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MODEL ORDER REDUCTION FOR MAGNETO-QUASISTATIC

EQUATIONS

JOHANNA KERLER-BACK† AND TATJANA STYKEL†

Abstract. We consider model reduction of Maxwell’s equations arising in magneto-quasistatic
field problems. A finite element discretization of such equations leads to large-scale differential-
algebraic equations of special structure. For model reduction of linear systems, we employ a balanced
truncation approach, whereas nonlinear systems are reduced using a proper orthogonal decomposition
method combined with a discrete empirical interpolation technique. We will exploit the special
structure of the underlying problem to improve the performance of the model reduction algorithms.
Furthermore, we discuss an efficient evaluation of the Jacobi matrix required in nonlinear time
integration of the reduced models.

Key words. Maxwell’s equations, magneto-quasistatic problems, model order reduction, balan-
ced truncation, proper orthogonal decomposition, discrete empirical interpolation method

AMS subject classifications. 34A09, 35Q61, 37M99, 65F30, 93A15

1. Magneto-quasistatic simulation.Nowadays, integrated circuits play an in-
creasingly important role. Modelling of electromagnetic effects in high-frequency and
high-speed electronic systems leads to coupled electromagnetic-circuit models of high
complexity. The development of efficient, fast and accurate simulation tools for such
models is of great importance in the computer-aided design of electromagnetic struc-
tures offering significant savings in production cost and time.

Let Ω ⊂ Rd, d = 2, 3, be a bounded domain which is composed of the con-
ducting and non-conducting subdomains Ω1 and Ω2 such that Ω̄ = Ω̄1 ∪ Ω̄2. In
magneto-quasistatic (MQS) problems, the contribution of the displacement currents
is negligible compared to the conductive currents. Then the magnetic field can be
described by Maxwell’s equations in magnetic vector potential formulation

σ
∂A

∂t
+∇×

(

ν(‖∇×A‖2)∇×A
)

= J, in Ω× (0, T ),

A× no = 0, on ∂Ω× (0, T ),
A(·, 0) = A0, in Ω,

(1.1)

where A : Ω̄× (0, T )→ R
d is the magnetic vector potential, ν : Ω× R

+
0 → R

+ is the
magnetic reluctivity, σ : Ω → R

+
0 is the electric conductivity vanishing on Ω2, no is

the outer unit normal vector to the boundary ∂Ω of Ω, and J : Ω× (0, T )→ Rd is the
current density applied by external sources. For a conductor model with m stranded
conductors, the source function has the form

J = χstrι,

where χstr : Ω → Rd,m is a divergence-free winding function and ι : [0, T ] → Rm is
the electrical current in the conductors [37]. A relation between the current ι and the
voltage u : [0, T ]→ Rm is given by Faraday’s law of induction

∫

Ω

χT
str

∂

∂t
Adξ +R ι = u, (1.2)
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where R ∈ Rm,m is the resistance matrix which is symmetric and positive definite.
Unfortunately, the numerical solution of the MQS systems requires an enormous

amount of storage and large computational time. To reduce numerical effort, model
order reduction can be used. The goal of model reduction is to replace a large-scale
system by a reduced-order model which captures the dynamic behaviour of the original
system, preserves its essential physical properties and requires much less simulation
time.

Model reduction of electromagnetic problems is currently a very active research
area because faster simulations are essential in parameter study and computational op-
timization of electromagnetic structures. Model reduction of time-harmonic Maxwell’s
equations based on Krylov subspace methods has been considered in [8, 9, 47]. For
model reduction of linear MQS systems, proper orthogonal decomposition (POD) has
been used in [31, 35]. This method was originally developed for the approximation of
turbulent structures [38] and then applied to many practical problems including also
nonlinear MQS field simulation [17, 18, 34]. Furthermore, in [3, 12, 33], a reduced
basis method has been used to reduce the dimension of parametric electromagnetic
systems.

In this paper, we consider model reduction of the MQS system (1.1), (1.2). A spa-
tial discretization of such a system using the finite integration technique (FIT) [45] or
the finite element method (FEM), e.g., [27] leads to a system of differential-algebraic
equations (DAEs), where the algebraic constraints occur due to the presence of the
non-conducting subdomain. We will exploit the special structure of the semidiscre-
tized MQS system to construct the efficient model reduction methods for linear and
nonlinear problems.

The paper is organized as follows. In Section 2, we consider the FEM discretiza-
tion of the MQS system (1.1), (1.2). In Section 3, we discuss model order reduction
of linear MQS systems using balanced truncation. Section 4 deals with model re-
duction of nonlinear MQS systems using proper orthogonal decomposition combined
with a discrete empirical interpolation method (DEIM) [11]. We also propose an
efficient implementation of the matrix DEIM [46] for the approximation of the Jaco-
bian. Unlike the sparse matrix approximation strategy in [39], our approach avoids
the vectorization of the matrix snapshots and does not rely on their sparsity. Finally,
in Section 5, we present some results of numerical experiments for a single-phase
transformer model.

2. Finite element discretization. In this section, we consider the finite ele-
ment discretization (FEM) of the MQS system (1.1), (1.2) and study the properties
of the discretized system. Assume that the electrical conductivity and the magnetic
reluctivity have different structure in the conducting and non-conducting subdomains

σ(ξ) =

{

σ1 > 0 for ξ ∈ Ω1

0 for ξ ∈ Ω2

, ν(ξ, η) =

{

ν1(η) for ξ ∈ Ω1

ν2 > 0 for ξ ∈ Ω2

,

where ν1 : R+
0 → R+. The weak formulation of (1.1) leads to the variational equation

∫

Ω

σ
∂

∂t
A · ϕdξ +

∫

Ω

ν(‖∇ ×A‖2)(∇×A) · (∇× ϕ) dξ =

∫

Ω

χstrι · ϕdξ (2.1)

for all ϕ ∈ H0(curl,Ω) and almost everywhere on (0,T). Here,

H0(curl,Ω) = {φ ∈ H(curl,Ω) : φ× n = 0 on ∂Ω },
H(curl,Ω) = {φ ∈ L2(Ω)

d : curlφ ∈ L2(Ω)
d }.
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The existence of a weak solution to (1.1), (1.2) with ν1(η) ≡ ν1 > 0 has been investi-
gated in [30], whereas the nonlinear 2D case has been considered in [21].

For the FEM discretization of the MQS system (1.1), (1.2), we use the H(curl,Ω)-
conforming Nédélec elements [29] and approximate the magnetic vector potential
A(ξ, t) by a linear combination

A(ξ, t) ≈
na
∑

k=1

αk(t)ϕk(ξ),

where ϕk are the edge shape functions which are continuous inside the elements and
tangentially continuous at the element interfaces. The standard Galerkin projection
yields a nonlinear system of DAEs

E ẋ = A(x)x + B u,
y = C x (2.2)

with the state vector x = [aT , ιT ]T , the control u, the output y = ι, and

E =

[

M 0
XT 0

]

, A(x) =
[

−K(a) X
0 −R

]

, B = CT =

[

0
I

]

. (2.3)

Here, a = [α1, . . . , αna
]T is a semidiscretized vector of magnetic potentials, M is

a conductivity matrix, K(a) is a curl-curl matrix, and X is a coupling matrix with
the entries

(M)kl =

∫

Ω

σϕl · ϕk dξ, k, l = 1, . . . , na,

(K(a))kl =

∫

Ω

ν(‖∇×
na
∑

j=1

αjϕj‖2)(∇× ϕl) · (∇× ϕk) dξ, k, l = 1, . . . , na,

(X)kl =

∫

Ω

χstr,l · ϕk dξ, k = 1, . . . , na, l = 1, . . . ,m,

respectively, where χstr,l denotes the l-th column of χstr. Clearly, M and K(a) are
both symmetric. Reordering the state variables accordingly to the conducting and
non-conducting subdomains Ω1 and Ω2, we can partition the vector a and the matrices
M , K(a) and X as

a =

[

a1
a2

]

, M =

[

M11 0
0 0

]

, K(a) =

[

K11(a) K12

K21 K22

]

, X =

[

X1

X2

]

, (2.4)

where a1 ∈ Rn1 , a2 ∈ Rn2 , M11 ∈ Rn1,n1 is symmetric, positive definite, the matrices
K12 ∈ Rn1,n2 , K21 = KT

12 ∈ Rn2,n1 and K22 ∈ Rn2,n2 are constant, X1 ∈ Rn1,m, and
X2 ∈ R

n2,m. Without loss of generality we may assume that K22 is positive definite.
In the 2D case, this condition is fulfilled, since the curl-curl matrix K(a) is positive
definite. For 3D problems, the positive definiteness of K22 can always be achieved by
gauging [19, 25]. Moreover, we assume that

supp(χstr,i) ∩ Ω2 6= ∅ for i = 1, . . . ,m,
supp(χstr,i) ∩ supp(χstr,j) = ∅ for i 6= j.

