Control problems for differential-algebraic equations
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In this report we briefly discuss stability, passivity and model order reduction of

linear time-invariant control systems described by differential-algebraic equations
(DAEs)

1 Ei(t) = Ax(t) + Bu(t),
M) y(t) = Calt) + Dult),

where E, A € R™", B e R™™ C € RP" D € RP™ x(t) € R™ is the state vector,
u(t) € R™ is the input, and y(t) € RP is the output. Such equations arise in
a variety of applications including multibody dynamics and circuit simulation.

It is well known that the stability properties of system (1) can be characterized
in terms of the eigenvalues of the pencil AE — A. System (1) with u(t) = 0 is
asymptotically stable if and only if AE — A is stable, i.e., all the finite eigenvalues
of AE — A have negative real part. Note, however, that the eigenvalues of \E — A
may be very ill-conditioned in the sense that they may change largely even for small
perturbations in £ and A. Hence, eigenvalues that are computed numerically in
finite precision arithmetic, may not always provide the correct information on
the stability of dynamical systems. As an alternative to the use of eigenvalues
in the stability analysis, one can employ spectral parameters based on projected
Lyapunov equations [5, 6]. One can show that the pencil AE — A is stable if and
only if the projected generalized continuous-time Lyapunov equation

(2) ATHE+E"HA=-P'P, H=P'HP

has a unique symmetric, positive semidefinite solution H. Here P, and P, are the
spectral projectors onto the right and left deflating subspaces of the pencil A\E — A
corresponding to the finite eigenvalues. The parameter x(FE, A) = 2||E||||A|||| H||,
where || - || denotes the spectral matrix norm, can be used to characterize the
stability of AE' — A and also the sensitivity of its eigenvalues to perturbations in
the matrices E and A, see [5].

Passivity is an important concept in circuit simulation. System (1) is passive if
and only if its transfer function G(s) = C(sE — A)~!B + D is positive real, i.e.,
G(s) is analytic in CT = {s € C : Re(s) > 0} and the matrix G(s) + G (3) is
positive semidefinite for all s € C*. We have the following result.

Proposition. Let G(s) = Ggp(s) + P(s), where Ggp(s) is the strictly proper part
and P(s) = Py + sPy1 + ...+ s1P; is the polynomial part of G(s).
1. If Py is symmetric, positive semidefinite, P; = 0 for j > 2 and if the projected
generalized Lur’e equation
3) ATYE 4+ ETYA=-PTLTLP,, Y =PlYP,
BTYE —CP, = —KTLP,, KTK =P, +P[

has the solution Y, L, K, where Y is symmetric and positive semidefinite,
then G(s) is positive real.
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2. If G(s) is positive real and if system (1) is minimal, then the projected
generalized Lur’e equation (3) has the solution Y, L and K.

If R = Py+P{ is nonsingular, then the projected Lur’e equation (3) is equivalent
to the projected generalized Riccati equation

ATYE + E"YyA+ (BTYE-CP.)"RY(BT"YE-CP,)=0, Y =P'YP,.

Modelling of complex physical and technical processes such as VLSI chip de-
sign and control of fluid flow often leads to linear DAE control systems of very
large order n, while the number m of inputs and the number p of outputs are
typically small compared to n. Despite the ever increasing computational speed,
simulation, optimization or real-time controller design for such large-scale systems
is difficult because of large storage requirements and computation time. In this
context, model order reduction is of crucial importance. A general idea of model
reduction is to approximate the large-scale system (1) by a reduced-order model
that preserves essential properties of (1) like stability and passivity and that has
a small approximation error.

Balanced truncation is one of the most effective and well studied model reduc-
tion approaches for standard state space systems [2, 4]. This approach has been
extended to DAE systems in [7]. An important property of the balanced trun-
cation model reduction methods is that the asymptotic stability is preserved in
the reduced-order system. Moreover, the existence of computable error bounds
allows an adaptive choice of the state space dimension of the approximate model.
The balanced truncation methods are closely related to the proper and improper
controllability and observability Gramians of system (1) that are defined by the
solutions of the two dual continuous-time and two dual discrete-time projected
generalized Lyapunov equations.

Note that Lyapunov-based balanced truncation, in general, does not preserve
passivity in the reduced-order system. In a passivity-preserving model reduction
approach, known as positive real balanced truncation, instead of the continuous-
time projected Lyapunov equations we have to solve the projected generalized
Riccati equations. For the DAE control system (1) that is not necessarily minimal
but that has the proper transfer function G(s), we have the following algorithm.

Algorithm. Positive real balanced truncation for DAE systems.
Given G = [E, A, B, C, D], compute the reduced-order system [ E, A, B, C, D].
1. Compute the Cholesky factors R; and L; of the improper controllability and
observability Gramians G;. = R,R! and G;, = L,L] by solving the projected
generalized discrete-time Lyapunov equations
AgicAT - EgicET = Q[BBTQ’[T, Gic = QrgicQ;Z:a
ATgioA - ETgioE = QzCTcha gio = Qngilev
with @-=I1—P.and Q;=1— P,.
2. Compute the skinny singular value decomposition LT AR, = UOVT where U

and V have orthonormal columns and © is nonsingular.
3. Compute Wy = L,UO™ Y2 Ty = R,VO~Y/2 Py = D-CT,WS B, R = P,+P{.
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4. Compute the Cholesky factors R and L of the solutions ¥ = RR” and ) = LL™
of the projected generalized Riccati equations

AXET + EXAT + (EXCT-PB)R"Y(EXCT-PB)T=0, X=P,XPT,
ATYE+ETY A+ (BTYE-CP,)T'R-Y(BTYE—-CP,)=0, Y= PTYP,

5. Compute the skinny singular value decomposition
LTER = Uy, Us] [ th I ] [V, 21",
2

where [Uy, Uz ] and [ V1, V2] have orthonormal columns, IT; = diag(mwy, ..., me)
and Ily = diag(mpyq1,...,m) withmy > ... > > w1 > ... > 7 > 0.
6. Compute the reduced-order system

[E, A, B, C, D] = [WLET,, WFAT,, WI'B, CT,, P,]
with W) = LU,II; /2 and Ty = RV,II; /2.

Similarly to the standard state space case [3], one can show that the reduced-
order system with the transfer function G(s) = C(sE— A)~! B+ D is passive, and
the Hy,-norm error bound

-
IG — Gl < 2| RY2IG + DTl |G+ DT e 3
j=0+1
holds where | G||m,. = sup,eg ||G(iw)|| denotes the Ho-norm of G.

A major difficulty in the numerical solution of the projected Lyapunov and
Riccati equations with large matrix coefficients is that the spectral projectors
onto the left and right deflating subspaces corresponding to the finite and infinite
eigenvalues of the pencil AE — A are required. However, in many applications such
as control of fluid flow, electrical circuit simulation and constrained multibody
systems, the matrices £ and A have some special block structure. This structure
can be used to construct the projectors in explicit form [1, 8].
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