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Model reduction for optimal control problems in field-flow fractionation

Tatjana Stykel1 and Carina Willbold1,∗

1 Universität Augsburg

We discuss the application of model order reduction to optimal control problems governed by coupled systems of the Stokes-

Brinkman and advection-diffusion equations. Such problems arise in field-flow fractionation processes for the efficient and

fast separation of particles of different size in microfluidic flows. Our approach is based on a combination of balanced trunca-

tion and tangential interpolation for model reduction of the semidiscretized optimality system. Numerical results demonstrate

the properties of this approach.
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1 The optimal control problem
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Field-flow fractionation (FFF) is a family of techniques for the separation of par-

ticles and macromolecules in microfluidic flows [3]. Asymmetric flow field-flow

fractionation (AF4) is the most used variant of the FFF techniques, where the sepa-

ration of particles takes place in a thin channel Ω1 with a permeable membrane Ω2

as shown in the left figure. The separation process includes three steps: injection,

focusing and elution. At the first step, the liquid is injected through the two inflow

tubes at the bottom of the channel. There is a crossflow through the membrane

and outflow at the bottom boundary Γbot. When the flow is balanced, the analyte is

injected. The goal of the focusing phase is to concentrate the analyte in a thin band

and move it in a carrier fluid towards the bottom of the channel. The separation of

the particles occurs then in the elution phase, when a parabolic flow profile is cre-

ated within the channel. The smaller partices are transported much more rapidly

along the channel and eluted earlier than the larger ones.
The flow of the incompressible fluid in the channel is described by the Stokes-Brinkman equation

ρ
∂v

∂t
− ν∆v + νχΩ2

K−1
v +∇p = 0 in Ω× (0, T ),

∇ · v = 0 in Ω× (0, T ),
v(·, 0) = v0 in Ω,

v = v
(i)
in on Γ

(i)
in × (0, T ), i = 1, 2,

v = 0 on Γlat × (0, T ),
ν∇v nΓbot

+ pnΓbot
= 0 on Γbot × (0, T ),

(1)

wnere v is the velocity vector, p is the pressure, v0 is the initial velocity, Γ
(i)
in , i = 1, 2, are the inflow boundaries on the top

of the channel, v
(i)
in are the inflow velocities, ρ, ν and K denote the density, the viscosity of the liquid and the permeability of

the membrane, respectively, χΩ2
is the characteristic function of the subdomain Ω2 and Ω = Ω1 ∪ Ω2.

To describe the transport of the analyte in the domain Ω1 we use the advection-diffusion equations

∂cm
∂t

−∇ ·Dm∇cm + (v− vm) · ∇cm = 0 in Ω1 × (0, T ),

cm(·, 0) = cm,0 in Ω1,
nΓd

·Dm∇cm = 0 on ∂Ω1,

(2)

where cm is the concentration of the m-th analyte, m = 1, . . . ,M , Dm > 0, vm and cm,0 are the diffusion coefficient, the lift

and the initial concentration, respectively.

During the focusing phase the following optimal control problem arises:

minimize J(y,u) =
1

2
‖c(·, T )− c

foc‖20,Ω1
+

β

2

∫ T

0

‖u‖2dt,
(3)

where y = [vT , p, cT ]T with c = [c1, . . . , cM ]T satisfies the coupled system (1) and (2)u contains the control parameters

describing the inflow and c
foc = [cfoc1 , . . . , cfocM ] is a desired concentration. This optimal control problem was investigated

in [5]. The computation of the optimal solution using, for example, gradient descent techniques requires the numerical solution

of the state equations (1) and (2) and the adjoint systems at every iterative step.
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716 Section 20: Dynamics and control

2 Model reduction techniques

The spatial discretization of the Stokes-Brinkman equation (1) using finite element methods lead to a descriptor system

Eẋ(t) = Ax(t) +Bu(t), y(t) = [ Inv
, 0 ]x(t) = vh(t), (4)

where x = [vT
h ,p

T
h ]

T , vh = [vh,1, . . . , vh,nv
]T ∈ R

nv and ph ∈ R
np are the semidiscretized velocity and pressure vectors,

the matrix E is singular, but the pencil λE − A is regular. If we discretize the advection-diffusion equations (2) in space, we

obtain bilinear control systems

Emċm(t) = Amcm(t) +

nv∑
j=1

vh,j(t)Nm,jcm(t), ym(t) = Cmcm(t), (5)

where cm ∈ R
ncm is the semidiscretized concentration vector of the m-th analyte, Em and Am are related to the diffu-

sion term, and the matrices Nm,1, . . . , Nm,nv
are related to the advection term. Our goal is to approximate the systems (4)

and (5) by reduced-order models that nearly have the same behaviour as the original systems. For model reduction of the

semidiscretized Stokes-Brinkman equation (4) with many outputs, we use a combination of the balanced truncation method

from [4] and the reduction technique from [2] specially developed for systems with many inputs or outputs. In order to

compute a reduced-order model for the bilinear system (5), we want to apply the bilinear iterative rational Krylov algorithm

(BIRKA) [1]. However, this algorithm requires an input matrix and Am to be stable in the sense that all eigenvalues have

negative real part. In our problem, the matrix Am is singular and the input matrix is missing in (5). To tackle these problems,

we first introduce a new state zm(t) = cm(t)−w with a fixed vector w ∈ R
ncm . Secondly, we add and substract a multiple

αmz with αm > 0. As a result, we obtain new systems

żm(t) = (Am − αmI)zm(t) +

nv+1∑
j=1

vh,j(t)Nm,jzm(t) +Bmum(t), ym(t) = Cmzm(t) + Cmw, (6)

where Nm,nv+1 = αmI , Bm = [N1w, . . . , Nnv
w, Amw ] and um(t) = [vh,1(t), . . . , vh,nv

(t), 1]T . In order to have few

inputs, the vector w needs to be in the kernel of almost all matrices Nm,j . We were able to find w such that the matrix Bm

has four colums.

We now present some results of numerical experiments. The bilinear system (6) of order 1976 was approximated by

a reduced model of order 10 computed by the BIRKA. Figures 1(a) and (b) show the convergence history for the BIRKA and

the relative error in the output for two different values of α.
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Fig. 1: (a) Convergence history for the BIRKA. (b) Evolution of the relative error.
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