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A TWO-STEP MODEL REDUCTION APPROACH FOR
MECHANICAL SYSTEMS WITH MOVING LOADS ∗

TATJANA STYKEL† AND ALEXANDER VASILYEV‡

Abstract. We consider model order reduction of mechanical systems with moving loads. Such
systems have a time-varying input matrix that makes the direct application of standard model
reduction methods difficult. In this paper, we present a two-step model reduction approach for
systems with moving loads which is based on a low-rank approximation of the input matrix and
applying Krylov subspace methods to the resulting linear time-invariant system with a modified
input. Numerical results demonstrate the properties of the proposed model reduction method.

Key words. mechanical systems, moving loads, model reduction

1. Introduction. In structural dynamics, the moving load problem has received
a lot of attention because of its importance in many practical applications. Mechanical
systems with moving loads arise, for example, in modelling of bridges with moving
vehicles [17, 32], cableways [17], cranes [42] or working gears [39]. One of the most
popular methods for simulation of the dynamic behaviour of such systems is a finite
element method (FEM) based on a variational formulation of the structural mechanics
problem, e.g., [41]. In the engineering literature, the principle of virtual work is used
to derive the FEM approximations, see [5]. The FEM discretization of a system
subjected to moving loads yields a linear time-varying (LTV) second-order system

Mq̈(t) +Dq̇(t) +Kq(t) = B(t)u(t),
y(t) = C(t)q(t),

(1.1)

where M,D,K ∈ RN×N are the mass, damping and stiffness matrices, respectively,
q(t) ∈ RN is an unknown vector of generalized coordinates, u(t) ∈ Rm is the input,
and y(t) ∈ Rp is an output describing a response in a domain of interest. Furthermore,
B(t) ∈ RN×m and C(t) ∈ Rp×N are the time-dependent input and output matrices
describing, respectively, force and observation positions at time t ∈ [0, T ].

As an example, we consider a simply supported beam excited by a moving force.
The vibration of the beam is modelled by an Euler-Bernoulli equation

µA
∂2

∂t2
w(x, t) + 2µAωd

∂

∂t
w(x, t) + EJ

∂4

∂x4
w(x, t) = f(x, t) (1.2a)

with the initial and boundary conditions

w(x, 0) = 0,
∂

∂t
w(x, 0) = 0, (1.2b)

w(0, t) = 0,
∂2

∂x2
w(0, t) = 0, w(l, t) = 0,

∂2

∂x2
w(l, t) = 0, (1.2c)
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2 T. STYKEL AND A. VASILYEV

where w(x, t) is a vertical displacement of the beam, µ is the mass density, A is the
cross-sectional area, E is the Young modulus, J is the moment of inertia of the cross-
section, ωd is the circular frequency of damping, and l is the length of the beam. The
external force acting on the beam is described by a function

f(x, t) =

m∑
j=1

%j(x, t)uj(t),

where %j(x, t) and uj(t) are the normalized distribution and magnitude of the j-th
excitation, respectively. The time dependence in %j(x, t) indicates a time-varying
excitation or a moving load. Applying the FEM to (1.2), we get system (1.1) with the
symmetric, positive definite matrices M , D and K. The entries of the input matrix
B(t) = [bij(t)] have the form

bij(t) =

∫ l

0

%j(x, t)ϕN,i(x)dx, i = 1, . . . , N, j = 1, . . . ,m,

where ϕN,i(x) are the FEM basis functions and N is the number of degrees of freedom.
If the beam is excited by the point forces, then

%j(x, t) = δ(x− ξj(t)),

where δ(x) is the Dirac delta function and ξj(t) is an instantaneous position of the
j-th force at time t. In this case, the entries of B(t) are defined especially simply as

bij(t) = ϕN,i(ξj(t)). (1.3)

Unfortunately, simulation of complex mechanical structures requires frequently
an overwhelming computational effort due to a large number of degrees of freedom.
In order to reduce the computational complexity when solving the large-scale system
(1.1) numerically, we may use model order reduction. It consists of approximating
(1.1) by a reduced model

