂1(y),

κ2(y(t)) ≤ K̂2 + K2‖y‖γ2

L∞(0,T ) =: κ̂2(y).
(17)

Moreover, the following Lq-estimates follow from the differentiability proper-
ties

∥

∥N ′(y)ŷ
∥

∥

Lq(0,T )
≤ q

√
T ‖N ′(y)ŷ‖L∞(0,T ) ≤ q

√
T κ̂1(y) ‖ŷ‖L∞(0,T ), (18)

∥

∥N ′′(y)[ŷ]2
∥

∥

Lq(0,T )
≤ q

√
T
∥

∥N ′′(y)[ŷ]2
∥

∥

L∞(0,T )
≤ q

√
T κ̂2(y) ‖ŷ‖2

L∞(0,T ), (19)

with 1 ≤ q < ∞. The following theorem gives estimates for the solution of the
initial problem (13).

Theorem 2.4 There exists a unique solution of the initial problem (13) on
the interval [0, T ]. This solution satisfies the following estimates

‖y‖Lq(0,T ) ≤ q
√

T
(

‖y0‖ +
√

T‖E−1‖ ‖B‖ ‖u‖L2(0,T )

)

e‖E−1‖(‖A‖+κ0)T , (20)

‖y‖L∞(0,T ) ≤
(

‖y0‖ +
√

T‖E−1‖ ‖B‖ ‖u‖L2(0,T )

)

e‖E−1‖(‖A‖+κ0)T , (21)

where κ0 = max
0≤t≤T

‖
∫ 1
0 N ′(τy(t)) dτ‖ and 1 ≤ q < ∞.

Proof Since N is differentiable, system (13) is solvable, see [2, p. 178]. More-
over, from the mean value theorem it follows that

‖N(y(t))‖ ≤
∥

∥

∥

∥

∫ 1

0
N ′(τy(t)) dτ

∥

∥

∥

∥

‖y(t)‖ ≤ κ0‖y(t)‖, (22)

which, together with (14) implies that

‖y(t)‖ ≤ ‖y0‖ + ‖E−1‖ ‖B‖
∫ t

0
‖u‖ dτ + ‖E−1‖(‖A‖ + κ0)

∫ t

0
‖y‖ dτ.
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Utilizing Gronwall’s inequality it follows that

‖y(t)‖ ≤ (‖y0‖ + ‖E−1‖ ‖B‖‖u‖L1(0,T ))e
‖E−1‖(‖A‖+κ0)T

which by Hölder’s inequality implies (20) and (21). �

We rewrite now the semi-discretized cost functional in reduced form as

J (u) := J(G(u), u) =
1

2

∫ T

0
(CG(u)− z)⊤Q(CG(u)− z)dt +

α

2

∫ T

0
u⊤Ru dt,

where G : L2(0, T ) 7→ L2(0, T ) denotes the semi-discretized control-to-state
operator. Using the implicit function theorem, the differentiability of the semi-
discretized control-to-state mapping follows from the differentiability of the
superposition operator N .

Next, an estimate for the linearized state will be obtained. This estimate will
be used thereafter in the convergence analysis of the proposed optimization

method.

Lemma 2.5 The solution ŷ of the linearized equation

E ˙̂y = Aŷ + N ′(y)ŷ + Bv, ŷ(0) = 0 (23)

satisfies the estimate

‖ŷ‖L∞(0,T ) ≤
√

Teκ(y) ‖E−1‖ ‖B‖ ‖v‖L2(0,T ) (24)

with κ(y) = T ‖E−1‖ (‖A‖ + κ̂1(y)).

Proof Rewriting equation (23) in integral form, we get that

ŷ(t) =

∫ t

0
E−1(A + N ′(y(τ)))ŷ(τ) dτ +

∫ t

0
E−1Bv(τ) dτ,

which by taking norms on both sides yields

‖ŷ(t)‖ ≤ ‖E−1‖
(
∫ t

0
‖A + N ′(y(τ))‖‖ŷ(τ)‖ dτ + ‖B‖

∫ t

0
‖v(τ)‖ dτ

)

.

Gronwall’s inequality implies that

‖ŷ(t)‖ ≤ ‖E−1‖‖B‖e‖E−1‖
R

T

0
‖A+N ′(y(τ))‖dτ

∫ T

0
‖v(τ)‖ dτ. (25)
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From estimates (15) and (17) it follows that ‖A + N ′(y(τ))‖ ≤ ‖A‖+ κ̂1(y).
Consequently, introducing κ(y) = T ‖E−1‖(‖A‖ + κ̂1(y)) and using Hölder’s
inequality, we obtain estimate (24). �

Taking into account the differentiability of the semi-discretized control- to-
state mapping and proceeding formally as in Section 2.2, the derivative of
J (u) can be computed as

J ′(u) = αRu − B⊤p, (26)

where p is a solution of the adjoint equation

−Eṗ = A⊤p + F (y) p + C⊤Q(z − Cy), p(T ) = 0, (27)

with F (y) = N ′(y)⊤.

