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Abstract. We present an extension of the positive real and bounded real balanced truncation
model reduction methods to large-scale descriptor systems. These methods are based on balancing
the solutions of the projected Lur’e matrix equations. Important properties of these methods are
that, respectively, passivity and contractivity are preserved in the reduced-order models and that
there exist approximation error bounds. We also discuss the numerical solution of the projected
Lur’e equations. Numerical examples are given.
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1. Introduction. Consider a linear time-invariant continuous-time descriptor
system

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (1.1)

where E,A ∈ Rn,n, B ∈ Rn,m, C ∈ Rp,n, D ∈ Rp,m, x(t) ∈ Rn is a state vector,
u(t) ∈ Rm is a control input and y(t) ∈ Rp is an output. The number of state
variables n is called the order of system (1.1). The matrix E may be singular, but
we will assume that a matrix pencil λE − A is regular, i.e., det(λE − A) 6= 0 for
some λ ∈ C. Descriptor systems with singular E arise in a variety of applications
including design of micro-electro-mechanical systems (MEMS) and circuit simulation,
e.g., [16, 22,4].

As physical models get more complex and different coupling effects have to be
taken into account, the development of efficient modelling and simulation tools for
very large systems is highly required. In this context, model order reduction is of
crucial importance, especially if simulation of large-scale systems has to be done in
a short time or it has to be repeated for different input signals. A general idea of model
reduction is to approximate the large-scale descriptor system (1.1) by a reduced-order
model

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t),
ỹ(t) = C̃ x̃(t) + D̃ u(t),

(1.2)

where Ẽ, Ã ∈ R`,`, B̃ ∈ R`,m, C̃ ∈ Rp,`, D̃ ∈ Rp,m and ` � n. It is required that the
approximate model (1.2) preserves essential properties of (1.1) like stability, passivity
and contractivity and that the approximation error is small.

Moment matching approximation based on Krylov subspace methods, e.g., [3,14],
is commonly used model reduction approach in circuit simulation and MEMS design.
Until recently, it was the only model reduction technique available for descriptor
systems. Although the Krylov subspace model reduction methods are efficient for
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very large sparse problems, stability and passivity are not necessarily preserved in the
reduced-order model, so that usually a post-processing is needed to guarantee these
properties. Recently, passivity-preserving model reduction methods based on Krylov
subspaces have been developed for standard state space systems with E = I, see [2,40],
and also for structured descriptor systems describing linear RLC circuits [15,17,25,31].
Despite the successful application of these methods in practice, they provide a good
local approximation only and, so far, there exist no global error bounds.

Another model order reduction approach widely used in control design is balan-
ced truncation. In order to capture specific system properties, different balancing
techniques have been developed for standard state space systems, see [21] for com-
prehensive review. An important property of balancing-related model reduction is
the existence of computable error bounds that allow an adaptive choice of the order
of the approximate model. The classical balanced truncation method has been ex-
tended to descriptor systems in [42]. This method is based on balancing the proper
and improper controllability and observability Gramians of system (1.1) that satisfy
projected generalized Lyapunov equations. Note that Lyapunov-based balanced trun-
cation, in general, neither preserves passivity nor contractivity in the reduced-order
model. To guarantee these properties one can employ the positive real and bounded
real balanced truncation methods [23, 30, 32] that relay on solutions of two Lur’e
equations. An extension of these methods to descriptor systems has been considered
in [34]. The methods proposed there are based on computing a Weierstrass-like form
of the pencil λE − A. However, the computation of this form is very expensive for
large-scale problems and ignores the sparsity and structure of matrix coefficients.

In this paper, we present a generalization of the positive real and bounded real
balanced truncation methods for descriptor systems with singular E that avoids the
explicit computation of the Weierstrass canonical form. We introduce projected gene-
ralized Lur’e matrix equations that can be used to define positive real and bounded
real Gramians for descriptor systems. A different type of generalized Lur’e equations
has been used in [45,50] to characterize the positive real and bounded real properties
of descriptor systems. However, the application of such equations is limited to index
one problems, whereas the existence results for the projected Lur’e equations can be
stated independently of the index of the pencil λE −A.

Throughout the paper Rn,m and Cn,m denote the spaces of n×m real and complex
matrices. The open left and right half-planes are denoted by C− and C+, respectively,
and i =

√
−1. The negative and positive real half-axes are denoted by R− = (−∞, 0 ]

and R+ = [ 0,∞), respectively. The matrices AT and A∗ denote, respectively, the
transpose and the conjugate transpose of A ∈ Cn,m, and A−T = (A−1)T . An iden-
tity matrix of order n is denoted by In or simply by I. The zero n × m matrix
is denoted by 0n,m or simply by 0. We denote by rank(A) the rank, by im(A)
the image, by ker(A) the kernel and by Sp(A) the spectrum of a matrix A. Fur-
ther, for Hermitian matrices P,Q ∈ Cn,n, we write P > Q (P ≥ Q) if P − Q is
positive (semi)definite. The Euclidean vector norm is denoted by ‖ · ‖. For some
interval I ⊆ R, we use L2(I, Rm) to denote the Hilbert space of square integrable
Rm-valued functions. Let H∞ be a space of all functions that are analytic and bounded
in C+. The H∞-norm of G ∈ H∞ is defined by

‖G‖H∞ = sup
s∈C+

‖G(s)‖2 = lim
σ → 0
σ > 0

sup
ω∈R

‖G(σ + iω)‖2,

where ‖ · ‖2 denotes the spectral matrix norm.
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The paper is organized as follows. Section 2 contains some background material
for descriptor systems. Sections 3 and 4 deal with balanced truncation model reduc-
tion methods based on bounded real and positive real balancing, respectively. We
introduce projected Lur’e equations that play an essential role in these model reduc-
tion methods. In Section 5, we study the numerical solution of the projected Lur’e
equations via a method based on deflating subspaces of a structured matrix pencil.
Under some additional conditions the projected Lur’e equations can be rewritten as
the projected algebraic Riccati equations. We also briefly discuss solving these equa-
tions using Newton’s method. Furthermore, the computation of low-rank approxi-
mations of the solutions of the projected Lur’e and Riccati equations is considered.
Finally, in Section 6, we present some numerical examples.

2. Preliminaries. In this section, we give basic definitions and some properties
of matrix pencils and descriptor systems that will be used in the following.

Any regular matrix pencil λE − A with E,A ∈ Rn,n can be reduced to the
Weierstrass canonical form

E = Tl

[
Inf

0
0 E∞

]
Tr, A = Tl

[
Af 0
0 In∞

]
Tr, (2.1)

where Tl and Tr are the left and right nonsingular transformation matrices,
Af ∈ Rnf ,nf and nilpotent E∞ ∈ Rn∞,n∞ with index of nilpotency ν, see [19]. The
eigenvalues of Af are the finite eigenvalues of λE−A, and E∞ corresponds to an eigen-
value at infinity. The number ν is called the index of λE −A.

Subspaces W, T ⊂ Rn are called left and right deflating subspaces of the pencil
λE−A if dim(W) = dim(T ) and W = ET +AT . The deflating subspaces of λE−A
corresponding to the finite eigenvalues in the open left (right) half-plane are called
stable (antistable). The matrices

Pr = T−1
r

[
Inf

0
0 0

]
Tr, Pl = Tl

[
Inf

0
0 0

]
T−1

l (2.2)

are the spectral projectors onto the right and left deflating subspaces of λE − A cor-
responding to the finite eigenvalues. These subspaces have the dimension nf . The
complementary projectors to Pr and Pl are given by Qr = I − Pr and Ql = I − Pl,
respectively. They are the spectral projectors onto the left and right deflating sub-
spaces of λE − A corresponding to the eigenvalue at infinity. These subspaces have
the dimension n∞ = n−nf . A method for the computation of Qr and Ql avoiding the
reduction to the Weierstrass canonical form is presented in [28]. For some structured
problems arising in computational fluid dynamics, constrained multibody systems and
circuit simulation, such projectors can be computed in explicit form, see [13,36,43,39].