M̃ ¨̃q(t) + D̃ ˙̃q(t) + K̃ q̃(t) = B̃(t)u(t),

ỹ(t) = C̃(t) q̃(t),
(1.4)

where M̃, D̃, K̃ ∈ Rr×r, B̃(t) ∈ Rr×m, C̃(t) ∈ Rp×r and r � N . Such a model can be
computed by projection

M̃ = WTMV, D̃ = WTDV, K̃ = WTKV,

B̃(t) = WTB(t), C̃(t) = C(t)V,

where the projection matrices V,W ∈ RN×r are chosen such that the approximation
error ỹ − y is small in an appropriate norm. For linear time-invariant (LTI) second-
order systems, the projection matrices can be determined using balanced trunca-
tion [8, 25, 31] or (rational) Krylov subspace techniques [2, 3, 33]. The balanced
truncation method has been extended to LTV systems in [34, 36]. It relies on solving
two Lyapunov differential equations and is computationally expensive and memory
demanding. Another model reduction approach for LTV systems has been presented
in [20, 29]. It is based on converting the LTV system to a LTI system by time dis-
cretization and applying the recycled Krylov subspace technique. Note that these
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both model reduction approaches are applicable to general LTV systems, where all
system matrices are time-varying. In system (1.1), however, the state matrices M ,
D and K are time-independent, and only the input and output matrices depend on
time. Such a system can be reformulated as the LTI system

Mq̈(t) +Dq̇(t) +Kq(t) = unew(t),
ynew(t) = q(t)

(1.5)

with the input unew(t) = B(t)u(t) ∈ RN and the output ynew(t) ∈ RN of large
dimension. Model reduction of systems with many inputs and outputs has been
considered in [10, 13, 24]. The methods proposed there are based on a low-rank
approximation of the input and output matrices using a singular value decomposition
combined with standard model reduction techniques. Unfortunately, these methods
cannot be applied to system (1.5), since the input and output matrices in (1.5) are
the identity matrices. In [2, 19], an H2-optimal model reduction method has been
developed which is based on an iterative rational Krylov algorithm (IRKA). This
method can also be applied to systems with many inputs and outputs. It should,
however, be noticed that for such systems, IRKA may exhibit a slow convergence or
even the iteration may stagnate.

Model reduction of systems with moving loads has been considered in [14, 15, 22],
where the variability of the external force was described either by switched systems
or by parameter-dependent systems. In the latter case, parametric model reduction
algorithms were examined in the context of the moving load problem. In this paper,
we consider the modelling of moving loads by a time-varying input matrix and present
a two-step model reduction method for the resulting LTV system. Our approach is
based on a transformation of the LTV system (1.1) into a LTI system by approximat-
ing the input matrix and application of structure-preserving Krylov subspace model
reduction methods.

The paper is organized as follows. In Section 2, we consider a low-rank ap-
proximation of the time-varying input matrix B(t) using interpolation and a linear
least-squares method with two different types of ansatz functions. We also derive
the error bounds for the output in terms of the approximation errors in the input
matrix. In Section 3, structure-preserving model reduction methods for second-order
LTI systems are briefly discussed. In Section 4, we report some results of numerical
experiments for the Euler-Bernoulli beam model.

Throughout this paper, the Euclidean vector norm is denoted by ‖ · ‖. Further-
more, we use ‖ · ‖2 and ‖ · ‖F to denote the spectral and Frobenius matrix norm,
respectively. For the matrix-valued functions F : [0, T ]→ Rn×m and H : C→ Cn×m,
we introduce the following norms

‖F‖L2(0,T ) =

(∫ T

0

‖F (t)‖22 dt

)1/2

, ‖F‖L∞(0,T ) = sup
t∈[0,T ]

‖F (t)‖2,

‖H‖H2
=

(∫ ∞
−∞
‖H(ıω)‖2F dω

)1/2

, ‖H‖H∞ = sup
ω∈R
‖H(ıω)‖2, (1.6)

where ı =
√
−1 is the imaginary unit.