The first condition means that the coupling is not only on the conductive part. This
condition together with the second one implies that the coupling matrix X2 has full
column rank. We will exploit this property to establish the index of the DAE (2.2).
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For DAEs, several index concepts have been introduced in the literature, e.g.,
[10, 22, 23], see also [26] for a recent survey. Here, we analyze the tractability index
from [23] which is defined for the nonlinear DAE (2.2) as follows. Let h(x) = A(x)x
and let Jh(x) denote the Jacobi matrix of h at x. Consider a matrix chain

G0 = E , H0 = Jh,
Gj = Gj−1 −Hj−1Qj−1, Hj = Hj−1(I −Qj−1),

where Qj is a projector onto kerGj . System (2.2) has the tractability index k if the
matrix Gk is nonsingular. Note that the defined index does not depend on the choice
of the projectors Qj . The following theorem establishes that system (2.2) has the
tractability index one. A similar result for the FIT-discretized model is obtained
in [2].

Theorem 2.1. Consider the DAE (2.2), where M11 and K22 are symmetric,

positive definite and X2 has full column rank. Then this system has the tractability

index one.

Proof. Let the columns of Y ∈ Rn2,n2−m form an orthonormal basis of kerXT
2 .

Then the projector Q0 onto kerG0 = kerE can be chosen as

Q0 =





0 0 0
0 Y Y T 0
0 0 I



 .

We have

G1 = G0 −H0Q0 =





M11 K12Y Y T −X1

0 K22Y Y T −X2

XT
1 XT

2 R



 .

Assume that there exists a vector v = [vT1 , v
T
2 , v

T
3 ]

T such that G1v = 0. Then

M11v1 +K12Y Y T v2 −X1v3 = 0, (2.5)

+K22Y Y T v2 −X2v3 = 0, (2.6)

XT
1 v1 + XT

2 v2 + Rv3 = 0. (2.7)

Multiplying equation (2.6) from the left with Y T , we obtain that Y TK22Y Y T v2 = 0.
Since K22 is symmetric, positive definite, then Y TK22Y is nonsingular, and, hence,
Y T v2 = 0. In this case, equation (2.6) implies that X2v3 = 0. Since X2 has full
column rank, we have v3 = 0. Then taking into account that M11 is nonsingular, we
get from equation (2.5) that v1 = 0. Finally, equation (2.7) implies that XT

2 v2 = 0.
Therefore, there exist w ∈ Rn2−m such that v2 = Y w. Multiplying this equation from
the left with Y T , we obtain 0 = Y T v2 = Y TY w = w, and, hence v2 = 0. Thus, the
matrix G1 is nonsingular and system (2.2) has the tractability index one.

2.1. ODE formulation. Using the basis matrix Y as in the proof of Theo-
rem 2.1, we can transform the DAE system (2.2) into a system of ordinary differential
equations (ODEs)

E1ẋ1 = A1(x1)x1 +B1u, (2.8a)

y = C1x1, (2.8b)
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with a nonsingular matrix E1. Let Z = X2(X
T
2 X2)

−1/2. Then ZTZ = I and
ZTY = 0. Hence, the matrix [Z, Y ] is orthogonal. We multiply the first equation
in (2.2) from the left with the orthogonal matrix

T =









In1
0 0

0 ZT 0
0 Y T 0
0 0 Im









, (2.9)

where Ik denotes a k × k identity matrix, and introduce a transformed state vector

Tx =
[

aT1 , a
T
21, a

T
22, ι

T
]T

partitioned according to T . Then the transformed DAE
system can be written as

M11ȧ1 =−K11(a1)a1 − K12Za21 − K12Y a22 + X1 ι
0 = −ZTK21a1 − ZTK22Za21 − ZTK22Y a22 +ZTX2 ι
0 = −Y TK21a1 − Y TK22Za21 − Y TK22Y a22

XT
1 ȧ1 +XT

2 Zȧ21 = − R ι+ u.

(2.10)

Since Y TK22Y and R are both nonsingular, we get from the third and fourth equations

a22 = −(Y TK22Y )−1Y TK21a1 − (Y TK22Y )−1Y TK22Za21,

ι = −R−1XT
1 ȧ1 −R−1XT

2 Zȧ21 +R−1u. (2.11)

Substituting these vectors into the first and second equations, we obtain the state

equation (2.8a) with x1 =
[

aT1 , a
T
21

]T ∈ Rn, n = n1 +m, and

E1 =

[

M11 +X1R
−1XT

1 X1R
−1XT

2 Z
ZTX2R

−1XT
1 ZTX2R

−1XT
2 Z

]

, (2.12a)

A1(x1) = −
[

K11(a1) K12Z
ZTK21 ZTK22Z

]

+

[

K12

ZTK22

]

Y
(

Y TK22Y
)−1

Y T [ K21, K22Z ] ,

(2.12b)

B1 =

[

X1

ZTX2

]

R−1. (2.12c)

The following lemma shows that E1 is nonsingular and gives its inverse.

Lemma 2.2. Let M11 be nonsingular and let X2 have full column rank. Then the

matrix E1 in (2.12a) is nonsingular and its inverse is given by

E−1
1 =

[

M−1
11 −M−1

11 X1(X
T
2 X2)

−1/2

−(XT
2 X2)

−1/2XT
1 M

−1
11 (XT

2 X2)
−1/2

(

R+XT
1 M

−1
11 X1

)

(XT
2 X2)

−1/2

]

.

(2.13)

Proof. Using XT
2 Z = (XT

2 X2)
1/2 the matrix E1 can be factorized as

E1 =

[

M11 X1R
−1(XT

2 X2)
1/2

0 (XT
2 X2)

1/2R−1(XT
2 X2)

1/2

] [

I 0

(XT
2 X2)

−1/2XT
1 I

]

. (2.14)
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Since M11 and (XT
2 X2)

1/2R−1(XT
2 X2)

1/2 are both nonsingular, the matrix E1 is
nonsingular too. The inverse of E1 has the form

E−1
1 =

[

I 0

−(XT
2 X2)

−1/2XT
1 I

] [

M−1
11 −M−1

11 X1(X
T
2 X2)

−1/2

0 (XT
2 X2)

−1/2R(XT
2 X2)

−1/2

]

=

[

M−1
11 −M−1

11 X1(X
T
2 X2)

−1/2

−(XT
2 X2)

−1/2XT
1 M

−1
11 (XT

2 X2)
−1/2

(

R+XT
1 M

−1
11 X1

)

(XT
2 X2)

−1/2

]

.