Consider a descriptor system (1.1) and assume that λE−A is regular. The index
of (1.1) is identified with the index of λE −A. The transfer function of (1.1) is given
by

G(s) = C(sE −A)−1B + D. (2.3)

This rational matrix-valued function describes the input-output relation of (1.1) in
the frequency domain. The transfer function G is called proper if lim

s→∞
G(s) < ∞, and

improper, otherwise. If lim
s→∞

G(s) = 0, then G is called strictly proper. We identify

properness or improperness of the descriptor system (1.1) with the respective property
of its transfer function G.
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Using the Weierstrass canonical form (2.1), the transfer function G of system
(1.1) can be additively decomposed into the strictly proper part and the polynomial
part, that is, G(s) = Gsp(s) + P (s) with strictly proper Gsp and

P (s) =
ν−1∑
k=0

Mksk,

where

Mk = CT−1
r

[
0 0
0 −Ek

∞

]
T−1

l B + δ0,kD (2.4)

and δ0,k denotes the Kronecker symbol.
For any rational function G, one can find matrices E, A, B, C and D such that

(2.3) holds [12]. A descriptor system (1.1) with these matrices is called a realization
of G and denoted by G = [E, A, B, C, D ]. The dimension of the matrices E and A
defines the order of the realization. A realization G = [E, A, B, C, D ] is called

• R-minimal if it is R-controllable and R-observable, i.e., for all λ ∈ C holds

rank[λE −A, B ] = rank[ λET −AT , CT ] = n; (2.5)

• S-minimal if it is R-minimal and also controllable and observable at infinity,
i.e., for matrices S∞ and T∞ with im(S∞) = ker(E) and ker(T∞) = im(E),
respectively, holds

rank[E , AS∞ , B ] = rank[ ET , AT TT
∞ , CT ] = n. (2.6)

The descriptor system (1.1) is stable if all the finite eigenvalues of the pencil
λE − A lie in the closed left half-plane and the eigenvalues on the imaginary axis
are semisimple, i.e., they have the same algebraic and geometric multiplicity. System
(1.1) is asymptotically stable if all the finite eigenvalues of the pencil λE−A lie in the
open left half-plane.

For a descriptor system (1.1) and an interval I ⊂ R, we say that the input
u ∈ L2(I, Rm) is consistent, if (1.1) has a continuous solution x : I → Rn. For I
with min I = t0 ∈ R and x0 ∈ Rn, we say that u ∈ L2(I, Rm) is consistent with
x(t0) = x0, if (1.1) possesses a continuous solution x : I → Rn with x(t0) = x0.
Note that if I is bounded from below and ν is the index of (1.1), then the ν-times
differentiability of u is sufficient for consistency. In order to guarantee consistency
with a prescribed initial value, the Weierstrass canonical form (2.1) can be used to
formulate further conditions on u, see [12].

2.1. Contractivity and bounded realness. An important class of dynamical
systems are the contractive systems. Contractivity means that the L2-norm of the
output does not exceed the L2-norm of the input. This type of systems is used, for
example, in the parametrization of all stabilizing controllers such that the closed-loop
system satisfies a L2-gain constraint [20].

Definition 2.1. A descriptor system (1.1) is called contractive if∫ t

0

‖u(τ)‖2 − ‖y(τ)‖2 dτ ≥ 0 (2.7)

for all t ∈ R+ and all u ∈ L2([0, t], Rm) consistent with x(0) = 0.
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The quantity on the left-hand side of (2.7) expresses the difference between the
input and output energies. Contractivity of the descriptor system (1.1) is closely
related to the bounded realness of its transfer function G.

Definition 2.2. A transfer function G is called bounded real if
(BR1) G is analytic in C+,
(BR2) G(s) = G(s) for all s ∈ C,
(BR3) G(s)∗G(s) ≤ I for all s ∈ C+.

Note that the bounded real transfer function G is necessarily proper. For the de-
scriptor system (1.1) with real matrix coefficients E, A, B, C and D, condition (BR2)
is always fulfilled. Moreover, if system (1.1) is asymptotically stable, then condition
(BR1) is satisfied, and condition (BR3) is equivalent to the bound ‖G‖H∞ ≤ 1.

Proposition 2.3. [1] A descriptor system (1.1) is contractive if and only if its
transfer function G is bounded real.

2.2. Passivity and positive realness. Passivity is another crucial property
of dynamical systems especially in circuit simulation and system design. Generally
speaking, passivity means that system does not produce energy via the input-output
channel. Mathematically, this property is defined as follows.

Definition 2.4. A descriptor system (1.1) is called passive if m = p and∫ t

0

u(τ)T y(τ) dτ ≥ 0 (2.8)

for all t ∈ R+ and all u ∈ L2([0, t], Rm) consistent with x(0) = 0.
Note that the quantity on the left-hand side of (2.8) stands for the energy that

can be extracted from the system. Passivity of the descriptor system (1.1) is closely
related to the positive realness of its transfer function G.

Definition 2.5. A square transfer function G is called positive real if
(PR1) G is analytic in C+,
(PR2) G(s) = G(s) for all s ∈ C,
(PR3) G(s) + G(s)∗ ≥ 0 for all s ∈ C+.

If system (1.1) is (asymptotically) stable, then condition (PR1) holds, and (PR3)
is equivalent to the condition that G(iω) + G(iω)∗ ≥ 0 for all ω ∈ R whenever iω
is not a pole of G. Moreover, one can show that if the descriptor system (1.1) is
R-minimal and passive, then it is stable [1]. In the following, we collect some further
properties of passive systems and positive real transfer functions.

Proposition 2.6. [1] A descriptor system (1.1) is passive if and only if its trans-
fer function G is positive real.

Proposition 2.7. [1] A transfer function G is positive real if and only if the
following conditions hold:

1. the proper part Gp(s) = Gsp(s) + M0 of G is positive real,
2. M1 is symmetric and positive semidefinite,
3. Mk = 0 for k > 1.

A Moebius transformation of a square transfer function G with det(I+G(s)) 6≡0
is defined as

M(G)(s) = (I −G(s))(I + G(s))−1. (2.9)

It is a self-inverse bijection, i.e., M(M(G)) = G. For a square transfer function
G(s) = C(sE−A)−1B +D with the property that I +D is invertible, a realization of
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the Moebius-transformed system H(s) = M(G)(s) is given by H = [ E , A, B, C, D ]
with

E = E, A = A−B(I + D)−1C, B = −
√

2B(I + D)−1,

C =
√

2(I + D)−1C, D = (I −D)(I + D)−1.
(2.10)

Observe that the property det(I + G(s)) 6≡ 0 is equivalent to the regularity of the
pencil λE −A + B(I + D)−1C.

The following theorem gives a connection between the positive real and bounded
real transfer functions related via the Moebius transformation.

Theorem 2.8.

1. Let G(s) = C(sE − A)−1B + D be positive real with invertible I + D. Then
the Moebius-transformed transfer function H(s) = M(G)(s) is bounded real.

2. Let a square bounded real transfer function H(s) = C(sE − A)−1B + D
with det(I + H(s)) 6≡ 0 and invertible I + D be given. Then the Moebius-
transformed transfer function G(s) = M(H)(s) is positive real.

Proof. The results can be proved analogously to the standard state space case,
see [1, 30].

Note that in the first part of Theorem 2.8 we do not have the additional require-
ment that det(I + G(s)) 6≡ 0, since it follows automatically from the positive realness
of G.

3. Bounded real balanced truncation. A bounded real balanced truncation
model reduction method for contractive standard state space systems has been con-
sidered in [21, 30, 32]. A generalization of this method to the descriptor system (1.1)
with nonsingular E is trivial. In the case of singular E, it has been proposed in [34]
first to transform the pencil λE − A into the Weierstrass canonical form (2.1) and
then apply the classical bounded real balanced truncation method to the standard
state space system [ I, Af , Bf , Cf , D −B∞C∞ ]. Here, the matrices

B = Tl

[
Bf

B∞

]
, C = [Cf , C∞ ]Tr (3.1)

are partitioned in accordance with the block structure of E and A in (2.1). However,
the computation of the Weierstrass canonical form may be ill-conditioned problem and
it is very expensive for large-scale problems. In this section, we present an extension
of the bounded real balanced truncation method to descriptor systems with singular
E that avoids the explicit computation of the Weierstrass canonical form. This form
will be used for theoretical purposes only.

3.1. Bounded real lemma for descriptor systems. Bounded realness of
standard state space system can be characterized by the bounded real lemma [1] that
gives a connection between bounded realness and solvability of so-called bounded real
Lur’e equations. Such equations are also known as Kalman-Yakubovich-Popov equa-
tions [24]. A generalization of this lemma to descriptor systems has been considered
in [35,45,50]. However, the solvability of generalized Lur’e equations presented there
is restricted to systems with the transfer function G satisfying ‖G‖H∞ < 1. It is fur-
thermore required that the index of the descriptor system is at most one. We present
here a generalized bounded real lemma for contractive descriptor systems whose trans-
fer function G may also satisfy ‖G‖H∞ = 1. Moreover, by making use of the spectral
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projectors Pr and Pl introduced in the previous section, we may consider descriptor
systems of arbitrary index.

Theorem 3.1 (Generalized bounded real lemma). Consider a descriptor sys-
tem (1.1) with a transfer function G. Let Pr and Pl be the spectral projectors onto
the right and left deflating subspaces of λE−A corresponding to the finite eigenvalues
and let Mk be as in (2.4).