2.4 Descent methods

As a preparatory step for the convergence analysis of descent methods, we will
begin by studying conditions for uniform continuity of the second derivative
of the cost functional on the closed convex hull of the set

U0 = { u ∈ L2(0, T ) : J (u) ≤ J (u0) },

where u0 denotes the initial value for the optimization variable. The closed
convex hull of U0 will be denoted by UJ .

Proposition 2.6 Let N : C([0, T ]) → C([0, T ]) be a twice differentiable
operator such that (18), (19) hold. Then there exists a constant M > 0 such
that

J ′′(u)[v]2 ≤ M ‖v‖2
L2(0,T ) (28)

for all u ∈ UJ and v ∈ L2(0, T ).

Proof Let u ∈ UJ . It can be verified that the second derivative of the cost
functional is given by

J ′′(u)[v]2 =

∫ T

0
ŷ⊤C⊤QCŷ dt+

∫ T

0
ỹ⊤C⊤Q(Cy−z)dt+α

∫ T

0
v⊤Rv dt, (29)
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where ỹ is solution of the equation

E ˙̃y = Aỹ + N ′(y)ỹ − N ′′(y)[ŷ]2, ỹ(0) = 0. (30)

Proceeding as in the proof of Lemma 2.5, we obtain from (19) the estimate

‖ỹ(t)‖ ≤
√

Teκ(y)
∥

∥E−1
∥

∥

∥

∥N ′′(y)[ŷ]2
∥

∥

L2(0,T )

≤ Teκ(y)
∥

∥E−1
∥

∥ κ̂2(y) ‖ŷ‖2
L∞(0,T ) .

(31)

Using Hölder and Cauchy-Schwarz inequalities we obtain that

∫ T

0
ỹ⊤C⊤Q(Cy − z) dt ≤ 1

2
‖C‖ ‖Q‖ ‖ỹ‖L∞(0,T )

(

T + ‖Cy − z‖2
L2(0,T )

)

,

which, thanks to estimate (31) and since u ∈ UJ , yields that

∫ T

0
ỹ⊤C⊤Q(Cy − z) dt ≤ c eκ(y)κ̂2(y) ‖ŷ‖2

L∞(0,T ) , (32)

where c = T
(

J (u0) + T
2

)

‖C‖ ‖Q‖ ‖E−1‖.
As a consequence of estimate (21), there exist constants θ̂i, θi > 0, i = 1, 2,

such that

κ(y) ≤ θ̂1 + θ1‖u‖γ1

L2(0,T ), κ̂2(y) ≤ θ̂2 + θ2‖u‖γ2

L2(0,T ), (33)

which, thanks to Cauchy-Schwarz inequality and since u ∈ UJ , implies that

κ(y) ≤ ˆ̟ 1 + ̟1J (u0)
γ1 , κ̂2(y) ≤ ˆ̟ 2 + ̟2J (u0)

γ2 , (34)

with ˆ̟ i := θ̂i + θ2
i /2 and ̟i := 2γi−1‖R−1/2‖γi/αγi , i = 1, 2.

Consequently, from (29), (32) and (34), we obtain that

J ′′(u)[v]2 ≤
∫ T

0
‖Q‖ ‖C‖2‖ŷ‖2dt + α

∫ T

0
‖R‖ ‖v‖2dt

+ c [ ˆ̟ 2 + ̟2J (u0)
γ2 ] exp ( ˆ̟ 1 + ̟1J (u0)

γ1) ‖ŷ‖2
L∞(0,T ), (35)

which, thanks to (24), implies the existence of a constant M > 0 such that
(28) is fulfilled. �
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Using (26) we can state the descent algorithm for the semi-discretized op-
timal control problem (12), (13). Following the general framework of descent
methods in Hilbert spaces (see, e.g., [15,23]) and recalling that M is the bound
on J ′′(u) given by (28), we have the following algorithm.

Algorithm 2.7 Descent method

1. Consider an initial control u0.
2. FOR k = 0, 1, . . .

(a) find a direction dk 6= 0 such that

−(J ′(uk), dk)L2(0,T ) ≥ µ‖J ′(uk)‖L2(0,T )‖dk‖L2(0,T ) (36)

with µ > 0 and J ′(uk) 6= 0;
(b) set a line search step βk such that

J (uk + βkdk) < J (uk); (37)

(c) update uk+1 = uk + βkdk.