2. Approximation of the input matrix. Consider the second-order LTV sys-
tem (1.1), where the entries of the input matrix B(t) are given in (1.3). Our goal is to
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approximate the columns of B(t) = [b1(t), . . . , bm(t)] in a lower dimensional subspace
as

bj(t) ≈
n∑
i=1

b̂iψi(ξj(t)) = B̂ ψ(ξj(t)), j = 1, . . . ,m, (2.1)

where B̂ = [ b̂1, . . . , b̂n] ∈ RN×n and ψ(ξj(t)) = [ψ1(ξj(t)), . . . , ψn(ξj(t))]
T with

n� N . Then system (1.1) is approximated by a system

M ¨̂q(t) +D ˙̂q(t) +K q̂(t) = B̂ û(t),
ŷ(t) = C(t)q̂(t),

(2.2)

with the new input û(t) = Ψ(t)u(t) ∈ Rn, where

Ψ(t) = [ψ(ξ1(t)), . . . , ψ(ξm(t))] . (2.3)

Thus, the state q̂(t) of system (2.2) approximates the state q(t) of system (1.1), and,
as a consequence, the output ŷ(t) approximates the output y(t). Note that the matrix

B̂ and the vector-valued function ψ are chosen the same for the approximation of all
columns of B(t). Therefore, the approximation problem (2.1) can be rewritten as

B(t) ≈ B̂Ψ(t). (2.4)

We now derive the L∞-norm and L2-norm error bounds for the approximate output
ŷ(t) in terms of the error ‖B − B̂Ψ‖L2(0,T ).

Theorem 2.1. Consider system (1.1) with initial conditions q(0) = q0, q̇(0) = q1
and an approximate system (2.2) with the same initial conditions q̂(0) = q0, ˙̂q(0) = q1.
Assume that all eigenvalues of the pencil λ2M+λD+K have negative real part. Then
the L∞-norm and L2-norm of the error in the output can be estimated as

‖y − ŷ‖L∞(0,T ) ≤ α ‖B − B̂Ψ‖L2(0,T )‖u‖L∞(0,T ) (2.5)

‖y − ŷ‖L2(0,T ) ≤ α
√
T ‖B − B̂Ψ‖L2(0,T )‖u‖L∞(0,T ), (2.6)

with a constant α > 0.
Proof. First, we estimate the error in the approximate state q̂(t). For this purpose,

we transform the second-order system (1.1) into a first-order form

E ż(t) = A z(t) + B(t)u(t), z(0) = z0, (2.7)

where z(t) = [qT (t), q̇ T (t)]T , z0 = [qT0 , q
T
1 ]T and

E =

[
D M
M 0

]
, A =

[
−K 0

0 M

]
, B(t) =

[
B(t)

0

]
.

Then B(t)u(t) is approximated by B(t)u(t) ≈ B̂ û(t) with the matrix B̂ =
[
B̂T , 0

]T
.

Let ẑ(t) = [q̂ T (t), ˙̂q T (t)]T be a solution of the system

E ˙̂z(t) = A ẑ(t) + B̂ û(t), ẑ(0) = z0. (2.8)

Since systems (2.7) and (2.8) have the same initial conditions, an error vector

εz(t) = z(t)− ẑ(t)
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has the form

εz(t) =

∫ t

0

eE
−1A(t−τ)E−1

(
B(τ)u(τ)− B̂ û(τ)

)
dτ. (2.9)

Then the norm of εz(t) can be estimated as

‖εz(t)‖2 ≤
(∫ t

0

‖eE
−1A(t−τ)‖2‖E−1‖2‖B(τ)u(τ)− B̂ û(τ)‖dτ

)2

≤ ‖E−1‖22
∫ t

0

‖eE
−1A(t−τ)‖22 dτ

∫ t

0

‖B(τ)u(τ)− B̂ û(τ)‖2dτ.