1. If system (1.1) is R-minimal and G is bounded real, then the projected Lur’e
equations

AXET + EXAT + PlBBT PT
l = −KcK

T
c , X = PrXPT

r ≥ 0,

EXCT + PlBMT
0 = −KcJ

T
c , I −M0M

T
0 = JcJ

T
c

(3.2)

are solvable for Kc ∈ Rn,p, Jc ∈ Rp,p and X ∈ Rn,n.
2. If Mk = 0 for k ≥ 1 and the projected Lur’e equations (3.2) are solvable, then

G is bounded real.
Proof. Substituting (2.1), (2.2) and (3.1) in the projected Lur’e equations (3.2),

we find that the solution matrices have the form

X = T−1
r

[
Xf 0
0 0

]
T−T

r , Kc = Tl

[
Kc,f

0

]
, (3.3)

where Xf ∈ Rnf ,nf and Kc,f ∈ Rnf ,p satisfy the Lur’e equations

AfXf + XfAT
f + BfBT

f = −Kc,fKT
c,f ,

XfCT
f + BfMT

0 = −Kc,fJT
c .

(3.4)

If (1.1) is R-minimal and G is bounded real, then the standard state space system
[ I, Af , Bf , Cf , M0 ] is minimal and G(s) = Cf (sI − Af )−1Bf + M0. On the other
hand, if Mk = 0 for k ≥ 1 and the projected Lur’e equations (3.2) have a solution, then
G(s) = Cf (sI − Af )−1Bf + M0 and (3.4) is solvable. Thus, the result immediately
follows from the bounded real lemma for standard state space systems [1].

Observe that the bounded realness of G can also be characterized via the solva-
bility of the dual projected Lur’e equations

AT Y E + ET Y A + PT
r CT CPr = −KT

o Ko, Y = PT
l Y Pl ≥ 0,

ET Y B + PT
r CT M0 = −KT

o Jo, I −MT
0 M0 = JT

o Jo
(3.5)

for some Ko ∈ Rm,n, Jo ∈ Rm,m and Y ∈ Rn,n.
Next we introduce a generalization of the inverse of a matrix.
Definition 3.2. Let a matrix M ∈ Rm,n and projectors P1 ∈ Rm,m, P2 ∈ Rn,n be

given such that im(P1) = im(M) and ker(P2) = ker(M). Then a matrix M− ∈ Rn,m

is called a reflexive generalized inverse of M with respect to P1 and P2 if it satisfies
the matrix equations

MM− = P1, M−M = P2, M−MM− = M−.

Note that for prescribed P1 and P2, the reflexive generalized inverse exists and it is
unique [37]. In the sequel, we will denote by (M)−l the reflexive generalized inverse
with respect to the projectors Pl and PT

l and by (M)−r the reflexive generalized inverse
with respect to the projectors PT

r and Pr. Furthermore, for given M ∈ Rm,n of full
column rank and a projector P ∈ Rm,m such that im(P ) = im(M), we will denote by
(M)−P a reflexive generalized inverse of M with respect to P and In.
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The following theorem gives some relationships for the solutions of the bounded
real projected Lur’e equations (3.2) and (3.5).

Theorem 3.3. Consider a descriptor system (1.1) that is R-minimal and has
a bounded real transfer function G.

1. If the matrix X is a solution of (3.2), then Y = (EXET )−l satisfies (3.5).
2. If the matrix Y is a solution of (3.5), then X = (ET Y E)−r satisfies (3.2).
3. The projected Lur’e equations (3.2) and (3.5) have two extremal solutions

that satisfy

0 ≤ Xmin ≤ X ≤ Xmax, 0 ≤ Ymin ≤ Y ≤ Ymax (3.6)

for all solutions X and Y of (3.2) and (3.5), respectively.
4. The extremal solutions Xmin, Xmax of (3.2) and Ymin, Ymax of (3.5) satisfy

the relations

Xmin = (ET YmaxE)−r , Xmax = (ET YminE)−r ,
Ymin = (EXmaxE

T )−l , Ymax = (EXminET )−l ,
EXminET Ymax = EXmaxE

T Ymin = Pl,
XminET YmaxE = XmaxE

T YminE = Pr.

(3.7)

5. The eigenvalues of the matrix XminET YminE are real, non-negative and they
do not exceed one, i.e., 0 ≤ λj(XminET YminE) ≤ 1.

Proof. Let λE − A be in Weierstrass canonical form (2.1) and let the matrices
B and C be as in (3.1). Then the solutions of (3.2) have the form (3.3), whereas the
solutions of (3.5) are given by

Y = T−T
l

[
Yf 0
0 0

]
T−1

l , Ko = [Ko,f , 0 ]Tr,

where Yf ∈ Rnf ,nf and Ko,f ∈ Rm,nf satisfy the Lur’e equations

AT
f Yf + YfAf + CT

f Cf = −KT
o,fKo,f ,

YfBf + CT
f M0 = −KT

o,fJo.
(3.8)

1. and 2.: By the results for bounded real standard state space systems [30, 32],
the matrix Xf solves (3.4) if and only if Yf = X−1

f solves (3.8). Thus, if X and Y are
the solution of (3.2) and (3.5), respectively, then

(EXET )−l = T−T
l

[
X−1

f 0
0 0

]
T−1

l , (ET Y E)−r = T−1
r

[
Y −1

f 0
0 0

]
T−T

r

satisfy (3.5) and (3.2), respectively.
3. and 4.: Furthermore, the Lur’e equations (3.4) and (3.8) have the extremal

solutions that satisfy

0 < Xmin,f ≤ Xf ≤ Xmax,f , 0 < Ymin,f ≤ Yf ≤ Ymax,f

for all solutions Xf and Yf of (3.4) and (3.8), respectively. We also obtain that
Ymax,f = X−1

min,f and Ymin,f = X−1
max,f . Thus, the matrices

Xmin = T−1
r

[
Xmin,f 0

0 0

]
T−T

r , Xmax = T−1
r

[
Xmax,f 0

0 0

]
T−T

r ,

Ymin = T−T
l

[
Ymin,f 0

0 0

]
T−1

l , Ymax = T−T
l

[
Ymax,f 0

0 0

]
T−1

l (3.9)
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are the extremal solutions of the projected Lur’e equations (3.2) and (3.5). Clearly,
they satisfy (3.6) and (3.7).

5. In order to show that the eigenvalues of XminET YminE are real and located in
the interval [0, 1], we make use of

XminET YminE = T−1
r

[
Xmin,fYmin,f 0

0 0

]
Tr.

Then the required result follows again from the known facts for standard state space
systems, see [30,32].

It is known that for E = I, the extremal solutions of the Lur’e equations have
an interpretation in terms of energy that can be extracted from a given state [30,32,47].
We will now extend this result to descriptor systems.

Theorem 3.4. Consider a descriptor system (1.1) that is S-minimal and con-
tractive. Let Ymax and Ymin be the extremal solutions of (3.5). Then for all x0 ∈ Rn

the following identities hold:

xT
0 ET YmaxEx0

= inf
{∫ 0

−∞
‖u(τ)‖2 − ‖y(τ)‖2dτ

∣∣∣∣ u ∈ L2(R−, Rm) consistent and control-
ling to some x(0) with Ex(0) = Ex0

}
, (3.10)

xT
0 ET YminEx0

= sup
{
−
∫ ∞

0

‖u(τ)‖2 − ‖y(τ)‖2dτ

∣∣∣∣ u ∈ L2(R+, Rm) consistent with some
x(0) satisfying Ex(0) = Ex0

}
. (3.11)

Proof. Since the system is proper and both controllable and observable at infinity,
it has index at most one [12]. Without loss of generality we may assume that the pencil
λE − A is in Weierstrass canonical form (2.1). Then the extremal solutions of (3.5)
have the form (3.9), where Ymin,f and Ymax,f are the extremal solutions of the Lur’e
equations (3.8). Let x0 = [xT

0,f , xT
0,∞ ]T with x0,f ∈ Rnf and x0,∞ ∈ Rn∞ .

We first show the equality (3.10). Since Gf =[ I, Af , Bf , Cf , M0 ] is controllable,
there exists a sequence of smooth (and, thus, consistent) controls un∈L2(R−, Rm)
with corresponding outputs yn and states xn,f [48] such that xn,f (0) = x0,f and

lim
n→∞

∫ 0

−∞
‖un(τ)‖2 − ‖yn(τ)‖2dτ

= inf
{∫ 0

−∞
‖u(τ)‖2 − ‖y(τ)‖2dτ

∣∣∣∣ u ∈ L2(R−, Rm) controlling to xf (0) = x0,f

}
.