END FOR

Remark 2.8 In order to obtain convergence of Algorithm 2.7 a stronger con-
dition on the step sizes is required. A classical condition is given by:

J (uk + βkdk) ≤ J (uk) −
µ2

2M
‖J ′(uk)‖, (38)

where µ > 0 is the same as in (36) and M is the constant from (28). Alternative
conditions on the step sizes are given in, e.g., [11, Section 2.2]

Theorem 2.9 If the hypotheses of Proposition 2.6 hold and conditions (36),
(38) are fulfilled at each iteration, then the sequence uk generated by Algo-
rithm 2.7 satisfies limk→∞ J ′(uk) = 0. Moreover, if there exists ς > 0 such
that

ς‖v‖2 ≤ J ′′(u)[v]2

holds for all u ∈ UJ and v ∈ R
m, then there exists u∗ ∈ UJ such that

limk→∞ uk = u∗ and u∗ is a solution of (12), (13).

Proof Since (28) holds, the result follows from the general convergence theo-
rem for descent methods in Hilbert spaces [23, pg. 288]. �

If the negative gradient is used as descent direction, i.e., dk = −J ′(uk), con-
dition (36) is immediately satisfied for µ = 1. More generally, the directions of
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the type dk = −HkJ
′(uk) with positive definite Hk satisfy (36). A particular

example is given by the inverse of the operator

Bk+1 = Bk +
(zk, · )L2(0,T )

(dk, zk)L2(0,T )
zk −

(Bkdk, · )L2(0,T )

(dk, Bkdk)L2(0,T )
Bkdk, (39)

where zk = J ′(uk+1) − J ′(uk). This operator update corresponds to the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. For this method a local
superlinear convergence result additionally holds, see [14].

Theorem 2.10 Let J be twice Fréchet differentiable and J ′′(·) Lipschitz
continuous in a neighborhood of u∗ with J ′(u∗) = 0 and bounded J ′′(u∗)−1.
Let B0 be a initial matrix iterate. If B0 −J ′′(u∗) is compact, then the BFGS
iterates converge q-superlinearly to u∗ provided ‖u0 − u∗‖L2(0,T ) and ‖B0 −
J ′′(u∗)‖L(L2(0,T )2,R) are sufficiently small.

Remark 2.11 For a survey on descent methods for finite dimensional control
problems, we refer to [27]. For the extension of second order optimization
methods to optimal control problems, see, e.g. [13, 14, 17].

3 Balanced truncation descent method

From Algorithm 2.7 and equations (26), (27) it can be observed that the eval-
uation of the gradient of the cost functional in the descent method requires
the numerical solution of the semi-discretized state and adjoint systems at
each iterative step. The dimension of these systems depends on the level of
refinement of the space discretization and is usually very large. Despite the
ever increasing computational speed, the numerical solution of very large in-
stationary problems is still a computationally intensive task especially when
such problems have to be solved for different input functions. In this case the
application of model order reduction can significantly reduce the computing
time and memory requirements.

A general idea of model reduction is to approximate a large-scale system by
a reduced model of lower dimension that has nearly the same behaviour as the
original system. Although model reduction of nonlinear systems received a lot
of attention in the last years, see [19,29,32], the development of efficient model
reduction methods for such systems remains challenging from the mathemat-
ical and algorithmic points of view. Therefore, in this paper we propose to
reduce the dimension of the linear adjoint system only, whereas the nonlinear
state equation is fully solved. Even in this case the amount of computations
can be reduced considerably.

The model order reduction problem for the semi-discretized adjoint equation
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consists in an approximation of (27) by a reduced-order system of the same
form

−Ẽ ˙̃p =
(

Ã
⊤

+ F̃ (y)
)

p̃ + C̃
⊤
Q(z − Cy), p̃(T ) = 0,

w̃ = B̃
⊤
p̃,

(40)

with Ẽ, Ã, F̃ (y) ∈ R
ℓ,ℓ, B̃ ∈ R

ℓ,m, C̃ ∈ R
q,ℓ and ℓ ≪ n. Since for computing

the gradient J ′(u) in (26) we need B⊤p and not the whole vector p, the
utilization of the reduced-order model (40) is justified for approximating the
output function B⊤p. In other words, we determine an approximate output

B̃
⊤
p̃ such that the difference B̃

⊤
p̃ − B⊤p is sufficiently small in some norm.

The approximate system (40) can be computed by a projection

Ẽ = W⊤ES, Ã = S⊤AW , F̃ (y) = W⊤F (y)S,

B̃ = S⊤B, C̃ = CW ,
(41)

where the projection matrices W , S ∈ R
n,ℓ are, in general, time-varying.

Note that the matrix F depends on the state vector y that changes at every
iteration step in the descent algorithm. To avoid the re-computation of the
reduced-order system that may be more expensive than solving one adjoint
equation, we suggest to use the same time-invariant projection matrices W and
S for all iterations. These matrices can be computed by a balanced truncation
model reduction method [7, 20, 24] applied to system (27) with t replaced by
T − t and F = 0. In the next subsection we briefly describe the basic idea of
this method, see [7, 24] for more details.