Since E1 is nonsingular, the output equation in (2.2) can be written using (2.11)
and (2.13) as

y = ι = −R−1
[

XT
1 , X

T
2 Z

]

E−1
1 (A1(x1)x1 +B1u) +R−1u = C1x1 +D1u

with

C1 = −R−1
[

XT
1 , X

T
2 Z

]

E−1
1 A1(x1)

= (XT
2 X2)

−1XT
2

(

I −K22Y (Y TK22Y )−1Y T
)

[K21, K22Z ] , (2.15)

D1 = −R−1
[

XT
1 , X

T
2 Z

]

E−1
1 B1 +R−1 = 0.

Thus, we obtain the ODE system (2.8) with the system matrices as in (2.12) and
(2.15). In the following, we will use the ODE formulation to construct the efficient
model reduction methods for linear and nonlinear MQS systems.

3. Model reduction of linear MQS systems. In this section, we consider
model reduction of the MQS system (2.2), where ν1 is assumed to be constant in Ω1.
Then the matrix K11 in (2.4) does not depend on the semidiscretized potential a, and
we obtain a linear time-invariant DAE system

E ẋ = Ax+ B u,
y = C x. (3.1)

For model reduction of such a system, we can use balanced truncation as described in
[40] which is based on decoupling (3.1) into the slow and fast subsystems and reducing
them separately. Thereby, it is essential to ensure that no errors occur in the output of
the reduced-order fast subsystem meaning that only uncontrollable and unobservable
state components of the fast subsystems can be removed. Violation of these conditions
may lead to an inaccurate approximation and physically incorrect results, see [41].
Unfortunately, the model reduction approach from [40] requires the computation of the
spectral projectors onto the deflating subspaces of the pencil λE − A corresponding
to the finite and infinite eigenvalues. Recently, some modifications of this approach
avoiding the spectral projectors have been presented in [13, 16, 43] for structured DAE
systems including semi-explicit DAEs of index 1, Stokes-type systems of index 2 and
mechanical systems of index 1 and 3, see also a recent survey [7]. They all are based
on an implicit index reduction and an equivalence between the Schur complement
linear systems and systems with the original system matrices. This idea can also be
extended to the structured MQS system (3.1).

3.1. Balanced truncation. We now apply a balanced truncation model reduc-
tion approach to the ODE system

E1ẋ1 = A1x1 +B1u,
y = C1x1,

(3.2)
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with the system matrices

E1 =

[

M11 +X1R
−1XT

1 X1R
−1XT

2 Z
ZTX2R

−1XT
1 ZTX2R

−1XT
2 Z

]

,

A1 = −
[

K11 K12Z
ZTK21 ZTK22Z

]

+

[

K12

ZTK22

]

Y
(

Y TK22Y
)−1

Y T [K21, K22Z] ,

B1 =

[

X1

ZTX2

]

R−1,

C1 = −(XT
2 X2)

−1XT
2

(

I −K22Y (Y TK22Y )−1Y T
)

[K21, K22Z ] ,

(3.3)

which is equivalent the DAE system (3.1). This approach relies on the controllability
and observability Gramians P and Q satisfying the generalized Lyapunov equations

A1PET
1 + E1PAT

1 = −B1B
T
1 , (3.4)

AT
1QE1 + ET

1QA1 = −CT
1C1. (3.5)

If the pencil λE1 − A1 is stable, i.e., all its eigenvalues have negative real part, then
these equations have unique symmetric, positive semidefinite solutions. The following
lemma shows that the matrices E1 and −A1 in (3.3) are both symmetric and positive
definite, and, hence, the pencil λE1 −A1 is stable.

Lemma 3.1. If M11, K and R are symmetric and positive definite, then E1 and

−A1 in (3.3) are symmetric and positive definite.

Proof. It follows from (2.14) that the matrix E1 can be decomposed as

E1 = T T
1

[

M11 0

0 (XT
2 X2)

1/2R−1(XT
2 X2)

1/2

]

T1

with a nonsingular matrix

T1 =

[

I 0
(XT

2 X2)
−1/2XT

1 I

]

.

Since M11 and R are symmetric and positive definite, the matrix E1 is symmetric and
positive definite too.

Furthermore, observe that the matrix A1 is the Schur complement of the sym-
metric, negative definite matrix

−T̂
[

K11 K12

K21 K22

]

T̂ T = −





K11 K12Z K12Y
ZTK21 ZTK22Z ZTK22Y
Y TK21 Y TK22Z Y TK22Y



 (3.6)

with the orthogonal matrix

T̂ =





In1
0

0 ZT

0 Y T



 . (3.7)

Therefore, −A1 is symmetric and positive definite [20].
Note that for 2D models, the matrix K is positive definite. In the 3D case,

the gauge on the non-conducting subdomain guarantees the regularity of the pencil
λE − A, but it has zero eigenvalues. The stability of λE − A and also of λE1 − A1
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can be enforced either by full gauging or by projecting out the states corresponding
to zero eigenvalues. Due to the divergence-free property of the winding function, one
can show that such states are uncontrollable and unobservable and, hence, they can
be removed from the system without changing the input-output relation [28].

Let P = SST and Q = LLT be the Cholesky factorizations of the Gramians and
let

LTE1S = [U1, U0 ]

[

Σ1

Σ0

]

[V1, V0 ]
T

(3.8)

be a singular value decomposition (SVD) of LTE1S, where the matrices [U1, U0 ]
and [V1, V0 ] are orthogonal, Σ1 = diag(σ1, . . . , σr) and Σ0 = diag(σr+1, . . . , σn) with
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . ≥ σn called the Hankel singular values of (3.2). Then we
compute the reduced-order model

Ẽ1
˙̃x1 = Ã1x̃1 + B̃1u,

ỹ = C̃1x̃1
(3.9)

by projection

Ẽ1 = WTE1V, Ã1 = WTA1V, B̃1 = WTB1, C̃1 = C1V

with the projection matrices

W = LU1Σ
−1/2
1 , V = SV1Σ

−1/2
1 . (3.10)

An important property of balanced truncation is that the reduced-order model (3.9)
satisfies the error bound

‖H − H̃‖H∞
= sup

ω∈R

‖H(iω)− H̃(iω)‖2 ≤ 2(σr+1 + . . .+ σn),

where

H(s) = C(s E − A)−1B = C1(sE1 −A1)
−1B1,

H̃(s) = C̃1(sẼ1 − Ã1)
−1B̃1

are the transfer functions of the original and reduced-order models, i =
√
−1, and ‖·‖2

denotes the spectral matrix norm, see [14]. Moreover, the balanced truncation method
preserves stability in (3.9). It should, however, be noticed that the preservation of
other properties, in particular, passivity cannot, in general, be guaranteed for this
method. In the following, we will show that system (3.2) is actually passive and,
fortunately, the balanced truncation method preserves passivity in the reduced-order
model (3.9).

Definition 3.2. System (3.2) is called passive if for all inputs u : [0, tf )→ Rm

and x1(0) = 0 the corresponding output y : [0, tf)→ Rm satisfies

∫ tf

0

u(τ)T y(τ)dτ > 0.

It is well known [1] that system (3.2) is passive if and only if its transfer function
H(s) = C1(sE1 −A1)

−1B1 is positive real, i.e., H(s) is analytic for all s ∈ C+, where
C+ denotes the closed right half-plane, and H(s) +HT (s) ≥ 0 for all s ∈ C+.
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Sufficient conditions for (3.2) to be passive are the conditions

E1 = ET
1 > 0, A1 +AT

1 < 0, C1 = BT
1 . (3.11)

By Lemma 3.1 the first two conditions in (3.11) are satisfied. However, the third
condition in (3.11) fails because, as it follows from (2.12c) and (2.15), we have

C1 = −BT
1 E

−1
1 A1. (3.12)

Nevertheless, passivity can be established for system (3.2).
Theorem 3.3. If M11, K and R are symmetric, positive definite, then system

(3.2) is passive.