This together with the fact that the set of consistent inputs is contained in L2(R−, Rm)
leads to

inf
{∫ 0

−∞
‖u(τ)‖2 − ‖y(τ)‖2dτ

∣∣∣∣ u ∈ L2(R−, Rm) controlling to xf (0) = x0,f

}
= inf

{∫ 0

−∞
‖u(τ)‖2 − ‖y(τ)‖2dτ

∣∣∣∣ u ∈ L2(R−, Rm) consistent and controlling
to xf (0) = x0,f

}
.

The left-hand side equals xT
0,fYmax,fx0,f = xT

0 ET YmaxEx0 by the result for standard
systems. Furthermore, the expression on the right-hand side is equal to the right-hand
side of (3.10).
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We now show relation (3.11). Since the set of inputs u ∈ L2(R+, Rm) consistent
with some x(0) satisfying Ex0 = Ex(0) is dense in L2(R+, Rm), we have

sup
{
−
∫ ∞

0

‖u(τ)‖2 − ‖y(τ)‖2dτ

∣∣∣∣ u ∈ L2(R+, Rm) consistent with some x(0)
satisfying Ex(0) = Ex0

}
=sup

{
−
∫ ∞

0

‖u(τ)‖2 − ‖y(τ)‖2dτ

∣∣∣∣ u ∈ L2(R+, Rm) with xf (0) = x0,f

}
.

The right-hand side equals xT
0,fYmin,fx0,f = xT

0 ET YminEx0 by the result for standard
systems. Furthermore, the expression on the left-hand side is equal to the right-hand
side of (3.11).

Assuming that the amount of energy provided by the environment to the descrip-
tor system (1.1) is the difference between input and output energy, the quantity (3.10)
can be interpreted as the required supply, i.e., the minimum amount of energy that
must be provided to control system (1.1) to the state x(0) satisfying Ex(0) = Ex0

over any possible trajectory. Further, (3.11) is the available storage energy or the
maximum amount of energy that can be extracted from the system over any possible
trajectory of the state from an initial state.

The difference to the corresponding results for standard state space systems is
that we have the additional consistency conditions for the input due to the algebraic
equations contained in the descriptor system (1.1). One can see that the consistency
condition in (3.11) becomes trivial in the case E = I.

3.2. Bounded real balancing. Subsequently, we define the notions of Grami-
ans and bounded real balanced realizations for descriptor systems.

Definition 3.5. Let G = [E, A, B, C, D ] be R-minimal and contractive. The
minimal solutions of the projected Lur’e equations (3.2) and (3.5), denoted by Xbr and
Ybr, respectively, are called the bounded real controllability and observability Grami-
ans. The square roots of non-zero eigenvalues of the matrix XbrE

T YbrE, denoted by
ξj, are called bounded real characteristic values of G.

We will assume that the characteristic values are ordered decreasingly. It follows
from Theorem 3.3 that the R-minimal descriptor system (1.1) has nf non-zero cha-
racteristic values that do not exceed one. Note that ξj are input-output invariant,
i.e., they are preserved under a system equivalence transformation.

Definition 3.6. A realization G = [ E, A, B, C, D ] is called bounded real
balanced if Xbr = Ybr = diag(Σ, 0) with Σ = diag(ξ1, . . . , ξnf

).
For any R-minimal, contractive realization G = [E, A, B, C, D ], there always

exist transformation matrices Wb and Tb such that the transformed realization
[WbETb,WbATb,WbB,CTb, D] is bounded real balanced. Such a balancing transfor-
mation can be constructed analogously to the Lyapunov-based balancing [42]. Note
that the matrix pencil of a bounded real balanced realization is automatically in
Weierstrass-like form

λWbETb −WbATb =
[

λI −A1 0
0 λE2 −A2

]
(3.12)

for some A1 ∈ Rnf ,nf and E2, A2 ∈ Rn∞,n∞ , where A2 is nonsingular and A−1
2 E2 is

nilpotent.
Now we consider model reduction of contractive descriptor systems. Due to the

variational representation of the bounded real Gramians in Theorem 3.4, it is evident
to remove those states x0 ∈ Rn for which xT

0 ET YmaxEx0 is large and at the same
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time xT
0 ET YminEx0 is small. If the descriptor system (1.1) is bounded real balanced,

i.e.,

Ymin = Ybr = diag(Σ, 0), Ymax = (EXbrE
T )−l = diag(Σ−1, 0),

then the states corresponding to the small bounded real characteristic values are good
candidates for the reduction. This leads to the method of bounded real balanced
truncation. The following theorem introduces this method and gives an error bound.

Theorem 3.7. Let a bounded real balanced system G = [E, A, B, C, D ] be given
with the bounded real characteristic values ξ1 ≥ . . . ≥ ξ

f̀
> ξ

f̀ +1 ≥ . . . ≥ ξnf
. Then

a reduced-order system G̃ = [ZT EZ, ZT AZ, ZT B, CZ, D ] with

Z =

 I
f̀

0
0 0
0 In∞

 (3.13)

has the bounded real transfer function, and we have the error bound

‖G̃−G‖H∞ ≤ 2(ξ
f̀ +1 + . . . + ξnf

). (3.14)

Proof. Since G is bounded real balanced, it has a standard state space realization
[ Inf

, A1, B1, C1, M0 ]. The transfer function of the reduced-order model is then given
by G̃(s) = C̃1(sI− Ã1)−1B̃1 +M0, where Ã1 = Z̃T A1Z̃, B̃1 = Z̃T B1, C̃1 = C1Z̃ with
Z̃ = [ I

f̀
, 0

f̀ ,nf− f̀
]T . Then the required results follow from the properties of classical

bounded real balanced truncation [32].
The state-space dimension of the approximate system G̃ can be reduced further

if we truncate the states that are uncontrollable and unobservable at infinity. The
input-output relation of the system remains thereby unchanged and the error bound
(3.14) still holds. Such states can be determined using the improper controllability
and observability Gramians Ximp and Yimp of the descriptor system (1.1), see [42].
These Gramians are defined as unique symmetric, positive semidefinite solutions of
the projected discrete-time Lyapunov equations

AXimpA
T − EXimpE

T = QlBBT QT
l , Ximp = QrXimpQ

T
r , (3.15)

AT YimpA− ET YimpE = QT
r CTCQr, Yimp = QT

l YimpQl. (3.16)

The matrix XimpA
T YimpA has non-negative eigenvalues, and the square roots of its

largest n∞ eigenvalues define the improper Hankel singular values θj of system (1.1).
States that are uncontrollable and unobservable at infinity correspond to the zero
improper Hankel singular values.

Analogous to [42], we can now formulate an algorithm for computing the contrac-
tive reduced-order models via the bounded real balanced truncation method.

Algorithm 3.8. Bounded real balanced truncation for descriptor systems.
Given a contractive system G = [E, A, B, C, D ] and the projectors Pl, Pr,
compute a reduced-order contractive system G̃ = [ Ẽ, Ã, B̃, C̃, D̃ ].
1. Compute the Cholesky factors R̂ and L̂ of the solutions Ximp = R̂R̂T and

Yimp = L̂L̂T of the projected Lyapunov equations (3.15) and (3.16), respec-
tively.

2. Compute the singular value decomposition L̂T AR̂ = U3ΘV T
3 , where U3 and

V3 have orthonormal columns, and Θ = diag(θ1, . . . , θ`∞) is nonsingular.
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3. Compute the matrix M0 = D − CR̂V3Θ
−1UT

3 L̂T B.
4. Compute the Cholesky factors R and L of the bounded real Gramians

Xbr = RRT and Ybr = LLT that are the minimal solutions of the bounded
real projected Lur’e equations (3.2) and (3.5), respectively.

5. Compute the singular value decomposition

LT ER = [U1, U2 ]
[

Σ1

Σ2

]
[V1, V2 ]T ,

where [U1, U2 ], [ V1, V2 ] have orthonormal columns, Σ1 = diag(ξ1, . . . , ξ f̀
)

and Σ2 = diag(ξ
f̀ +1, . . . , ξnf

).
6. Compute the reduced system [ Ẽ, Ã, B̃, C̃, D̃ ] = [ WET, WAT, WB, CT, D ]

with W = [LU1Σ
−1/2
1 , L̂U3Θ−1/2 ]T and T = [RV1Σ

−1/2
1 , R̂V3Θ−1/2 ].

The numerical solution of the projected Lur’e equations (3.2) and (3.5) will be
considered in more detail in Section 5. For solving the projected Lyapunov equa-
tions (3.15) and (3.16) we can use the generalized Smith method [43]. This method
provides the Cholesky factors R̂ ∈ Rn,νm and L̂ ∈ Rn,νp of the improper Gramians
Ximp = R̂R̂T and Yimp = L̂L̂T without computing these Gramians explicitly.