3.1 Balanced truncation

Consider a linear time-invariant dynamical system

E ξ̇(t) = A⊤ξ(t) + C⊤η(t), ξ(0) = 0,

̺(t) = B⊤ξ(t).
(42)

where E is symmetric and nonsingular. In the frequency domain this system
can be rewritten as ̺(s) = T (s)η(s), where η(s) and ̺(s) are the Laplace
transforms of η(t) and ̺(t), respectively, and T (s) = B⊤(sE − A⊤)−1C⊤

is a transfer function of system (42). Balanced truncation model reduction
is strongly related to the controllability Gramian P and the observability
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Gramian Q of (42) which solve the generalized Lyapunov equations

E P A + A⊤P E = −C⊤C,

E QA⊤ + AQE = −B B⊤.
(43)

If system (42) is asymptotically stable, i.e., all eigenvalues of the matrix pencil
λE−A have negative real part, then the Lyapunov equations (43) have unique
solutions P and Q that are symmetric and positive semidefinite. If system (42)
is unstable, we can define the Gramians as solutions of the projected Lyapunov
equations as it has been done for differential-algebraic equations [34].

The Gramians P and Q can be used to compute the minimal input energy
Eη = ‖η‖2

L2(−∞,0) that is needed to reach a state ξ0 at t = 0 from a zero state

at t = −∞ and also the resulting output energy E̺ = ‖̺‖2
L2(0,∞) of (42) with

the initial state ξ(0) = ξ0 and η(t) = 0 for t ≥ 0. If system (42) is controllable,
i.e., rank [λE −A⊤, C⊤] = n for all complex λ, then P is nonsingular and we
have

min
η∈L2(−∞,0)

Eη = ξ⊤0 P−1ξ0, E̺ = ξ⊤0 E QE ξ0. (44)

The first relation implies that a large amount of the input energy Eη is required
to reach the state ξ0 which lies in an invariant subspace of P corresponding to
its small eigenvalues. Such a state is difficult to reach. On the other hand, it
follows from the second relation in (44) that if ξ0 is contained in an invariant
subspace of E QE corresponding to its small eigenvalues, then the initial state
ξ(0) = ξ0 has a small effect on the output energy E̺ and it is difficult to observe.
System (42) is balanced if P = Q = diag(σ1, . . . , σn). The diagonal elements
σj are called the Hankel singular values. Clearly, the states of a balanced
system related to the small Hankel singular values are difficult to reach and to
observe at the same time. The truncation of such states essentially does not
change the input-output relation of the system. Note that the Hankel singular
values of (42) are invariant under state space transformation and they can be
computed as the classical singular values of a matrix L⊤ER, where R and L
are the Cholesky factors of the Gramians P = RR⊤ and Q = LL⊤.

The balanced truncation model reduction approach consists in a transfor-
mation of system (42) into a balanced form and a truncation of the states
that correspond to the small Hankel singular values. In practice, we do not
actually need to compute the balancing transformation explicitly. Instead, we
can combine balancing and truncation by performing the projection

Ẽ = W⊤ES, Ã = W⊤AS, B̃ = S⊤B, C̃ = CW , (45)
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where the projection matrices W and S determine left and right subspaces
corresponding to the dominant Hankel singular values of system (42). These
matrices can be computed by the following algorithm.

Algorithm 3.1 Projection matrices for balanced truncation
Given T = [ E, A⊤, C⊤, B⊤ ], compute the projection matrices W and S.

1. Compute the Cholesky factors R and L of the controllability and observa-
bility Gramians P = RR⊤ and Q = LL⊤.

2. Compute the singular value decomposition

L⊤ER = [ U1, U2 ]

[

Σ1 0
0 Σ2

]

[ V1, V2 ]⊤ ,

where the matrices [ U1, U2 ] and [V1, V2 ] have orthonormal columns,

Σ1 = diag(σ1, . . . , σℓ), Σ2 = diag(σℓ+1, . . . , σr),

with σ1 ≥ . . . ≥ σℓ ≫ σℓ+1 ≥ . . . ≥ σr > 0 and r = rank(L⊤ER).

3. Compute the projection matrices W = LU1Σ
−1/2
1 and S = RV1Σ

−1/2
1 .

The reduced-order system

Ẽ
˙̃
ξ(t) = Ã

⊤
ξ̃(t) + C̃

⊤
η(t),

˜̺(t) = B̃
⊤
ξ̃(t)

(46)

with the system matrices as in (45) has the transfer function

T̃ (s) = B̃
⊤
(sẼ − Ã

⊤
)−1C̃

⊤
.