Proof. By Lemma 3.1 the matrices E1 and −A1 are symmetric, positive definite,
and, hence, the transfer function H(s) is analytic for all s ∈ C+. Taking into account
(3.12), we have

H(s) +HT (s) = C1(sE1 −A1)
−1B1 +BT

1 (sE1 −A1)
−1CT

1

= F ∗(s)
(

−E1A
−1
1 (sE1 −A1)− (sE1 −A1)A

−1
1 E1

)

F (s)
= 2F ∗(s)

(

Re(s)E1(−A1)
−1E1 + E1

)

F (s)

with F (s) = E−1
1 A1(sE1 −A1)

−1B1. As Re(s)E1(−A1)
−1E1 +E1 is positive definite

for all s ∈ C+, the transfer function H(s) is positive real, and, hence, system (3.2) is
passive.

The next theorem gives a useful relationship between the Gramians P and Q of
system (3.2), (3.3).

Theorem 3.4. Let P and Q be the solutions of the Lyapunov equations (3.4)
and (3.5), respectively. If M11, K, and R are symmetric, positive definite, then

E1QE1 = A1PA1. (3.13)

Proof. The left and right multiplication of the Lyapunov equations (3.4) and (3.5)
by E−1

1 and A−1
1 , respectively, yields

E−1
1 A1P + PA1E

−1
1 = −E−1

1 B1B
T
1 E

−1
1 ,

QE1A
−1
1 +A−1

1 E1Q = −E−1
1 B1B

T
1 E

−1
1 .

Introducing Ps = A1PA1 and Qs = E1QE1, these equations can be written as

E−1
1 PsA

−1
1 +A−1

1 PsE
−1
1 = −E−1

1 B1B
T
1 E

−1
1 ,

E−1
1 QsA

−1
1 +A−1

1 QsE
−1
1 = −E−1

1 B1B
T
1 E

−1
1 .

Since Ps and Qs solve the same Lyapunov equation which is uniquely solvable, we
have Ps = Qs, and, hence, (3.13) holds.

The relation (3.13) implies that once we compute the Cholesky factor S of the con-
trollability Gramian P = SST , the Cholesky factor L of the observability Gramian can
be determined from Q = E−1

1 A1SS
TA1E

−1
1 = LLT as L = −E−1

1 A1S. This implies
that the matrix LTE1S = −STA1S is symmetric, positive semidefinite. Therefore,
we compute the eigenvalue decomposition (EVD)

−STA1S = [U1, U0 ]

[

Λ1

Λ0

]

[U1, U0 ]
T
,
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instead of the more expensive SVD (3.8). Then the projection matrices in (3.10) take
the form

V = SU1Λ
−1/2
1 , W = −E−1

1 A1SU1Λ
−1/2
1 = −E−1

1 A1V.

Applying the Petrov-Galerkin projection to (3.2), we obtain the reduced-order model
(3.9) with

Ẽ1 = WTE1V = −V TA1E
−1
1 E1V = I,

Ã1 = WTA1V = −Λ−1/2
1 UT

1 STA1E
−1
1 A1S U1Λ

−1/2
1 ,

B̃1 = WTB1 = −Λ−1/2
1 UT

1 STA1E
−1
1 B1,

C̃1 = C1V = −BT
1 E

−1
1 A1S U1Λ

−1/2
1 .

(3.14)

We note that Ẽ1 = ẼT
1 > 0, Ã1 = ÃT

1 < 0 and C̃1 = B̃T
1 , and, hence, system (3.9)

is passive. Thus, for system (3.2) with symmetric, positive definite matrices E1, −A1

and the input and output matrices related by (3.12), the balanced truncation method
preserves passivity. It involves the numerical solution of one Lyapunov equation only
and the computation of the eigenvalue decomposition.

3.2. Numerical aspects. For solving the generalized Lyapunov equation (3.4),
we employ the low-rank alternating direction implicit (LR-ADI) method proposed
first in [24, 32] and then significantly improved in [4, 5]. The LR-ADI iteration for
the Lyapunov equation (3.4) has the form

Fk = (τkE1 +A1)
−1Yk−1,

Yk = Yk−1 − 2Re(τk)E1 Fk,

Zk = [Zk−1,
√

−2Re(τk)Fk ]
(3.15)

with the initial matrices Y0 = B, Z0 = [ ] and shift parameters τk ∈ C−. Then
the solution of (3.4) is approximated by P ≈ ZkZ

T
k and Zk ∈ Rn,mk is said to be

a low-rank Cholesky factor of P . The LR-ADI iteration (3.15) can be stopped once
the residual

A1ZkZ
T
k E

T
1 + E1ZkZ

T
k A

T
1 +B1B

T
1 = YkY

T
k

satisfies the condition ‖YkY
T
k ‖F = ‖Y T

k Yk‖F ≤ tol‖BT
1 B1‖F with a given tolerance

tol. Here, ‖ · ‖F denotes the Frobenius matrix norm.
The main computational effort in the LR-ADI iteration (3.15) is the numerical

solution of linear systems with the matrices τE1+A1. Note that although E and A in
(3.1) are sparse, the matrices E1 and A1 in (3.3) are, in general, dense. This prohibits
the use of iterative sparse linear system solvers. Therefore, E1 and A1 will never
be constructed explicitly, but instead their block structure should be exploited to
compute (τE1 +A1)

−1v for a vector v. The following lemma shows that this product
can be determined by solving a sparse linear system.

Lemma 3.5. Let E1 and A1 be as in (3.3), Z = X2(X
T
2 X2)

−1/2, τ ∈ C and

[vT1 , v
T
2 ]

T ∈ Rn1+m. Then the vector

z = (τE1 +A1)
−1

[

v1
v2

]

can be determined as z = [zT1 , (Z
T z2)

T ]T , where z1 and z2 satisfy the sparse linear

system

(τE +A)





z1
z2
z3



 =





v1
Zv2
0



 (3.16)
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with E and A given in (2.3).
Proof. Multiplying system (3.16) from the left with the orthogonal matrix T as

in (2.9) and taking into account that Y TX2 = 0 and Y Y T + ZZT = I, we have

(τM11 −K11)z1 − K12Z(ZT z2) − K12Y (Y T z2) + X1z3 = v1,
−ZTK21z1 − ZTK22Z(ZT z2) − ZTK22Y (Y T z2) + ZTX2z3 = v2,
−Y TK21z1 − Y TK22Z(ZT z2) − Y TK22Y (Y T z2) = 0,

τXT
1 z1 + τXT

2 Z(ZT z2) + −Rz3 = 0.

Solving the third and fourth equations for

Y T z2 = −(Y TK22Y )−1
[

Y TK21, Y
TK22Z

]

[

z1
ZT z2

]

,

z3 = τR−1
[

XT
1 , X

T
2 Z

]

[

z1
ZT z2

]

and substituting these vectors into the first and second equations, we obtain

(τE1 +A1)

[

z1
ZT z2

]

=

[

v1
v2

]

.

The nonsingularity of τE1 +A1 implies that z = [zT1 , (Z
T z2)

T ]T .
The convergence rate of the LR-ADI iteration (3.15) strongly depends on the

choice of the shift parameters. They can be determined, for example, from largest
and smallest Ritz values of the pencil λE1 − A1 computed by an Arnoldi procedure
applied to E−1

1 A1 and A−1
1 E1, respectively, see [32]. Other approaches for computing

shift parameters can be found in [6]. Again, we can use the special structure of E1

and A1 in (3.3) to construct the vectors E−1
1 A1v and A−1

1 E1v required in the Arnoldi
procedure. First, we show that the computation of Y needed in A1 can completely
be avoided.

Lemma 3.6. Let X2 ∈ Rn2,m be of full column rank, K22 ∈ Rn2,n2 and w ∈ Rn2 .