Remark 3.9. The reduced-order system computed by Algorithm 3.8 preserves the
matrix D. A further elimination of the non-dynamic modes leads to another system
[WfETf , WfATf , WfB, CTf , M0 ] with Wf = Σ−1/2

1 UT
1 LT and Tf = RV1Σ

−1/2
1 ,

which has the same transfer function and even lower order. In the next section we
will see that not always it makes sense to eliminate non-dynamic modes in bounded
real balanced truncation.

4. Positive real balanced truncation. Passivity-preserving model reduction
of standard state space systems via positive real balanced truncation was considered
in [11, 21, 23, 30, 34, 46]. In this method the truncation of states is performed on
the basis of solutions of so-called positive real Lur’e equations. As in the previous
section, here we present a projector-based generalization of the positive real balanced
truncation method to descriptor systems.

4.1. Positive real lemma for descriptor systems. First of all we establish
an equivalence between positive realness and the solvability of certain projected Lur’e
equations.

Theorem 4.1 (Generalized positive real lemma). Consider a descriptor system
(1.1) with a square transfer function G. Let Pr and Pl be the spectral projectors onto
the right and left deflating subspaces of λE−A corresponding to the finite eigenvalues
and let Mk ∈ Rm,m be as in (2.4).

1. If system (1.1) is R-minimal and G is positive real, then the projected Lur’e
equations

AXET + EXAT = −KcK
T
c , X = PrXPT

r ≥ 0,
EXCT − PlB = −KcJ

T
c , M0 + MT

0 = JcJ
T
c

(4.1)

are solvable for Kc ∈ Rn,m, Jc ∈ Rm,m and X ∈ Rn,n.
2. If Mk = 0 for k > 1, M1 = MT

1 ≥ 0 and the projected Lur’e equations (4.1)
have a solution, then G is positive real.

Proof. The desired result can be proved analogously to Theorem 3.1 using the
Weierstrass canonical form (2.1), Proposition 2.7 and the positive real lemma for
standard state space systems [1].
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Note that the solvability of (4.1) is equivalent to the solvability of the dual pro-
jected Lur’e equations

AT Y E + ET Y A = −KT
o Ko, Y = PT

l Y Pl ≥ 0,
ET Y B − PT

r CT = −KT
o Jo, M0 + MT

0 = JT
o Jo

(4.2)

for Ko ∈ Rm,n, Jo ∈ Rm,m and Y ∈ Rn,n. A counterpart of Theorem 3.3 can also be
established for the positive real projected Lur’e equations (4.1) and (4.2).

Remark 4.2. In [18], positive realness of descriptor systems is characterized via
feasibility of certain linear matrix inequalities. The existence of a solution of these
inequalities was shown to be sufficient for positive realness. However, for necessity,
the additional condition D + DT ≥ M0 + MT

0 further has to be valid.

4.2. Positive real balancing. We now define a positive real balanced realiza-
tion and related notions for descriptor systems.

Definition 4.3. Let G = [E, A, B, C, D ] be R-minimal and passive. The mini-
mal solutions of the projected Lur’e equations (4.1) and (4.2), denoted by Xbr and Ybr,
respectively, are called the positive real controllability and observability Gramians.
The square roots of non-zero eigenvalues of the matrix XbrE

T YbrE, denoted by πj,
are called positive real characteristic values of G. The system G is called positive
real balanced, if Xpr = Ypr = diag(Π, 0) with Π = diag(π1, . . . , πnf

).
In a straightforward way, we can now introduce the positive real balanced trun-

cation method for descriptor systems.
Algorithm 4.4. Positive real balanced truncation for descriptor systems.
Given a passive system G = [E, A, B, C, D ] and the projectors Pl, Pr,

compute a reduced-order passive system G̃ = [ Ẽ, Ã, B̃, C̃, D̃ ].
1. Compute the Cholesky factors R̂ and L̂ of the solutions Ximp = R̂R̂T and

Yimp = L̂L̂T of the projected Lyapunov equations (3.15) and (3.16), respec-
tively.

2. Compute the singular value decomposition L̂T AR̂ = U3ΘV T
3 , where U3 and

V3 have orthonormal columns, and Θ = diag(θ1, . . . , θ`∞) is nonsingular.
3. Compute the matrix M0 = D − CR̂V3Θ

−1UT
3 L̂T B.

4. Compute the Cholesky factors R and L of the positive real Gramians
Xpr = RRT and Ypr = LLT that are the minimal solutions of the positive
real projected Lur’e equations (4.1) and (4.2), respectively.

5. Compute the singular value decomposition

LT ER = [U1, U2 ]
[

Π1

Π2

]
[V1, V2 ]T ,

where [U1, U2 ], [V1, V2 ] have orthonormal columns, Π1 = diag(π1, . . . , π f̀
)

and Π2 = diag(π
f̀ +1, . . . , πnf

).
6. Compute the reduced system [ Ẽ, Ã, B̃, C̃, D̃ ] = [WET,WAT, WB,CT, D ]

with W = [LU1Π
−1/2
1 , L̂U3Θ−1/2 ]T and T = [RV1Π

−1/2
1 , R̂V3Θ−1/2 ].

Similarly to the standard state space case [23], one can show that the reduced-
order model computed by this algorithm is passive. Moreover, its transfer function G̃
has the same polynomial part as the transfer function G of the original system, and
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we have the following error bounds

‖G̃−G‖H∞ ≤
∥∥M0 + MT

0

∥∥
2

nf∑
j= f̀ +1

2πj

(1− πj)2

(
1 +

j−1∑
k=1

2πk

1− πk

)2

, (4.3)

‖G̃−G‖H∞ ≤ 2
∥∥(M0 + MT

0 )−1
∥∥

2
‖G + MT

0 ‖H∞‖G̃ + MT
0 ‖H∞

nf∑
j= f̀ +1

πj (4.4)

that can be proved as in [11] and [21], respectively.
Another possible approach for passivity-preserving model reduction is based on

the Moebius transformation of the transfer function G as presented in (2.9). If I +D
is nonsingular, then a state space realization [ E , A, B, C, D ] of H(s) = M(G)(s)
is given in (2.10). In this case we can compute a reduced-order contractive system
H̃ = [ WET, WAT, WB, C T, D ] using Algorithm 3.8. Finally, a back transforma-
tion G̃(s) = M(H̃)(s) leads to a reduced-order passive model that has the realization

G̃ = [ Ẽ, Ã, B̃, C̃, D̃ ] = [ WET, WAT, WB, CT, D ].

Indeed, taking into account (2.10) and using the relation

(I +D)−1 = (I + (I −D)(I + D)−1)−1 = (I + D)/2,

we have Ẽ = WET = WET and

Ã = WAT −WB(I +D)−1C T

= W
(
A−B(I + D)−1C + B(I + D)−1C

)
T = WAT,

B̃ = −
√

2 WB(I +D)−1 = WB,

C̃ =
√

2 (I +D)−1C T = CT,

D̃ = (I −D)(I +D)−1 = D.

Remark 4.5. It should be noted that if we eliminate the non-dynamic modes of H̃
as described in Remark 3.9, then I + D̃ with the feedthrough matrix D̃ of the resulting
reduced-order system may not be invertible. In this case the Moebius transformation
of H̃ may not exist.

Summarizing, we obtain the following algorithm.
Algorithm 4.6. Passivity-preserving model reduction method via bounded real

balanced truncation.
Given a passive system G = [E, A, B, C, D ] with nonsingular I + D,
compute a reduced-order passive system G̃ = [ Ẽ, Ã, B̃, C̃, D̃ ].
1. Compute the projection matrices W and T using Algorithm 3.8 applied to

the Moebius-transformed system H = M(G) with a realization as in (2.10).
2. Compute the reduced system [ Ẽ, Ã, B̃, C̃, D̃ ] = [ WET,WAT, WB,CT, D ].

The following theorem provides an error bound for the reduced-order system
computed by Algorithm 4.6.

Theorem 4.7. Consider a passive descriptor system (1.1) with a transfer func-
tion G. Let G̃ be a transfer function of a reduced-order model (1.2) computed by
Algorithm 4.6. If

‖I + G‖H∞(ξξf +1 + . . . + ξnf
) < 1, (4.5)
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where ξj are the bounded real characteristic values of the Moebius-transformed system
H = M(G), then

‖G̃−G‖H∞ ≤
‖I + G‖2H∞(ξ

f̀ +1 + . . . + ξnf
)

1− ‖I + G‖H∞(ξ
f̀ +1 + . . . + ξnf

)
. (4.6)

Proof. We have

G̃−G = (I − H̃)(I + H̃)−1 − (I −H)(I + H)−1

= 2 (I + H̃)−1(H − H̃)(I + H)−1.