Since all eigenvalues of λ2M + λD+K have negative real part, all eigenvalues of the
pencil λE −A have also negative real part, and, hence, there exist constants ϑ, κ > 0
such that

‖eE
−1At‖2 ≤ ϑ e−κt, t ≥ 0,

see [11, 27, 38]. Then we have∫ t

0

‖eE
−1A(t−τ)‖22 dτ ≤ ϑ2

∫ t

0

e−2κ(t−τ)dτ =
ϑ2

2κ
(1− e−2κt).

Introducing an error vector εq(t) = q(t)− q̂(t) and using the bound ‖εq(t)‖ ≤ ‖εz(t)‖,
we have

‖y(t)− ŷ(t)‖ = ‖C(t) εq(t)‖ ≤ ‖C(t)‖2 ‖εz(t)‖

≤ ϑ√
2κ
‖E−1‖2 ‖C(t)‖2

√
1− e−2κt‖Bu− B̂û‖L2(0,T )

for all t ≥ 0. Then

‖y − ŷ‖L∞(0,T ) ≤
ϑ√
2κ
‖E−1‖2 ‖C‖L∞(0,T )‖Bu− B̂ û‖L2(0,T )

and

‖y − ŷ‖L2(0,T ) ≤
ϑ
√
T√

2κ
‖E−1‖2‖C‖L∞(0,T ) ‖Bu− B̂ û‖L2(0,T ).

Finally, taking into account that

‖Bu− B̂ û‖L2(0,T ) ≤ ‖B − B̂Ψ‖L2(0,T ) ‖u‖L∞(0,T ),

we obtain the estimates (2.5) and (2.6) with the constant

α =
ϑ√
2κ
‖E−1‖2 ‖C‖L∞(0,T ). (2.10)

Estimates (2.5) and (2.6) show that the small approximation error

‖B − B̂Ψ‖L2(0,T ) implies the small error in the output. This suggests to reformu-
late the approximation problem (2.4) as a linear least-squares (LLS) problem in two
different ways:
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(P1) Given a matrix B̂, find a vector-valued function ψ such that the error

‖B − B̂Ψ‖L2(0,T ) with Ψ as in (2.3) is as small as possible;

(P2) Given a vector-valued function ψ, find a matrix B̂ such that the error

‖B − B̂Ψ‖L2(0,T ) with Ψ as in (2.3) is as small as possible.
A possible approach for solving the approximation problem (P1) is an empirical

interpolation method (EIM) from [4] adapted for our purpose. In this approach,

the construction of the basis matrix B̂ and a set of interpolation points {t1, . . . , tn}
is based on a greedy algorithm combined with a least-squares approximation. Let
T ⊂ [0, T ] be a finite but sufficiently large set of time samples. First, we choose

t1 = arg max
t∈T
‖B(t)‖F

and define B̂1 = B(t1). Then for j = 1, . . . , n − 1, we compute the least-squares

approximation B(t) ≈ B̂jΨj(t) with Ψj(t) = (B̂Tj B̂j)
−1B̂Tj B(t), determine the next

interpolation point

tj+1 = arg max
t∈T
‖B(t)− B̂jΨj(t)‖F

and update the basis matrix B̂j+1 = [B̂j , B(tj+1)]. Finally, we get the approximation

B(t) ≈ B̂Ψ(t) with B̂ = B̂n and Ψ(t) = (B̂T B̂)−1B̂TB(t) which satisfies the inter-

polation conditions B(tj) = B̂Ψ(tj) for j = 1, . . . , n. The numerical experiments for
the Euler-Bernoulli model show, however, that this approach provides a satisfactory
approximation only if the number n of columns of B̂ is sufficiently large. For small n,
the approximation error in the output is unacceptably large, see Section 4.

In what follows, we consider the minimization problem (P2) only remaining the
problem (P1) for future work.