One can show that (46) is asymptotically stable and the absolute error

‖ ˜̺− ̺‖L2(0,∞) ≤ ‖T̃ − T ‖∞‖η‖L2(0,∞) (47)

holds, where

‖T̃ − T ‖∞ := sup
ω∈R

‖T̃ (iω) − T (iω)‖ ≤ 2(σℓ+1 + . . . + σr). (48)

This bound allows an adaptive choice of the state space dimension ℓ of the
reduced model depending on how accurate the approximation is needed. We
will use this fact in the following.
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A main difficulty in balanced truncation model reduction for large-scale sys-
tems is that the matrix Lyapunov equations (43) have to be solved. However,
recent results on low-rank approximations to the solutions of Lyapunov equa-
tions [3,21,25] make the balanced truncation model reduction approach viable
for large-scale problems.

3.2 Convergence analysis

In this subsection we present the balanced truncation descent algorithm for the
semi-discretized optimal control problem (12), (13) and investigate sufficient
conditions for convergence. Again, the main idea of the approach consists
in replacing the semi-discretized adjoint equation (27) by the approximate
reduced-order system (40).

Algorithm 3.2 Balanced truncation descent algorithm (BTDM)

1. Consider an initial control u0.
2. Compute the projection matrices W and S applying Algorithm 3.1 to the

system T = [ E, A⊤, C⊤, B⊤ ].
3. FOR k = 0, 1, . . .

(a) solve the semi-discretized state equation

Eẏk = Ayk + N(yk) + Buk, yk(0) = g;

(b) compute p̃k as the solution of the reduced-order semi-discretized ad-
joint equation

−Ẽ ˙̃pk =
(

Ã
⊤

+ F̃ (yk)
)

p̃k + C̃
⊤
Q(z − Cyk), p̃k(T ) = 0

with Ẽ = W⊤ES, Ã = S⊤AW , F̃ (yk) = W⊤F (yk)S, B̃ = S⊤B

and C̃ = CW ;

(c) update uk+1 = uk +βkHk(B̃
⊤
p̃k −αRuk), with Hk positive definite.

END FOR

The following lemma gives a bound on the error B̃
⊤
p̃−B⊤p, where p and

p̃ satisfy (27) and (40), respectively.

Lemma 3.3 Let p and p̃ be the solutions of the adjoint equation (27) and
the reduced-order system (40), (41), where the projection matrices W and
S are computed by Algorithm 3.1 applied to T = [ E, A⊤, C⊤, B⊤ ]. Let
δ = 2(σℓ+1 + . . . + σr), where σℓ+1, . . . , σr are the truncated Hankel singular
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values of (27). Then

‖B̃⊤
p̃ − B⊤p‖L2(0,T ) ≤

(

δ‖Q‖ + κ5(y) + κ̃5(y)
)

‖Cy − z‖L2(0,T ) , (49)

where κ5(y) and κ̃5(y) are some constants depending on y.

Proof Let ζ and ζ̃ be the solutions of the systems

−Eζ̇ = A⊤ζ + C⊤η, ζ(T ) = 0, (50)

and

−Ẽ
˙̃
ζ = Ã

⊤
ζ̃ + C̃

⊤
η, ζ̃(T ) = 0,

respectively, where the input η is given by

η(t) =

{

Q(z(t) − Cy(t)), 0 ≤ t ≤ T,
0, t > T.

Clearly, ζ(t) = ξ(T − t) and ζ̃(t) = ξ̃(T − t), where ξ and ξ̃ satisfy (42) and
(46), respectively. Then we have

‖B̃⊤
p̃ − B⊤p‖L2(0,T ) ≤ ‖B̃⊤

p̃ − B̃
⊤
ζ̃ ‖L2(0,T ) + ‖B̃⊤

ζ̃ − B⊤ζ ‖L2(0,T )

+ ‖B⊤ζ − B⊤p‖L2(0,T ).

Using the error bounds (47) and (48) we can estimate

‖B̃⊤
ζ̃ − B⊤ζ ‖L2(0,T ) = ‖B̃⊤

ξ̃ − B⊤ξ ‖L2(0,T ) ≤ δ ‖ η ‖L2(0,∞)

≤ δ ‖Q‖ ‖Cy − z‖L2(0,T ).
(51)

Consider now the vector p(t) − ζ(t) that satisfies the system

−E(ṗ(t) − ζ̇(t)) = A⊤(p(t) − ζ(t)) + F (y(t))p(t),
p(T ) − ζ(T ) = 0.

This system can be rewritten in integral form as

p(t) − ζ(t) = E−1A⊤

∫ T

t
(p(τ) − ζ(τ)) dτ + E−1

∫ T

t
F (y(τ))p(τ) dτ.
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Since F (y) = N ′(y)⊤, we obtain that

‖p(t) − ζ(t)‖ ≤ ‖E−1‖
(

‖A‖
∫ T

t
||p(τ) − ζ(τ)‖ dτ +

∫ T

t
‖F (y(τ))‖‖p(τ)‖ dτ

)

≤ ‖E−1‖
(

‖A‖
∫ T

t
||p(τ) − ζ(τ)‖ dτ + ‖F (y)‖L2(0,T )‖p‖L2(0,T )

)

.