Then

‖G̃−G‖H∞ ≤
2‖H̃ −H‖H∞‖(I + H)−1‖2H∞

1− ‖H̃ −H‖H∞‖(I + H)−1‖H∞

provided that

‖H̃ −H‖H∞‖(I + H)−1‖H∞ < 1. (4.7)

It follows from Theorem 3.7 that ‖H̃ −H‖H∞ ≤ 2(ξ
f̀ +1 + . . . + ξnf

). Furthermore,

(I + H)−1 =
(
I + (I −G)(I + G)−1

)−1= (I + G)/2.

Thus, the assumption (4.5) guarantees (4.7) and yields bound (4.6).
Note that Algorithm 4.6, in general, does not preserve the polynomial part of the

transfer function G and, therefore, it delivers a different result compared to those
provided by Algorithm 4.4. However, in the case of proper G we can show that the
reduced-order models of the same order have the equal transfer functions.

Theorem 4.8. Consider a descriptor system (1.1) that has a proper and positive
real transfer function G. Let G̃1 and G̃2 be the transfer function of the reduced
models of the same order obtained by Algorithms 4.4 and 4.6, respectively. Then
G̃1(s) ≡ G̃2(s).

Proof. Without loss of generality we may assume that (1.1) is R-minimal. Apply-
ing Algorithm 4.4 to G, we obtain a reduced-order model G̃1. By the results in [30], we
have that a reduced-order model obtained by bounded real balanced truncation of the
Moebius-transformed system H = M(G) satisfies H̃ = M(G̃1). Thus, the reduced
model computed by Algorithm 4.6 has the transfer function G̃2 = M(H̃) = G̃1.

From Theorem 3.4, we know that the bounded real Gramians have an interpre-
tation in terms of energy inflow and outflow of the contractive descriptor system.
We will show that an analogous result holds for the passive descriptor systems if one
defines the amount of energy provided by the environment to the system as a scalar
product of input and output and one takes the extremal solutions of the bounded real
Lur’e equations of the Moebius-transformed system.

Theorem 4.9. Consider a descriptor system (1.1) that is S-minimal and has
a positive real transfer function G. Let Ymin and Ymax be the extremal solutions
of the bounded real projected Lur’e equations for the Moebius-transformed system
H = M(G). Then the following relations

xT
0 ETYmaxEx0

= inf
{

2
∫ 0

−∞
u(τ)T y(τ)dτ

∣∣∣∣ u ∈ L2(R−, Rm) consistent and controlling
to some x(0) with Ex(0) = Ex0

}
, (4.8)
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xT
0 ETYminEx0

= sup
{
−2
∫ ∞

0

u(τ)T y(τ)dτ

∣∣∣∣ u ∈ L2(R+, Rm) and u is consistent with
some x(0) satisfying Ex(0) = Ex0

}
(4.9)

hold for all x0 ∈ Rn.
Proof. Since G is S-minimal, this also holds true for the Moebius-transformed

system H = M(G). Let û(t), x̂(t) and ŷ(t) be respectively, the input, state and
output of H = M(G). Then

u(t) = − 1√
2
û(t)− 1√

2
ŷ(t), x(t) = x̂(t), y(t) = − 1√

2
û(t) +

1√
2
ŷ(t)

are the input, state and output of system (1.1). We have 2u(t)T y(t) = ‖û(t)‖2−‖ŷ(t)‖2
for all t ∈ R. Using Theorem 3.4, we obtain that

inf
{

2
∫ 0

−∞
u(τ)T y(τ)dτ

∣∣∣∣ u ∈ L2(R−, Rm) consistent and controlling to
some x(0) with Ex(0) = Ex0

}
= inf

{∫ 0

−∞
‖û(τ)‖2 − ‖ŷ(τ)‖2dτ

∣∣∣∣ û ∈ L2(R−, Rm) consistent and control-
ling to some x̂(0) with Ex̂(0) = Ex0

}
=xT

0 ETYmaxEx0

and, further,

sup
{
−2
∫ ∞

0

u(τ)T y(τ)dτ

∣∣∣∣ u ∈ L2(R+, Rm) consistent with some x(0)
satisfying Ex(0) = Ex0

}
=sup

{
−
∫ ∞

0

(
‖û(τ)‖2 − ‖ŷ(τ)‖2

)
dτ

∣∣∣∣ û ∈ L2(R+, Rm) consistent with some x̂(0)
satisfying Ex̂(0)=Ex0

}
=xT

0 ETYminEx0.

5. Numerical solution of projected Lur’e equations. In this section, we
discuss the numerical solution of the projected Lur’e equations (3.2), (3.5), (4.1) and
(4.2). We will treat both the positive real and bounded real cases simultaneously by
considering the projected Lur’e equations

AT Y E + ET Y A + PT
r QT QPr = −KT

o Ko, Y = PT
l Y Pl ≥ 0,

ET Y B + PT
r HT = −KT

o J,
(5.1)

where E,A ∈ Rn,n, B ∈ Rn,m, H ∈ Rm,n, Q ∈ Rp,n and J ∈ Rm,m are given matrices
and Y ∈ Rn,n, Ko ∈ Rm,n are unknown matrices. We have the bounded real projected
Lur’e equations (3.2) if Q = C, H = MT

0 C and JT J = I −MT
0 M0. Furthermore, for

Q = 0, H = −C and JT J = M0 + MT
0 , we obtain the positive real projected Lur’e

equations (4.1).

5.1. Deflating subspaces and projected Lur’e equations. Similarly to the
standard state space case [24, 26], the extremal solutions Ymin and Ymax of (5.1) can
be determined from deflating subspaces of an extended Hamiltonian pencil

λM −N = λ

E 0 0
0 ET 0
0 0 0

−
 A 0 PlB

PT
r QTQPr −AT PT

r HT

−HPr BTPT
l JT J

 . (5.2)
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Note that if λ ∈ C is an eigenvalue of λM − N , then −λ is also an eigenvalue of
this pencil. Since M and N are both real, the finite eigenvalues of λM −N occur in
quadruples (λ, λ,−λ,−λ). This property is known as Hamiltonian symmetry of the
pencil [29]. Analogously to the standard case [24, Section 5.1], it can be shown that
if J is nonsingular and the pencil λM −N has no finite eigenvalues on the imaginary
axis, then λM − N has the stable (antistable) right and left deflating subspaces of
dimension nf . We now establish the connection between the deflating subspaces of
λM − N and the solution of the projected Lur’e equations (5.1). Before, we need
some preliminary results.

Lemma 5.1. Consider the pencil λM − N given in (5.2). Let the columns of
a matrix

Z =

Z1

Z2

Z3

 (5.3)

with Z1, Z2 ∈ Rn,k and Z3 ∈ Rm,k span a right deflating subspace of λM − N , i.e.,
MZΛ = N Z for some Λ ∈ Rk,k. If Sp(Λ) ∩ Sp(−Λ) = ∅, then

ZT
2 EZ1 = ZT

1 ET Z2, (5.4)
ZT

2 AZ1 + ZT
1 AT Z2 = ZT

3 JT JZ3. (5.5)

Proof. It follows from the equation MZΛ = N Z that

EZ1Λ = AZ1 + PlBZ3, (5.6)
ET Z2Λ = PT

r QTQPrZ1 −AT Z2 + PT
r HT Z3, (5.7)

0 = −HPrZ1 + BT PT
l Z2 + JT JZ3. (5.8)

Premultiplying (5.6) by ZT
2 and postmultiplying the transposed equation (5.7) by Z1,

we obtain

ZT
2 EZ1Λ = ZT

2 AZ1 + ZT
2 PlBZ3, (5.9)

ΛT ZT
2 EZ1 = −ZT

2 AZ1 + ZT
1 PT

r QTQPrZ1 + ZT
3 HPrZ1. (5.10)

Adding these equations and using (5.8), we get the Lyapunov equation

ΛT (ZT
2 EZ1) + (ZT

2 EZ1)Λ = ZT
1 PT

r HT Z3 + ZT
3 HPrZ1

+ZT
1 PT

r QTQPrZ1 − ZT
3 JT JZ3

with a symmetric right-hand side. Since Sp(Λ) ∩ Sp(−Λ) = ∅, such an equation has
a unique symmetric solution ZT

2 EZ1, see [19]. Thus, equation (5.4) holds. Further-
more, subtracting the transposed equation (5.10) from (5.9) and using (5.4), (5.8), we
obtain relation (5.5).