Assume that the columns of Y ∈ Rn2,n2−m form a basis of ker(XT
2 ). If [zT1 , z

T
2 ]

T

solves the linear system

[

K22 X2

XT
2 0

] [

z1
z2

]

=

[

w
0

]

, (3.17)

then z1 = Y (Y TK22Y )−1Y Tw.
Proof. The second equation in (3.17) implies that z1 ∈ ker(XT

2 ) = im(Y ). Hence,
there exists g ∈ Rn2−m such that z1 = Y g. Substituting this vector into the first
equation in (3.17) and multiplying it from the left with the matrix Y T , we obtain
Y TK22Y g = Y Tw. Then z1 = Y g = Y (Y TK22Y )−1Y Tw.

Taking into account the structure of A1 and E−1
1 in (3.3) and (2.13), respectively,

and Lemma 3.6, the vector z = E−1
1 A1v can be computed by Algorithm 1.

Next, we consider the computation of the vector z = A−1
1 E1v. Since A1 is the

Schur complement of the matrix in (3.6), the vector z = [zT1 , z
T
2 ]

T = A−1
1 E1v satisfies

the linear system

−T̂
[

K11 K12

K21 K22

]

T̂ T





z1
z2
z3



 =

[

E1v
0

]

, (3.18)
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Algorithm 1 Computation of E−1
1 A1v.

Input: M11, K11 ∈ Rn1,n1 , K12 ∈ Rn1,n2 , K21 ∈ Rn2,n1 , K22 ∈ Rn2,n2 , X1 ∈ Rn1,m,
X2 ∈ Rn2,m, v = [vT1 , v

T
2 ]

T ∈ Rn1+m

Output: z = E−1
1 A1v with E1 and A1 as in (2.12a) and (2.12b), respectively.

1: Compute v̂2 = X2(X
T
2 X2)

−1/2v2.
2: Solve the linear system

[

K22 X2

XT
2 0

] [

z1
z2

]

=

[

K21v1 +K22v̂2
0

]

.

3: Compute

[

ẑ1
ẑ2

]

= −
[

K11 K12

K21 K22

] [

v1
v̂2

]

+

[

K12

K22

]

z1.

4: Compute w2 = (XT
2 X2)

−1XT
2 ẑ2.

5: Solve the linear system M11w1 = ẑ1 −X1w2.
6: Compute

z =

[

w1

−(XT
2 X2)

−1/2(XT
1 w1 −Rw2)

]

.

with orthogonal T̂ given in (3.7). For v = [vT1 , v
T
2 ]

T , we introduce

f = T̂ T

[

E1v
0

]

=

[

I 0
0 Z

]

E1v =

[

M11v1 +X1R
−1(XT

1 v1 + (XT
2 X2)

1/2v2)

X2R
−1(XT

1 v1 + (XT
2 X2)

1/2v2)

]

and set

[

ẑ1
ẑ2

]

= T̂ T





z1
z2
z3



 . (3.19)

Then the linear system (3.18) can be written as

−
[

K11 K12

K21 K22

] [

ẑ1
ẑ2

]

= f.

Using the orthogonality of [Z, Y ], we obtain from (3.19) that

[

z1
z2

]

=

[

ẑ1
ZT ẑ2

]

.

The computation of z = A−1
1 E1v is summarized in Algorithm 2.

Finally, we present in Algorithm 3 the computation of the reduced-order matri-
ces Ã1, B̃1 and C̃1 as in (3.14). The first three steps there are similar to those in
Algorithm 1. Computing Ẑ1 and Ẑ2 in Step 3 of Algorithm 3, we have

A1V =

[

Ẑ1

(XT
2 X2)

−1/2XT
2 Ẑ2

]

, W =−E−1
1 A1V =

[ −W1

(XT
2 X2)

−1/2(XT
1 W1 −RW2)

]

,
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Algorithm 2 Computation of A−1
1 E1v.

Input: M11, K11 ∈ Rn1,n1 , K12 ∈ Rn1,n2 , K21 ∈ Rn2,n1 , K22 ∈ Rn2,n2 , X1 ∈ Rn1,m,
X2 ∈ Rn2,m, v = [vT1 , v

T
2 ]

T ∈ Rn1+m.
Output: z = A−1

1 E1v with E1 and A1 as in (2.12a) and (2.12b), respectively.
1: Compute w = R−1(XT

1 v1 + (XT
2 X2)

1/2v2).
2: Solve the linear system

−
[

K11 K12

K21 K22

] [

ẑ1
ẑ2

]

=

[

M11v1 +X1w
X2w

]

.

3: Compute

z =

[

ẑ1
(XT

2 X2)
−1/2XT

2 ẑ2

]

.

Algorithm 3 Computation of the reduced-order matrices.

Input: M11, K11 ∈ Rn1,n1 , K12 ∈ Rn1,n2 , K21 ∈ Rn2,n1 , K22 ∈ Rn2,n2 , X1 ∈ Rn1,m,
X2 ∈ Rn2,m, R ∈ Rm,m, and V = [V T

1 , V T
2 ]T ∈ Rn1+m,r.

Output: Ã1, B̃1 and C̃1 as in (3.14).
1: Compute V̂2 = X2(X

T
2 X2)

−1/2V2.
2: Solve the linear system

[

K22 X2

XT
2 0

] [

Z1

Z2

]

=

[

K21V1 +K22V̂2

0

]

.

3: Compute

[

Ẑ1

Ẑ2

]

= −
[

K11 K12

K21 K22

] [

V1

V̂2

]

+

[

K12

K22

]

Z1.

4: Compute C̃1 = −(XT
2 X2)

−1XT
2 Ẑ2 and B̃1 = C̃T

1 .
5: Compute Ã1 = −(Ẑ1 +X1C̃1)

TM−1
11 (Ẑ1 +X1C̃1)− C̃T

1 RC̃1.

whereW2 = (XT
2 X2)

−1XT
2 Ẑ2 andW1 solvesM11W1 = Ẑ1−X1W2 (compare Steps 4-6

in Algorithm 1). Then exploiting the block structure of A1 and B1 in (3.3), we obtain

C̃1 = BT
1 W = R−1(−XT

1 W1 +XT
1 W1 −RW2) = −W2 = B̃T

1 ,

Ã1 = WTA1V = −WT
1 Ẑ1 + (WT

1 X1 −WT
2 R)(XT

2 X2)
−1XT

2 Ẑ2

= −(Ẑ1 −X1W2)
TM−1

11 (Ẑ1 −X1W2)−WT
2 RW2.

This justifies the last two steps in Algorithm 3.

4. Model reduction of nonlinear MQS systems. In this section, we con-
sider model reduction of the nonlinear MQS system (2.2) using the proper orthogonal
decomposition (POD) approach, e.g., [44], combined with the discrete empirical in-
terpolation method (DEIM) [11].

4.1. Proper orthogonal decomposition. The POD method applied to the
nonlinear DAE (2.2) consists in constructing a snapshot matrix X = [x(t1), . . . , x(tq)]
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and computing the SVD

X = [U, U0 ]

[

Σ
Σ0

]

[V, V0 ]
T

with Σ=diag(σ1, . . . , σr), Σ0=diag(σr+1, . . . , σq) and σ1≥ . . .≥ σr > σr+1≥ . . .≥ σq.
Then a reduced-order model can be determined by projecting

Ẽ ˙̃x = Ã(x̃) x̃+ B̃ u,
ỹ = C̃ x̃, (4.1)

where x̃ ∈ R
r, Ẽ = UTEU , Ã(x̃) = UTA(Ux̃)U , B̃ = UTB, and C̃ = CU . The columns

of U are referred to as the POD basis of X . This naive model reduction approach
has several disadvantages. First note that the differential and algebraic components
of the state vector x are mixed in the reduced-order model (4.1). Secondly, it is well
known that the reduction of the algebraic components and the algebraic constraints
in DAEs may lead to inaccurate and physically meaningless results, see [40].