Using Gronwall’s inequality [28], we get

‖p(t) − ζ(t)‖ ≤ ‖E−1‖‖F (y)‖L2(0,T )‖p‖L2(0,T )e
‖E−1‖‖A‖(T−t)

and, hence,

‖p − ζ‖L2(0,T ) ≤ ‖E−1‖‖F (y)‖L2(0,T )‖p‖L2(0,T )

(
∫ T

0
e2‖E−1‖‖A‖(T−τ) dτ

)1/2

= ‖E−1‖‖F (y)‖L2(0,T )‖p‖L2(0,T )

(

e2T‖E−1‖‖A‖ − 1

2‖E−1‖‖A‖

)1/2

= κ3(y)‖p‖L2(0,T ),

where κ3(y) =
√

‖E−1‖(e2T‖E−1‖‖A‖ − 1)/(2‖A‖) ‖F (y)‖L2(0,T ).

Using again Gronwall’s inequality, we obtain from equation (27) the follow-
ing estimate

‖p‖L2(0,T ) ≤ κ4(y)‖Cy − z‖L2(0,T ),

where

κ4(y) = ‖C‖‖Q‖
√

‖E−1‖(e2T‖E−1‖(‖A‖+‖F (y)‖L2(0,T ))−1)

2‖A‖ + 2‖F (y)‖L2(0,T )
.

Thus,

‖p − ζ‖L2(0,T ) ≤ κ5(y)‖Cy − z‖L2(0,T ) (52)

with κ5(y) = κ3(y)κ4(y). Analogously, we get

‖p̃ − ζ̃‖L2(0,T ) ≤ κ̃5(y)‖Cy − z‖L2(0,T ), (53)

where κ̃5(y) is as κ5(y) with E, A and F replaced by Ẽ, Ã and F̃ , respectively.
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Finally, combining (51), (52) and (53) we obtain estimate (49). �

Theorem 3.4 Let Hk be positive definite with coercivity constant ck. If for
an appropriate chosen δ, the condition

(δ ‖Q‖ + κ5(yk) + κ̃5(yk)) ‖Cyk − z‖L2(0,T )

≤ ck(1 − λ)

ck + ‖Hk‖
∥

∥

∥
αRuk − B̃

⊤
p̃k

∥

∥

∥

L2(0,T )
(54)

holds for some given 0 < λ < 1, then the direction d̃k = −Hk(αRuk − B̃
⊤
p̃k)

is a descent direction at uk.

Proof Multiplying the exact gradient by −d̃k we obtain that

(J ′(uk), Hk(αRuk − B̃
⊤
p̃k))L2(0,T )

= (αRuk − B⊤pk, Hk(αRuk − B̃
⊤
p̃k))L2(0,T )

= (αRuk − B⊤pk, Hk(αRuk − B⊤pk + B⊤pk − B̃
⊤
p̃k))L2(0,T )

≥ ck‖αRuk − B⊤pk‖2
L2(0,T ) +

(

αRuk − B⊤pk, Hk(B
⊤pk − B̃

⊤
p̃k

)

)L2(0,T ).

From the Cauchy-Schwarz inequality it then follows that

(J ′(uk),Hk(αRuk − B̃
⊤
p̃k))L2(0,T )

≥ ‖αRuk − B⊤pk‖L2(0,T )

(

ck‖αRuk − B⊤pk‖L2(0,T )

−‖Hk‖‖Bpk − B̃
⊤
p̃k)‖L2(0,T )

)

(55)

≥ ‖αRuk − B⊤pk‖L2(0,T )

(

ck‖αRuk − B̃
⊤
p̃k‖L2(0,T )

−(ck + ‖Hk‖)‖B⊤pk − B̃
⊤
p̃k‖L2(0,T )

)

. (56)
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Using estimate (49) and hypothesis (54) we obtain that

(ck + ‖Hk‖)‖B⊤pk − B̃
⊤
p̃k‖L2(0,T )

≤ (ck + ‖Hk‖)(δ ‖Q‖ + κ5(yk) + κ̃5(yk)) ‖Cyk − z‖L2(0,T )

≤ ck(1 − λ)‖αRuk − B̃
⊤
p̃k‖L2(0,T )

≤ ck‖αRuk − B̃
⊤
p̃k‖L2(0,T ) − ρk‖Hk(αRuk − B̃

⊤
p̃k)‖L2(0,T )

with ρk = λ ck

‖Hk‖
. Therefore, (56) implies that

(J ′(uk), Hk(αRuk − B̃
⊤
p̃k))L2(0,T )

≥ ρk‖J ′(uk)‖L2(0,T ) ‖Hk(αRuk − B̃
⊤
p̃k)‖L2(0,T ).