Theorem 5.2. Let the columns of a matrix Z as in (5.3) span a stable right
deflating subspace of the pencil λM − N that has the dimension k = nf . If Z1 is of
full column rank, then the minimal solution of the projected Lur’e equations (5.1) is
given by Ymin = −Z2(EZ1)−Pl

.
Proof. If the columns of Z form a basis of a stable right deflating subspace of

λM − N , then there exists a matrix Λ such that MZΛ = N Z and Sp(Λ) ⊂ C−.
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Using the Weierstrass canonical form (2.1) and partitioning the matrices

TrZ1 =
[

Z11

Z21

]
, TT

l Z2 =
[

Z12

Z22

]
, T−1

l B =
[

Bf

B∞

]
,

QT−1
r = [Qf , Q∞ ], HT−1

r = [Hf , H∞ ]
(5.11)

such that Z11, Z12 ∈ Rnf ,nf , Bf ∈ Rnf ,m, Qf ∈ Rp,nf , and Hf ∈Rm,nf , we obtain from
MZΛ = N Z the equations

Z11Λ = AfZ11 + BfZ3, (5.12)
E∞Z21Λ = Z21, (5.13)
Z12Λ = QT

f QfZ11 −AT
f Z12 + HT

f Z3, (5.14)

ET
∞Z22Λ = −Z22, (5.15)

0 = −HfZ11 + BT
f Z12 + JT JZ3. (5.16)

Since Λ is nonsingular and E∞ is nilpotent, it follows from (5.13) and (5.15) that
Z21 = 0 and Z22 = 0. Therefore, Z11 is nonsingular. Multiplying equations (5.12),
(5.14) and (5.16) from the right by Z−1

11 , we find that the matrices Yf = −Z12Z
−1
11

and Kf = −Z3Z
−1
11 satisfy the equations

Af −BfKf = Z11ΛZ−1
11 ,

AT
f Yf + QT

f Qf −HT
f Kf = −Yf (Z11ΛZ−1

11 ),
YfBf + HT

f + KT
f JT J = 0.

Furthermore, Lemma 5.1 implies that Yf is symmetric. Taking into account that

(Z1)−Pr
= [Z−1

11 , 0 ]Tr, (EZ1)−Pl
= [Z−1

11 , 0 ]T−1
l ,

we have that the pair

Y = T−T
l

[
Yf 0
0 0

]
T−1

l = −Z2(EZ1)−Pl
, K = [Kf , 0 ]Tr = −Z3(Z1)−Pr

(5.17)

is the solution of the system

AT Y E + ET Y A + PT
r QTQPr = −KT JT JK, Y = PT

l Y Pl ≥ 0,
ET Y B + PT

r HT = −KT JT J.
(5.18)

Then Y and Ko = JK satisfy the projected Lur’e equations (5.1).
To show that Y is the minimal solution of (5.1), it is sufficient to prove that the

matrix ∆Y = Ŷ − Y is positive semidefinite for any other solution Ŷ of system (5.1).
Substituting Ŷ = Y + ∆Y and K̂ = K + ∆K in (5.18) we obtain that

(A− PlBK)T ∆Y E + ET ∆Y (A− PlBK) = −PT
r GPr, ∆Y = PT

l ∆Y Pl, (5.19)

where G = ET ∆Y BBT ∆Y E. Using (2.1), (2.2), (3.1) and (5.17), we have

A− PlBK = Tl

[
Af −BfKf 0

0 I

]
Tr.

This implies that all the finite eigenvalues of the pencil λE−(A−PlBK) have negative
real part. In this case the projected Lyapunov equation (5.19) with symmetric, posi-
tive semidefinite G has a unique symmetric, positive semidefinite solution ∆Y , see [41].
Thus, Y ≤ Ŷ for any solution Ŷ of system (5.1), and, hence, Ymin = −Z2(EZ1)−Pl

.
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The following lemma gives sufficient conditions for both matrices Z1 and Z2 in
(5.3) to be of full column rank.

Lemma 5.3. Consider the pencil λM − N given in (5.2). Let the matrix Z in
(5.3) have full column rank and satisfies MZΛ = N Z for some nonsingular Λ ∈ Rk,k.
If the matrix J is nonsingular and if the descriptor system (1.1) is R-minimal, then
Z1 and Z2 both have full column rank.

Proof. Assume that Z1 is rank deficient, i.e., there exists v 6= 0 such that Z1v = 0.
Then it follows from equation (5.5) that also Z3v = 0. Since Z has full rank, we have
Zv = [ 0, (Z2v)T , 0 ]T 6= 0. In the proof of Theorem 5.2 it has been shown that Z1

and Z2 have the form

Z1 = T−1
r

[
Z11

0

]
, Z2 = T−T

l

[
Z12

0

]
,

where Z11 and Z12 satisfy equations (5.12), (5.14) and (5.16). Multiplying these
equations from the left by v, we obtain that

Z11Λv = AfZ11v + BfZ3v = 0,
Z12Λv = QT

f QfZ11v −AT
f Z12v + HT

1 Z3v = −AT
f Z12v,

0 = −H1Z11v + BT
f Z12v + JT JZ3v = BT

f Z12v.

Let V be a matrix whose columns form a basis of ker(Z1). Then ΛV = V S for some
square S and AT

f Z12V = −Z12ΛV = −Z12V S, BT
f Z12V = 0. If v̂ is an eigenvector

of S corresponding to an eigenvalue λ, i.e., Sv̂ = λv̂, then for z = Z12V v̂ 6= 0 we
have AT

f z = −λz and BT
f z = 0. Hence, rank[ λE −A, B ] < n that contradicts to the

assumption that system (1.1) is R-controllable.
Analogously, we can show that the assumption of rank deficiency of Z2 will lead

to a contradiction to R-observability of (1.1). Thus, the proof is completed.
The maximal solution Ymax of (5.1) can be determined from an antistable right

deflating subspace of the pencil λM − N in a similar way. If this subspace has the
dimension nf and is spanned by columns of a matrix Ẑ = [ẐT

1 , ẐT
2 , ẐT

3 ]T , where
Ẑ1, Ẑ2 ∈ Rn,nf , Ẑ3 ∈ Rm,nf and Ẑ2 has full column rank, then the minimal solution
of the projected Lur’e equations dual to (5.1) is given by

Xmin = (ET YmaxE)−r = −Ẑ1(ET Ẑ2)−P T
r

.

5.2. Minimal solutions in factored form and their low-rank approxima-
tions. Next we show that Ymin and Xmin can be computed in factored form directly
from the matrices Z1, Z2 and Ẑ1, Ẑ2 defined above. Since Ymin = −Z2(EZ1)−Pl

is
symmetric and positive semidefinite, the symmetric matrix −ZT

1 ET Z2 is also positive
semidefinite. Consider a decomposition

−ZT
1 ET Z2 = UY ΣY UT

Y ,

where the orthonormal columns of UY are the eigenvectors of −ZT
1 ET Z2 and ΣY is

diagonal with positive diagonal elements that are non-zero eigenvalues of −ZT
1 ET Z2.

Taking into account that Z2 = PT
l Z2 and EZ1(EZ1)−Pl

= Pl, we have

Ymin = −PT
l Z2(EZ1)−Pl

= −((EZ1)−Pl
)T (ZT

1 ET Z2)(EZ1)−Pl

= ((EZ1)−Pl
)T UY ΣY UT

Y (EZ1)−Pl
=
(
Σ1/2

Y UT
Y (EZ1)−Pl

)T (Σ1/2
Y UT

Y (EZ1)−Pl

)
.
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Furthermore, using Σ1/2
Y = Σ−1/2

Y UT
Y UY ΣY we obtain

Σ1/2
Y UT

Y (EZ1)−Pl
= Σ−1/2

Y UT
Y (UY ΣY UT

Y )(EZ1)−Pl

= −Σ−1/2
Y UT

Y ZT
2 (EZ1)(EZ1)−Pl

= −Σ−1/2
Y UT

Y ZT
2 .

Thus, Ymin can be factored as

Ymin =
(
Σ−1/2

Y UT
Y ZT

2

)T (Σ−1/2
Y UT

Y ZT
2

)
= LLT .

Analogously, from a decomposition −ẐT
1 ET Ẑ2 = UXΣXUT

X , where UT
XUX = I and

ΣX is diagonal and nonsingular, we obtain that

Xmin =
(
Σ−1/2

X UT
X ẐT

1

)T (Σ−1/2
X UT

X ẐT
1

)
= RRT .