To overcome these difficulties, we propose, as in the linear case, to transform the

DAE (2.2) to the ODE form (2.8) with x1 =
[

aT1 , a
T
21

]T
and reduce the vector a1

only, remaining a21 unchanged since it usually has only a few components. This can
be done by partitioning the transformed snapshot matrix

TX =









Xa1

Xa21

Xa22

Xι









in blocks according to T in (2.9) and computing the SVD

Xa1
=

[

Ua1
, Ûa1

]

[

Σa1

Σ̂a1

]

[

Va1
, V̂a1

]T

, (4.2)

where Σa1
∈ Rr1,r1 contains the dominant singular values of Xa1

. Then the reduced-
order model is obtained by projecting

Ẽ1
˙̃x1 = Ã1(x̃1)x̃1 + B̃1u,

ỹ = C̃1x̃1,
(4.3)

where x̃1 = [ãT1 , a
T
21]

T , Ẽ1 = UTE1U , Ã1(x̃1) = UTA1(Ux̃1)U , B̃1 = UTB1, and
C̃1 = C1U with the projection matrix

U =

[

Ua1

Im

]

. (4.4)

Note that the snapshot matrix Xa1
is determined by solving the DAE (2.2) and,

similarly to the linear case, see Algorithm 3, the reduced-order matrices in (4.3) can
be computed from (2.2) without forming the system matrices (2.12), (2.15). The
proposed model reduction approach for the DAE (2.2) is referred to as first transform
(to the ODE form), then reduce. On the other hand, we can first reduce the DAE
(2.2) using the projection matrix









Ua1

ZT

Y T

Im








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and then transform the resulting system to the ODE form by eliminating the alge-
braic components. It turns out that for the DAE (2.2), these two approaches are
equivalent in the sense that they provide the same reduced-order models. This does
not necessarily hold for general DAEs.

4.2. Discrete empirical interpolation. In order to speed up the simulation
of the reduced-order model (4.3), we employ further the DEIM [11] for efficient eva-
luation of the nonlinearity

Ã1(x̃1)x̃1 = UTA1(Ux̃1)Ux̃1. (4.5)

Taking into account the structure of the matrix A1(x1) in (2.12b), the nonlinearity
A1(x1)x1 of system (2.8) can be written as

A1(x1)x1 = Alx1 +

[

f(a1)
0

]

with a constant matrix

Al = −
[

K11,l K12Z
ZTK21 ZTK22Z

]

+

[

K12

ZTK22

]

Y
(

Y TK22Y
)−1

Y T [K21, K22Z]

and a nonlinear function f(a1) = K11,n(a1)a1. Collecting the snapshots

Xf = [f(a1(t1)), . . . , f(a1(tq))] , (4.6)

we compute the SVD

Xf =
[

Uf , Ûf

]

[

Σf

Σ̂f

]

[

Vf , V̂f

]T

, (4.7)

where Σf ∈ Rℓ,ℓ contains the dominant singular values of Xf . Then the nonlinear
function (4.5) can be approximated by

Ã1(x̃1)x̃1 = UTA1(Ux̃1)Ux̃1 ≈ UTAlUx̃1 +

[

f̃(ã1)
0

]

(4.8)

with

f̃(ã1) = UT
a1
Uf (S

T
KUf )

−1ST
Kf(Ua1

ã1), (4.9)

where K = {k1, . . . , kℓ} is a DEIM index set determined from Uf using the Greedy
algorithm as described in [11] and SK = [ ek1

, . . . , ekℓ
] ∈ Rn1,ℓ is the selector matrix

associated with K. Here, ej denotes the j-th column of the n1 × n1 identity matrix.
Note that the time-independent matrices UTAlU and UT

a1
Uf (S

T
KUf )

−1 can be pre-
computed and stored in the offline stage. Then in the online stage, we evaluate only
ℓ components of the function f(Ua1

ã1) given by

fk(Ua1
ã1) =

∫

Ω1

ν1(‖∇ ×
n1
∑

i=1

α̃iϕi‖2)(∇×
n1
∑

i=1

α̃iϕi) · (∇× ϕk) dξ, k ∈ K, (4.10)

where Ua1
ã1 = [α̃1, . . . α̃n1

]T . A further reduction in computational complexity can
be achieved by taking into account that the integrals in (4.10) have to be computed
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on supp(ϕk), k ∈ K, which are small subdomains of Ω. As a consequence, only a few
components of the vector Ua1

ã1 are required to evaluate ST
Kf(Ua1

ã1). To find such
components, we introduce an index set

Kext,k =
{

i ∈ {1, . . . , n1} :
◦

supp(ϕi) ∩
◦

supp(ϕk) 6= ∅
}

, (4.11)

where
◦

supp(ϕk) denotes the interior of supp(ϕk). With this extended index set we
have

n1
∑

i=1

α̃iϕi =
∑

i∈Kext,k

α̃iϕi on supp(ϕk).

Then the integral (4.10) can be simplified to

fk(Ua1
ã1) =

∫

supp(ϕk)

ν1(‖∇×
∑

i∈Kext,k

α̃iϕi‖2)(∇×
∑

i∈Kext,k

α̃iϕi) · (∇× ϕk) dξ, k ∈ K.

One can see that to evaluate the function ST
Kf(Ua1

ã1), we do not need all components
of Ua1

ã1 ∈ Rn1 , but rather only those from the index set

Kext =
⋃

k∈K

Kext,k.

The number of elements of Kext, denoted by |Kext|, is much smaller than n1. In this
case, we can shortly write

ST
Kf(Ua1

ã1) = f̂(ST
Kext

Ua1
ã1), (4.12)

where SKext
is the selector matrix associated with Kext and f̂ : R|Kext| → Rℓ coincides

with ST
Kf but unlike ST

Kf depends on the selected components of Ua1
ã1 only. Thus,

we can calculate the DEIM approximation f̃(ã1) = UT
a1
Uf (S

T
KUf )

−1f̂(ST
Kext

Ua1
ã1)

independently from the original size n1.
We consider now the reduced-order model (4.3) with Ã1(x̃1)x̃1 replaced by the

POD-DEIM approximation as in (4.8), (4.9). Integrating this system in time using
a one-step or multistep method [15], we face with the problem of solving a sequence
of systems of nonlinear equations. For this purpose, we employ the Newton iteration
which requires the computation of the Jacobi matrix Jf̃ (ã1) of the nonlinear function

f̃ at ã1. This matrix has the form

Jf̃ (ã1) = UT
a1
Uf(S

T
KUf)

−1ST
KJf (Ua1

ã1)Ua1
,

where Jf (Ua1
ã1) is the Jacobi matrix of f at Ua1

ã1. In the case of the sparse matrix
ST
KJf (Ua1

ã1), we introduce an index set

J = { (i, j) :
(

ST
KJf (Ua1

ã1)
)

i,j
6= 0 }

of non-zero entries of this matrix. Let Θ(i,j) ∈ Rℓ,n1 have all zero entries except for the
(i, j)-th entry being 1. Then the Jacobi matrix Jf̃ (ã1) admits an affine representation

Jf̃ (ã1) =
∑

(i,j)∈J

UT
a1
Uf (S

T
KUf )

−1Θ(i,j)Ua1

(

ST
KJf (Ua1

ã1)
)

i,j
,
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where the time-independent matrices UT
a1
Uf (S

T
KUf )

−1Θ(i,j)Ua1
∈ Rr1,r1 can be pre-

computed and stored in the offline phase, and only a small number of the time-
dependent functions

(

ST
KJf (Ua1

ã1)
)

i,j
, (i, j) ∈ J , have to be evaluated in the online

phase.