Remark 1. We can also approximate the rows of the output matrix

C(t) = [cT1 (t), . . . , cTp (t)]T

as

cj(t) ≈
l∑
i=1

ĉi ζi(ηj(t)) = ζ(ηj(t)) Ĉ, j = 1, . . . , p,

where Ĉ = [ ĉT1 , . . . , ĉ
T
l ]T ∈ Rl×N , ζ(ηj(t)) = [ζ1(ηj(t)), . . . , ζl(ηj(t))] with l� N , and

ηj(t) is a position of the j-th observation. In this case, the output of system (1.1)

is approximated by y(t) ≈ [ζT (η1(t)), . . . , ζT (ηp(t))]
T ̂̂y(t), where ̂̂y(t) is the output of

the LTI system

M ¨̂q(t) +D ˙̂q(t) +K q̂(t) = B̂ û(t),̂̂y(t) = Ĉ q̂(t).

However, in practice, we do not approximate the output matrix to avoid an additional
error in the output.

2.1. Solving the linear least-squares problem. For simplicity, we restrict
ourselves to the single-input case m = 1 with the input matrix

B(t) =

 ϕN,1(ξ(t))
...

ϕN,N (ξ(t))

 , (2.11)
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where ϕN,j(x) are the FEM basis functions and the trajectory ξ(t) of the moving load
is assumed to be known for all t ∈ [0, T ]. An extension to the multiple-input case is
straightforward. In order to solve the minimization problem (P2), we define the cost
functional

J (B̂) = ‖B − B̂Ψ‖2L2(0,T ) =

∫ T

0

‖B(t)− B̂ψ(ξ(t))‖2dt

with Ψ(t) = ψ(ξ(t)) = [ψ1(ξ(t)), . . . , ψn(ξ(t))]T . We aim to find B̂ ∈ RN×n such that

J (B̂) is minimized. Differentiating J with respect to the entries of B̂ = [̂bik], we get

∂

∂ b̂ik
J (B̂) = −2

∫ T

0

(
ϕN,i(ξ(t))ψk(ξ(t))−

( n∑
j=1

b̂ijψj(ξ(t))
)
ψk(ξ(t))

)
dt

for i = 1, . . . , N and k = 1, . . . , n. Requiring for each partial derivative to be zero,
we obtain the normal equation B̂F = G, where the matrices G = [gik] ∈ RN×n and
F = [fjk] ∈ Rn×n have the entries

gik =

∫ T

0

ϕN,i(ξ(t))ψk(ξ(t)) dt, fjk =

∫ T

0

ψj(ξ(t))ψk(ξ(t)) dt, (2.12)

respectively, for i = 1, . . . , N and j, k = 1, . . . , n. If F is positive definite, then the
solution of the LLS problem (P2) is given by B̂ = GF−1. Next we consider two
possible choices for the function ψ.

2.1.1. Approximation with orthogonal polynomials. A particular choice
of the LLS approximation is a truncated expansion in a system of orthogonal poly-
nomials, also known as Fourier series in orthogonal polynomials [28, 30]. Let pj(θ),
j = 0, 1, 2, . . ., form a system of orthogonal polynomials on an interval [a, b] with
a weight function ρ(θ) > 0. Each polynomial pj(θ) is of degree j and satisfies the
orthogonality conditions ∫ b

a

ρ(θ)pk(θ)pj(θ) dθ = γkδkj ,

where γk > 0 and δkj is the Kronecker delta. Then ϕN,i(ξ(t)) as the function of t can
be expanded as

ϕN,i(ξ(t)) =

∞∑
k=0

cikpk(θ(t)),

where θ : [0, T ]→ [a, b] and the coefficients cik have the form

cik =
1

γk

∫ T

0

ρ(θ(t))ϕN,i(ξ(t))pk(θ(t)) θ̇(t) dt.

One can show [30, Section 10.1] that a partial sum

n−1∑
k=0

cikpk(θ(t))



8 T. STYKEL AND A. VASILYEV

gives a best approximation to ϕN,i(ξ(t)) that minimizes

∫ T

0

ρ(θ(t))
(
ϕN,i(ξ(t))−

n−1∑
k=0

cikpk(θ(t))
)2
θ̇(t) dt.