The established relationship between deflating subspaces of λM − N and the
solution of the projected Lur’e equations turns out to be useful for the construction of
numerical algorithms for computing the Gramians. For small and medium problems,
the deflating subspaces of λM−N corresponding to the finite eigenvalues with positive
and negative real part can be determined from the generalized Schur form computed
using structured methods [6, 8]. This costs O(n3) flops and requires storage of dense
matrices Z and Ẑ of size (2n+m)×nf even if M and N are sparse. Therefore, for large-
scale sparse problems, computing the generalized Schur form would be impractical
and inefficient. For this reason, we would prefer to approximate the solution of the
projected Lur’e equations by low-rank matrices as it has been done for solutions of
Lyapunov and Riccati equations [7, 27, 33, 43]. Similarly to the standard state space
case [7], a low-rank approximate solution Ỹ of the projected Lur’e equations (5.1)
can be constructed in factored form from small dimensional deflating subspaces of
λM −N spanned by the columns of Z ∈ Rn,k in (5.3) with k < nf as

Ỹ =
(
Σ−1/2

Y UT
Y ZT

2

)T (Σ−1/2
Y UT

Y ZT
2

)
.

Such subspaces can be computed using Krylov subspace methods like Lanzcos and
Arnoldi processes. Since the matrices M and N have a very special block structure,
it seems reasonable to use structure-preserving Krylov subspace methods in order to
achieve better numerical accuracy. The development of such methods for the pencil
λM −N with singular M remains for future work.

5.3. Newton’s method for the projected Riccati equation. If the mat-
rix J is nonsingular, then the projected Lur’e equations (5.1) are equivalent to the
projected generalized algebraic Riccati equation

AT Y E+ET Y A+PT
r QTQPr+(BT Y E+HPr)T (JTJ)−1(BT Y E+HPr)=0,

Y = PT
l Y Pl.

(5.20)

If Ymin is a minimal solution of (5.1), then it is a stabilizing solution of (5.20) in the
sense that all the finite eigenvalues of the pencil

λE −A− PlB(JT J)−1(HPr + BT YminE)

have negative real part. Conversely, if Y is a stabilizing solution of the projected
Riccati equation (5.20), then Y and Ko = −J−T (HPr +BT Y E) satisfy the projected
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Lur’e equations (5.1) and Ymin = Y . Thus, the Gramians of system (1.1) can also be
computed by solving the projected Riccati equation (5.20) and its dual. Similarly to
the standard state space case [5, 44, 49], these equations can be solved via Newton’s
method.

Introducing the matrices Â = A+PlB(JT J)−1HPr, B̂ = BJ−1, Ĥ = J−T H and
Q̂ = [QT , HT J−1]T , we rewrite the projected Riccati equation (5.20) as

ÂT Y E + ET Y Â + PT
r Q̂TQ̂Pr + ET Y B̂B̂T Y E = 0, Y = PT

l Y Pl. (5.21)

Newton’s method for this equation is given as follows.
Algorithm 5.4. Newton’s method for the projected Riccati equation.
Given E, Â ∈ Rn,n, B̂ ∈ Rn,m, Ĥ ∈ Rp,n, Q̂ ∈ Rm,n, the projectors Pr and Pl,

an initial guess Y0 such that Y0 = PT
l Y0Pl and all the finite eigenvalues of the pencil

λE − Â − PlB̂B̂T Y0E lie in C−, compute an approximate solution of the projected
Riccati equation (5.21).

FOR j = 1, 2, . . .
1. Compute Kj = B̂T Yj−1E and Aj = Â + PlB̂Kj .
2. Solve the projected Lyapunov equation

AT
j YjE + ET YjAj = −PT

r (Q̂T Q̂−KT
j Kj)Pr, Yj = PT

l YjPl.

END FOR

Using the Weierstrass canonical form (2.1) and (2.2), one can show similarly to
the standard state space case [5, 44] that the finite eigenvalues of all λE − Aj have
negative real part and lim

j→∞
Yj = Y quadratically. To speed up the possibly slow

convergence of the Newton iteration, we can use an exact line search method that
can be derived for the projected Riccati equation (5.21) analogously to the standard
case [5].

If the eigenvalues of Y decay to zero very rapidly, then Y can be well approximated
by a matrix of low rank. Such a low-rank approximation can be computed in factored
form Y ≈ L̃L̃T with L̃ ∈ Rn,k, k � n. To determine the low-rank factor L̃ we can use
the same approach as in [9]. Starting with Y1,0 = Y0 and Y2,0 = 0, in each Newton
iteration we compute Kj = B̂T (Y1,j−1 − Y2,j−1)E and Aj = Â + PlB̂Kj and then
solve two projected Lyapunov equations

AT
j Y1,jE + ET Y1,jAj = −PT

r Q̂T Q̂Pr, Y1,j = PT
l Y1,jPl, (5.22)

AT
j Y2,jE + ET Y2,jAj = −PT

r KT
j KjPr, Y2,j = PT

l Y2,jPl, (5.23)

for the low-rank factors L1,j and L2,j such that Y1,j ≈ L1,jL
T
1,j and Y2,j ≈ L2,jL

T
2,j ,

respectively. Once the convergence is observed, an approximate solution Y ≈ L̃L̃T

of the projected Riccati equation (5.21) can be computed in factored form by solving
either the projected Lyapunov equation

AT Y E + ET Y A = −PT
r ĈT ĈPr, Y = PT

l Y Pl (5.24)

with Ĉ = [QT , ĤT + ET (Y1,jmax − Y2,jmax)B̂ ]T or

ÂT
0 Y E + ET Y Â0 = −PT

r Q̂T Q̂Pr, Y = PT
l Y Pl, (5.25)

where Â0 = Â + 1/2PlB̂B̂T (Y1,jmax − Y2,jmax)E. For computing the low-rank factors
of the solutions of the projected Lyapunov equations (5.22)–(5.25) we can use the
generalized alternating direction implicit method [43].
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Fig. 6.1. RC circuit: the absolute error for the reduced-order system computed by the positive
real balanced truncation method.

A slightly different way to determine the low-rank factors of the solution of the
Riccati equation with E = I via Newton’s method has been considered in [44, 49].
This approach can also be extended to the projected Riccati equation (5.21), see [10]
for details.

6. Numerical examples. In this section, we present some numerical examples
to demonstrate the feasibility of the described model reduction methods for large scale
descriptor systems. The computations were done on IBM RS 6000 44P Model 270
with machine precision ε = 2.22 × 1016 using MATLAB 7.0.4. The Gramians were
computed by solving the projected Riccati equations via Newton’s method.

Example 6.1. The first example is a three-port RC circuit provided by NEC
Laboratories Europe, IT Research Division, NEC Europe Ltd. We have the passive
descriptor system of order n = 2007 with m = 3 inputs and outputs. We approxi-
mate the descriptor system by two models of order ` = 41 computed by the positive
real balanced truncation (PRBT) method and the bounded real balanced truncation
(BRBT-M) method applied to the Moebius-transformed system. The positive real
Gramians of G and the bounded real Gramians of the Moebius-transformed system
H = M(G) have been approximated by the low-rank matrices Xmin ≈ R̃R̃T and
Ymin ≈ L̃L̃T with R̃, L̃ ∈ Rn,235. The frequency responses of the full-order and the
reduced-order models are not presented, since they were impossible to distinguish.
In Figure 6.1 we display the absolute errors ‖G̃(iω)−G(iω)‖2 for a frequency range
ω ∈ [1, 1015] for both systems and also the error bounds (4.4) and (4.6). Note that
due to the properness of the system, the PRBT and BRBT-M methods are equivalent
and provide the similar results.

Example 6.2. Consider the 2D instationary Stokes equation that describes the flow
of an incompressible fluid in a domain, see [38, Section 3.7.1] for details. The spatial
discretization of this equation by the finite volume method on a uniform staggered grid
leads to the descriptor system (1.1) which is contractive. In our experiments, the state
space dimension is n = 29799 and the number of inputs and outputs is m = p = 5.
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Fig. 6.2. Semidiscretized Stokes equation: the absolute error and error bound for the reduced-
order system computed by the BRBT method.

This system has been approximated by a contractive reduced system of order ` = 15
computed by the bounded real balanced truncation (BRBT) method. The bounded
real Gramians have been approximated by the low-rank matrices Xbr ≈ R̃R̃T and
Ybr ≈ L̃L̃T with R̃ ∈ Rn,217 and R̃ ∈ Rn,103. Figure 6.2 shows the absolute error
‖G̃(iω) − G(iω)‖2 for ω ∈ [10−4, 108 ] as well as the error bound computed as the
twice the sum of the truncated bounded real characteristic values.

7. Conclusion. In this paper we have considered model order reduction of de-
scriptor systems using the positive real and bounded real balanced truncation me-
thods. An advantage of these methods over the Krylov subspace model reduction
technique is that computable error bounds are available. We have introduced the
projected Lur’e and Riccati equations that can be used to define the positive real
and bounded real Gramians for descriptor systems. We have also discussed the com-
putation of these Gramians using the method based on deflating subspaces of the
associated extended Hamiltonian pencil and Newton’s method. The numerical ex-
amples demonstrate that the presented model reduction methods can be applied for
large scale descriptor systems.
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