4.3. Matrix discrete empirical interpolation. An alternative approach for
the efficient evaluation of the Jacobi matrix Jf̃ (ã1) in the online stage is based on
a matrix discrete empirical interpolation method (MDEIM) [46]. Our goal is to find
an approximation

ST
KJf (Ua1

ã1) ≈
p

∑

l=1

Vl gl(Ua1
ã1) (4.13)

with Vl ∈ R
ℓ,n1 , gl(Ua1

ã1) ∈ R and p ≪ n1. Then the reduced Jacobi matrix Jf̃ (ã1)
is approximated by

Jf̃ (ã1) ≈
p

∑

l=1

UT
a1
Uf (S

T
KUf )

−1Vl Ua1
gl(Ua1

ã1),

where the time-independent reduced matrices UT
a1
Uf (S

T
KUf )

−1VlUa1
can be pre-com-

puted and stored in the offline stage, and only the evaluation of the p scalar functions
gl(Ua1

ã1) is required in the online stage.

The MDEIM approximation of ST
KJf (Ua1

ã1) can be determined by DEIM using
the vectorization operator [46]. Here, we use an efficient formulation of MDEIM
proposed first in [42]. To find the MDEIM approximation (4.13), we collect the
snapshots J1 = ST

KJf (a1(t1)), . . . , Jq = ST
KJf (a1(tq)) and construct a matrix

XJ =







〈J1, J1〉F · · · 〈J1, Jq〉F
...

. . .
...

〈Jq, J1〉F · · · 〈Jq, Jq〉F






, (4.14)

where 〈Ji, Jj〉F = trace(JT
j Ji) denotes the Frobenius inner product of the matrices Ji

and Jj . The matrix XJ is symmetric and positive semidefinite. Computing the EVD

XJ =
[

WJ , ŴJ

]

[

ΛJ

Λ̂J

]

[

WJ , ŴJ

]T

, (4.15)

where ΛJ ∈ R
p,p contains p dominant eigenvalues of XJ , the POD basis matrices Vl

can then be determined as

Vl =

q
∑

k=1

Jkwkl, l = 1, . . . , p, (4.16)

where wkl are the entries of the matrix WJΛ
−1/2
J ∈ Rq,p. Note that the basis matrices

Vl in (4.16) have the same sparsity pattern as ST
KJf (Ua1

ã1) and, as the following
lemma shows, they are orthogonal with respect to the Frobenius inner product.

Lemma 4.1. The matrices Vl in (4.16) fulfil 〈Vl, Vj〉F = δlj , where δlj is the

Kronecker delta.
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Proof. It follows from the EVD (4.15) and (4.16) that

〈Vl, Vj〉F = trace

(

(

q
∑

k=1

Jkwkl

)T(
q

∑

i=1

Jiwij

)

)

=

q
∑

k=1

q
∑

i=1

wkl〈Ji, Jk〉Fwij

=
(

Λ
− 1

2

J WT
J XJWJΛ

− 1

2

J

)

l,j
= δlj .

Having Vl, the functions gl(Ua1
ã1) are calculated from the condition that the

selected components of the matrix ST
KJf (Ua1

ã1) and its approximation in (4.13) co-
incide, i.e.,

(

ST
KJf (Ua1

ã1)
)

i,j
=

(

p
∑

l=1

Vl gl(Ua1
ã1)

)

i,j
=

p
∑

l=1

(

Vl

)

i,j
gl(Ua1

ã1) (4.17)

for some (i, j). Such components are determined successively from the basis matri-
ces V1, . . . , Vp using the MDEIM-Greedy procedure presented in Algorithm 4. This
procedure is an generalization of the DEIM algorithm [11] to the matrix case.

Algorithm 4 MDEIM-Greedy procedure.

Input: V1, . . . , Vp ∈ Rℓ,n1 .
Output: Set of indices I = {(i1, j1), . . . , (ip, jp)}.
1: Find (i1, j1) = arg max

1 ≤ i ≤ ℓ
1 ≤ j ≤ n1

|(V1)i,j |.

2: I = {(i1, j1)}, G1 = (V1)i1,j1 .
3: for l = 2 to p do

4: Set b =
[

(Vl)i1,j1 , . . . , (Vl)il−1,jl−1

]T
.

5: Solve Gl−1c = b for c = [c1, . . . , cl−1]
T .

6: Compute Rl = Vl −
l−1
∑

k=1

Vkck.

7: Find (il, jl) = arg max
1 ≤ i ≤ ℓ
1 ≤ j ≤ n1

|(Rl)i,j |.

8: I ← I ∪ {(il, jl)}
9: Gl =

[

Gl−1 b
v (Vl)il,jl

]

with v = [ (V1)il,jl , . . . , (Vl−1)il,jl ]

10: end for

The following lemma shows that the matrix Gp in Algorithm 4 is nonsingular,
and, hence, we get from (4.17) that







g1(Ua1
ã1)

...
gp(Ua1

ã1)






= G−1

p ϑ(Ua1
ã1) with ϑ(Ua1

ã1) =









(

ST
KJf (Ua1

ã1)
)

i1,j1
...

(

ST
KJf (Ua1

ã1)
)

ip,jp









.

Lemma 4.2. The matrices Gl, l = 1, . . . , p, in Algorithm 4 are nonsingular.

Proof. The result can be proved by induction. First, we note thatG1=(V1)i1,j1 6=0
for (i1, j1) as in Step 1 of Algorithm 4. This property immediately follows from V1 6= 0.
Assume that Gl−1 for l > 1 is nonsingular. Then using b = Gl−1c we get

Gl

[

I −c
0 1

]

=

[

Gl−1 0
v (Vl)il,jl − vc

]

. (4.18)



19

By Lemma 4.1, the matrices V1, . . . , Vl are linear independent, and, hence, Rl 6= 0.
This implies that (Vl)il,jl − vc = (Rl)il,jl 6= 0 for (il, jl) as in Step 7 of Algorithm 4.
Then the matrix in the right-hand side of (4.18) is nonsingular, and, thus, Gl is
nonsingular too.

Similar to the nonlinearity f(Ua1
ã1) in (4.12), for the MDEIM index set

I = {(i1, j1), . . . , (ip, jp)}, the vector-valued function ϑ(Ua1
ã1) depends only on a few

components of Ua1
ã1 which are determined by an extended index set

Iext =
⋃

(i,j)∈I

{

l ∈ {1, . . . , n1} :
◦

supp(ϕl) ∩ ◦
supp(ϕi) ∩ ◦

supp(ϕj) 6= ∅
}

. (4.19)

To emphasize the dependence on the selected components, we introduce a new func-
tion

ϑ̂(ST
Iext

Ua1
ã1) = ϑ(Ua1

ã1), (4.20)

where SIext
is the selector matrix associated with Iext.

An exemplary construction of the index sets Kext and Iext and the corresponding
integration domains are presented in Figure 1.

1

2

3

4

5

6

(a)

1

2

3

4

6

5

(b)

Fig. 1. An example for the (extended) index sets and the integration domains: (a) K = {6}
and Kext = {1, 2, 3, 4, 5, 6} for a vector-valued function; (b) I = {(6, 3)} and Iext = {2, 3, 4, 6} for
a matrix-valued function.

4.4. Offline-online decomposition. As it was mentioned above, the model
reduction procedure and simulation of the resulting reduced-order model admit the
decomposition into a computationally expensive offline stage and a rapid online stage.
The offline stage includes the following steps:
1. Compute the snapshot matrices Xa1

= [a1(t1), . . . , a1(tq)] and Xf as in (4.6).
2. Construct the POD projection matrices Ua1

∈ Rn1, r1 and Uf ∈ Rn1, ℓ from the
SVDs (4.2) and (4.7), respectively.

3. Select the index set K = {k1, . . . , kℓ} using DEIM applied to Uf . For all k ∈ K,
construct Kext,k as in (4.11) and set Kext =

⋃

k∈K

Kext,k.