�

Remark 3.5 It follows from (55) that

ck‖αRuk − B⊤pk‖L2(0,T ) − ‖Hk‖‖B⊤pk − B̃
⊤
p̃k‖L2(0,T )

≥ ϑ‖αRuk − B⊤pk‖L2(0,T ), (57)

for some constant ϑ > 0, directly implies that d̃k is a descent direction. This
condition is numerically verified in the experiments below. In practice, how-
ever, there is no adjoint state information available and therefore this condition
cannot be verified. Differently from (57), condition (54) can be verified before
the application of the BTDM, by evaluating the different constants involved.

4 Numerical results

In this section we present some numerical experiments, which show the main
features of the BTDM described in Algorithm 3.2. By means of two- and one-
dimensional example problems, the dependence of this numerical approach
on different parameter values such as viscosity coefficient, control weight or
mesh size are investigated and a comparison with the BFGS and the gradient
methods is carried out.

For the solution of the partial differential equations involved, a homogeneous
finite differences scheme for the space discretization is used in both examples.
For the numerical solution of the semi-discretized systems an implicit Euler
method is applied. The state equation is fully solved with the nonlinear term
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involving information from the previous time step. Unless otherwise specified,
the space step h = 0.01 and the time step τ = 0.01 were considered.

The methods stop if the difference norm of two consecutive iterates reaches
a precision value ε. The methods begin with a control initialization value
u0 ≡ 0. For simplicity, we choose the parameter β to be constant and equal to
0.5 in each descent iteration. It is also possible to use alternative line search
strategies [12], but we have not considered this, since the computational cost
of such strategies appears to be high.

Unless otherwise specified, the numerical experiments were carried out using
Matlab. For solving the Lyapunov matrix equations we used the Lyapack

Toolbox [26].

4.1 Semilinear system

In this first example we consider the following optimal control problem

minimize J(y, u) =
1

2

∫ T

0

∫

Ω
‖Cy − z‖2 dx dt +

α

2

∫ T

0

∫

Ω
‖Bu‖2 dx dt

subject to
∂y

∂t
− ∆y + θy3 = Bu in (0, T ) × Ω,

y(t, x) = 0 in (0, T ) × Γ,
y(0, x) = 0.01x1x2 in Ω,

where Ω = (0, 1) × (0, 1), Γ is the boundary of Ω and θ > 0. As desired state
we choose the function z = x1x2. We consider as the control and observation
domains the five central points of the spatial mesh. The order of the semi-
discretized full order adjoint system is n = 9801. It has been approximated by
a reduced model of order ℓ = 5 with error bound δ = 7.268 × 10−5.

The cubic nonlinearity together with the parameter θ are responsible for
a monotonic behaviour of the evolution operator. In Table 1 we present the
number of iterations and the quotient of computing times for different values
of θ. One can see that the total computing time for the BTDM is less than
half of the computing time needed by the standard BFGS method. This is
certainly not unexpected, since the adjoint system is reduced, but not the
state equation. It can also be noted from the data that the number of the
BTDM iterations are similar to those of the BFGS method and do not differ
as θ increases.

In Table 2, the data for different values of α are reported. The convergence
of the BFGS and BTDM algorithms needs more iterations and time as α
decreases. The behaviour in both cases with respect to iteration number is,
however, similar.

Next, the behaviour of the BTDM for different mesh sizes h is investigated.
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Table 1. Semilinear system (h = 0.01, τ = 0.01, α = 0.1, z = x1x2,

ε = 10−4): number of iterations and computing time for different values

of θ.
θ iter. BFGS iter. BTDM time BTDM/ time BFGS
1 5 4 0.3806
10 5 4 0.3816
100 5 4 0.3785
1000 5 4 0.4585
10000 5 4 0.3824

Table 2. Semilinear system (h = 0.01, τ = 0.01, θ = 1, z = x1x2,

ε = 10−4): number of iterations and computing time for different values

of α.
α iter. BFGS iter. BTDM time BTDM/ time BFGS
1 3 3 0.5998

0.1 5 4 0.3806
0.01 5 5 0.4880
0.001 5 5 0.4864

Table 3. Semilinear system (τ = 0.01, θ = 1, α = 0.5, z = x1x2,

ε = 10−5): number of iterations and computing time for different

mesh sizes h.
1/h iter. BFGS iter. BTDM time BTDM /time BFGS
40 14 14 0.5857
48 14 14 0.5126
56 15 15 0.6044
64 15 15 0.5074

The observation and control domains utilized in this case are depicted in Fi-
gure 1. We look for a control u(t, x) = χ

Ωc
(x)φ(t), where φ : [0, T ] 7→ R and

χ
Ωc

is the indicator function of the control domain Ωc. The observation vector
consists of all points included in the sector Ωo. In Table 3, the convergence
data for the BFGS method and the BTDM for different mesh sizes are given.
The number of iterations of both methods does not differ significantly as the
mesh step becomes smaller.
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Figure 1. Observation and control domains.