In particular, one can use the Legendre polynomials pk(θ), which are orthogonal
on the interval [a, b] = [−1, 1] with the weight function ρ(θ) ≡ 1. They satisfy the
orthogonality conditions

∫ 1

−1
pk(θ)pj(θ) dθ =

2

2k + 1
δkj .

Then the entries of the matrix B̂ are determined as

b̂ij =
2(j − 1) + 1

T

∫ T

0

ϕN,i(ξ(t))pj−1(θ(t)) dt

with θ(t) = (2 t−T )/T . Thus, B̂Ψ(t) with Ψ(t) = [p0(θ(t)), . . . , pn−1(θ(t))]
T

provides
the LLS approximation to B(t) = ϕ(ξ(t)). The fact that the weight function in the
case of the Legendre polynomials is equal to unity makes all times t in [0, T ] equivalent
in the approximation, i.e., they give the same contribution to the approximation. This
is not necessarily fulfilled, for example, for the Chebyshev polynomials, for which the
weight function is ρ(θ) = 1/

√
1− θ2.

2.1.2. Approximation by the FEM coarse grid basis functions. Another
choice for the function ψ in the LLS problem (P2) is offered by the FEM basis functions
on a coarse grid. Let the coarse grid have n degrees of freedom and let ϕn,i(x) denote

the corresponding FEM basis functions. For ψ(ξ(t)) = [ϕn,1(ξ(t)), . . . , ϕn,n(ξ(t))]
T

,

we determine B̂ = GF−1 with G and F as in (2.12). One can expect that the closer

n to N , the smaller the error ‖B − B̂Ψ‖L2(0,T ) is.

2.2. Interpolation by B-splines. An alternative way to solve the approxi-
mation problem (2.1) is interpolation. It can be carried out, for example, by cubic
B-splines [12, 21]. Let the time interval [0, T ] ⊂ R be partitioned into n−3 subintervals
with the knots 0 = t0 < t1 <. . .< tn−3 = T and let

t−3 < t−2 < t−1 < 0, T < tn−2 < tn−1 < tn

be additional knots. The cubic B-splines are the twice continuously differentiable
functions of the form

βj(t) =



βj,1(t), if t ∈ [tj−2, tj−1],

βj,2(t), if t ∈ [tj−1, tj ],

βj,3(t), if t ∈ [tj , tj+1],

βj,4(t), if t ∈ [tj+1, tj+2],

0 otherwise,
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where βj,k(t), k = 1, 2, 3, 4, are polynomials of degree 3. For an equidistant grid with
a stepsize τ = T/(n− 3) these polynomials are given by

βj,1(t) =
1

6τ3
(t− tj−2)3,

βj,2(t) =
1

6τ3
(
3(tj−1 − t)3 + 3τ(tj−1 − t)2 − 3τ2(tj−1 − t) + τ3

)
,

βj,3(t) =
1

6τ3
(
3(t− tj+1)3 + 3τ(t− tj+1)2 − 3τ2(t− tj+1) + τ3

)
,

βj,4(t) =
1

6τ3
(tj+2 − t)3.

We now construct a cubic interpolant for the function B(t) in (2.11). We are seeking
for an approximation with a cubic spline

B(t) ≈ S(t) =

n∑
j=1

b̂jβj−2(t)

satisfying the interpolation conditions

S(ti) = B(ti) = ϕ(ξ(ti)), i = 0, . . . , n− 3. (2.13)

In order to ensure the uniqueness of the interpolant, we impose, for example, the ”not-
a-knot” end conditions by requiring that the third derivative of S(t) is continuous at
t1 and tn−4. These conditions together with (2.13) yield a linear system

[ b̂1, . . . , b̂n ][ s1, S, sn ] = [ 0, ϕ(ξ(t0)), . . . , ϕ(ξ(tn−3)), 0 ],

where

S =



β−1(t0)

β0(t0) β0(t1) . . .
β1(t0) β1(t1) βn−4(tn−3). . .