4. Compute the snapshot matrix XJ as in (4.14) and construct the basis matrices
V1, . . . , Vp ∈ R

ℓ, n1 as in (4.16) using the EVD (4.15).
5. Select the index set I = {(i1, j1), . . . , (ip, jp)} using MDEIM applied to the

matrices V1, . . . , Vp and construct Iext as in (4.19).
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6. Compute and store the time-independent matrices
Ẽ1 = UTE1U ∈ Rr1+m, r1+m,
B̃1 = UTB1 ∈ Rr1+m,m, C̃1 = C1U ∈ Rm,r1+m,
Ãl = UTAlU ∈ R

r1+m,r1+m with U as in (4.4),
W = UT

a1
Uf(S

T
KUf)

−1 ∈ Rr1,ℓ with SK = [ek1
, . . . , ekℓ

],

UKext
=ST

Kext
Ua1
∈ R|Kext|,r1 with the selector matrix SKext

associated with Kext,

Ṽi = WViUa1
∈ Rr1, r1 for i = 1, . . . , p ,

UIext
=ST

Iext
Ua1
∈ R|Iext|, r1 with the selector matrix SIext

associated with Iext,

Gp =







(V1)i1,j1 · · · (Vp)i1,j1
...

. . .
...

(V1)ip,jp · · · (Vp)ip,jp






∈ Rp,p.

Then in the online stage, we solve the POD-DEIM reduced-order model

Ẽ1
˙̃x1 = f̃1(x̃1) + B̃1u,

ỹ = C̃1x̃1,

where

x̃1 =

[

ã1
ã21

]

, f̃1(x̃1) = Ãlx̃1 +

[

Wf̂(UKext
ã1)

0

]

,

and f̂ is as in (4.12). The approximate Jacobi matrix of f̃1 at x̃1 is given by

J̃f̃1(x̃1) = Ãl +







p
∑

l=1

Ṽi g̃i(ã1)

0






with







g̃1(ã1)
...

g̃p(ã1)






= G−1

p ϑ̂(UIext
ã1),

where ϑ̂ is as in (4.20). One can see that all computations in this stage do not depend
on the original dimension na +m that significantly reduces the computational cost.

5. Numerical experiments. In this section, we present some results of nume-
rical experiments for model reduction of linear and nonlinear MQS models describing
a single-phase 2D transformer with an iron core and two coils as shown in Figure 2,
see [36] for detailed description and geometry data.

❢ ❢s ❢ ❢s

r R1

❄

iL1

❄

iL2✒✑
✓✏
u1

✒✑
✓✏

u2

rR2

Fig. 2. Single-phase 2D transformer and transformer equivalent circuit.

For the FEM discretization, we use the free available software FEniCS∗, whereas
the time integration is done by the solver IDA from the simulation package Assimulo†.

∗http://fenicsproject.org
†http://www.jmodelica.org/assimulo
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Fig. 3. Linear MQS model: (a) the frequency responses of the original and reduced-order
models; (b) the absolute error in the frequency domain and the error bound γ.

The dimensions of the spatially discretized MQS system are na = 17731, n1 = 7200,
n2 = 10531 and m = 2. We choose the material parameters σ1 = 5 · 105Ω−1m−1 and
ν2 = 1AmV−1s−1. Furthermore, we take ν1 = 14872AmV−1s−1 for the linear model
and ν1(η) = 3.8 exp(2.14η) + 396.2AmV−1s−1 for the nonlinear system.

Example 1. First, we apply the balanced truncation model reduction method to
the linear transformer model as described in Section 3. The controllability Gramian P
was approximated by a low-rank matrix P ≈ Z̃ñZ̃

T
ñ with Zñ ∈ Rn,ñ computed by the

LR-ADI method (3.15). Here, n = 7202 and ñ = 36. The resulting Hankel singular
values decay very rapidly implying that the MQS system can be well approximated by
a model of low dimension r. We approximate the original system by a reduced model of
order r = 5. Figure 3(a) shows the spectral norms of the frequency responses ‖H(iω)‖2
and ‖H̃(iω)‖2 of the full and reduced-order models for ω ∈ [10−8, 108]. In Figure 3(b),
we present the absolute error in the frequency domain given by ‖H(iω)−H̃(iω)‖2 and
the error bound computed as

γ = 2(σr+1 + . . .+ σñ−1 + (n− ñ+ 1)σñ) = 8.967 · 10−7.

Figure 4(a) shows the components of the output vectors y(t) = [y1(t), y2(t)]
T and

ỹ(t) = [ỹ1(t), ỹ2(t)]
T of the original and reduced-order models, respectively, on the

time interval [0, 0.01]s resulting for the input

u(t) =

[

45.5 · 103 sin(900πt)
77 · 103 sin(1700πt)

]

.

The relative error ‖y(t)− ỹ(t)‖/‖y(t)‖ in the output is presented in Figure 4(b). One
can see that the errors in the frequency and time domains are both small.

Example 2. In the second example, we examine model reduction of the nonlin-
ear transformer model using the POD-DEIM-MDEIM method. The snapshots were
collected for the training input u(t) and the reduced-order model was then tested for
the input utest(t) given by

u(t) =

[

45.5 · 103 sin(900πt)
77 · 103 sin(1700πt)

]

, utest(t) =

[

46.5 · 103 sin(1500πt)
78 · 103 sin(1000πt)

]

.
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Fig. 4. Linear MQS model: (a) The output components of the original and reduced-order
models; (b) the relative error in the output.

Figure 5 shows the singular values σPOD
j and σDEIM

j of the POD and DEIM snapshot

matrices Xa1
and Xf , respectively, as well as the eigenvalues λMDEIM

j of the MDEIM
snapshot matrix XJ . We assume that the singular values and the eigenvalues are
ordered decreasingly. Based on these values, the reduced dimensions were chosen as

POD: r1 = 38, DEIM: ℓ = 3, MDEIM: p = 3

with the relations

σPOD
39

σPOD
1

= 10−7,
σDEIM
4

σDEIM
1

= 2.8 · 10−2,
λMDEIM
4

λMDEIM
1

= 2.1 · 10−6.

The reduced model has the dimension r = r1 + m = 40. Note that the matrix
ST
KJf ∈ R3,7200 has only 19 nonzero entries. Using the MDEIM method, this dimen-

sion can further be reduced resulting in evaluation of 3 entries only. The extended
index sets Kext and Iext have |Kext| = 17 and |Iext| = 14 elements.

In Figure 6(a), we present the output components of the original and POD-DEIM-
MDEIM-reduced models, whereas the relative errors

‖y(t)− ỹ(t)‖
max

t∈[0,0.01]
‖y(t)‖

for the POD-, POD-DEIM- and POD-DEIM-MDEIM-reduced models are given in
Figure 6(b). We observe that the errors are about the same for all three reduced
models meaning that the errors introduced by DEIM and MDEIM are negligible
compared to the POD error.

6. Conclusion. In this paper, we have considered model order reduction of
linear and nonlinear MQS systems arising in electromagnetic simulations. The FEM
discretization of the underlying Maxwell’s equation leads to a DAE system of index
one with a very special block structure. Our model reduction approach is based
on transforming the DAE system into the ODE form by eliminating the algebraic
components and reducing the differential components only. For model reduction of
the linear MQS system, we have used a balanced truncation method. It was shown
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Fig. 5. Nonlinear MQS model: (a) POD singular values; (b) DEIM singular values; (c) MDEIM
eigenvalues.
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Fig. 6. Nonlinear MQS model: (a) the output components of the original and reduced-order
models; (b) the relative errors in the output.

that under certain symmetry conditions the linear MQS system is passive and the
Lyapunov-based balanced truncation method preserves passivity in the reduced-order
model. The nonlinear MQS system was approximated by the POD method combined
with DEIM and MDEIM. For fast evaluation of the Jacobi matrix, we have presented
an efficient modification of MDEIM which avoids the vectorization of the snapshot
matrix.

Acknowledgments. The authors would like to thank Sebastian Schöps for help-
ful discussions.
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