Finally, an alternative time dependent desired state was considered. The
control problem consisted in tracking the function z = (x1x2−1) sin(10t) with
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Figure 2. Optimal control function φ∗(t).

the separated control u(t, x) = χ
Ω
(x)φ(t). The observation domain is given

by the five central points of the mesh. The optimal control function φ∗(t) is
depicted in Figure 2. In this case, both the BFGS and BTDM methods needed
14 iterations to converge with a precision ε = 10−5. The remaining parameters
took the values α = 0.01, τ = 0.01 and h = 1/24. Despite of the difficulties
related to the active tracking of the time-dependent target, the BTDM behaves
efficiently in this case.

4.2 Burgers equation

In this example we consider the optimal control of the instationary Burgers
equation. This equation is known to be a good one-dimensional model for
turbulence and posses important features of fluid flow phenomena. Specifically,
we consider the following optimal control problem

minimize J(y, u) =
1

2

∫ T

0

∫ 1

0
|Cy − z|2 dx dt +

α

2

∫ T

0

∫ 1

0
|Bu|2 dx dt

subject to
∂y

∂t
− ν∆y + y′y = Bu,

y(t, 0) = 0, y(t, 1) = 0,
y(0, x) = sin(4πx),

where ν is the viscosity coefficient and y′ is the spatial partial derivative of y.
To fit in our framework, we consider the nonlinear operator N (v) = N2(v, v),
where N2(v, w) = 1

3 [(vw)′ + vw′] satisfies conditions (4).
As control and observation domains we consider first the three central points

of the mesh. The target is to reach the stationary desired state z = 0 in a time
horizon T = 0.1. The remaining parameter data are ν = 1/800 and α = 0.1.
The semi-discretized full order adjoint system is of order n = 199.

With a stopping parameter ε = 0.0005, the gradient method takes 30 itera-
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⊤
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(·−),

(δ ‖Q‖ + κ5(yk) + κ̃5(yk)) ‖Cyk − z‖L2(0,T ) (··) and ‖B⊤pk − B̃
⊤
p̃k‖L2(0,T )(−)

tions to converge, while the related BTDM algorithm with Hk = I stops after
27 iterations.

In Figure 3, the verification of the descent sufficient conditions (54) and (57)
is carried out. The numerical values of the adjoint error, the left hand side term
in (54) and the descent direction norm are plotted. For the evaluation of the
integrals we used a trapezoidal rule, while the matrix 2-norms were estimated
by using the inequality

‖ · ‖ ≤
√

‖ · ‖1 ‖ · ‖∞.

The satisfaction of the descent sufficient conditions (54) and (57), see Re-
mark 3.5, of the BTDM can be inferred from the plot. Comparing the adjoint
error norm and the descent direction norm, always a gap, which implies the
convergence of our method, occurs. However, also a gap between both suffi-
cient conditions exists. This fact provokes that in many numerical examples
the satisfaction of (57) can be observed, and therefore the convergence of
BTDM, but (54) can be numerically verified only for the first iterations. This
fact suggests that the result of Theorem 3.4 may be improved by using more
precise estimates.

In Table 4, the number of iterations for the descent method (DM) and
the BTDM algorithm is given for different viscosity coefficient values, the
time horizon T = 1 and the initial condition y(0, x) = sin(4πx). The control
and final control state for ν = 1/200 are plotted in Figure 4. Although no
monotonic behavior of the methods with respect to the coefficient can be
observed from the data, the number of iterations for both methods does not
differ significantly and the BTDM behaves robustly.
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Table 4. Example 2: h = 0.005, τ =

0.01, α = 0.1, z = 0, ε = 0.0005.

ν iter. DM iter. BTDM
1/10 55 55
1/50 79 79
1/100 53 53
1/150 40 38
1/200 41 38
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Figure 4. Final control and controlled state; ν = 1/200.

5 Conclusions

According to the analysis and the numerical experiments carried out, we con-
clude the following:

• The BTDM adjoint evaluation presented in this paper is an alternative ap-
proach to obtain gradient related information in optimal control problems
for nonlinear evolution PDEs. From the balanced truncation estimates,
a convergence analysis of the reduced descent method can be carried out.
As numerical experiments show, the convergence condition given in Theo-
rem 3.4 seems not to be restrictive in practice.

• The BTDM behaves similar to the correspondent descent method with
respect to the number of iterations. Since the same projection matrices are
used in each BTDM iteration and only the reduced-order adjoint equation
is solved, the computing time for the BTDM is less than the time needed
for the descent method.
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