β2(t1) βn−3(tn−3). . .
βn−2(tn−3)

 ∈ Rn×(n−2),

s1 = [ s11, s21, s31, s41, s51, 0, . . . , 0 ]
T
,

sn = [ 0, . . . , 0, sn−4,n, sn−3,n, sn−2,n, sn−1,n, snn ]
T

with

s11 = β′′′−1,4(t1), sn−4,n = β′′′n−6,4(tn−4),
s21 = β′′′0,3(t1)− β′′′0,4(t1), sn−3,n = β′′′n−5,3(tn−4)− β′′′n−5,4(tn−4),
s31 = β′′′1,2(t1)− β′′′1,3(t1), sn−2,n = β′′′n−4,2(tn−4)− β′′′n−4,3(tn−4),
s41 = β′′′2,1(t1)− β′′′2,2(t1), sn−1,n = β′′′n−3,1(tn−4)− β′′′n−3,2(tn−4),
s51 = −β′′′3,1(t1), sn,n = −β′′′n−2,1(tn−4).
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For the equidistant grid, we get

S =
1

6



1 0 0 · · · 0
4 1 0 · · · 0
1 4 1 · · · 0
0 1 4 · · · 0
...

...
...

. . .
...

0 0 0 · · · 4
0 0 0 · · · 1


,

s1 =
1

τ3
[
−1, 4, −6, 4, −1, 0, . . . , 0

]T
,

sn =
1

τ3
[
0, . . . , 0, −1, 4, −6, 4, −1

]T
.

If [ s1, S, sn ] is nonsingular, then the matrix B̂ can be determined as

B̂ = [ b̂1, . . . , b̂n ] = [ 0, ϕ(ξ(t0)), . . . , ϕ(ξ(tn−3)), 0 ][ s1, S, sn ]−1.

Note that B-splines can also be used to solve the LLS problem (P2) as described
in Section 2.1.

3. Model reduction of mechanical systems. In this section, we briefly re-
view structure-preserving model reduction of second-order systems. Approximating
the input matrix as in (2.4) we get the second-order LTI system

M ¨̂q(t) +D ˙̂q(t) +K q̂(t) = B̂ û(t),
ŷI(t) = q̂(t),

(3.1)

with û(t) = Ψ(t)u(t). Replacing this system by a reduced model

M̃ ¨̃q(t) + D̃ ˙̃q(t) + K̃ q̃(t) = B̃ û(t), (3.2a)

ỹI(t) = C̃ q̃(t), (3.2b)

with the reduced matrices

M̃ = V TMV, D̃ = V TDV, K̃ = V TKV, B̃ = V T B̂, C̃ = V, (3.3)

and V ∈ RN×r, we approximate the output y(t) of system (1.1) by

ỹ(t) = C(t) ỹI(t) = C(t)V q̃(t).

Note that the use of one-sided projection guarantees the preservation of symmetry
and positive definiteness in M̃ , D̃ and K̃ for symmetric positive definite M , D and K.

Let

H(s) = (s2M + sD +K)−1B̂, H̃(s) = C̃(s2M̃ + sD̃ + K̃)−1B̃

be the transfer functions of systems (3.1) and (3.2), respectively. Then the error in
the output can be estimated by

‖ŷI(t)− ỹI(t)‖L∞(0,∞) ≤ ‖H − H̃‖H2
‖û‖L2(0,∞), (3.4)

‖ŷI(t)− ỹI(t)‖L2(0,∞) ≤ ‖H − H̃‖H∞ ‖û‖L2(0,∞), (3.5)
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where H2-norm and H∞-norm are defined in (1.6), see [1]. Combining the approxi-
mation of the input matrix as described in Section 2 with model reduction of the LTI
system (3.1), we obtain the following estimates for the total error in the output.

Theorem 3.1. Consider the second-order system (1.1) and the reduced system
(3.2a) with the output ỹ(t) = C(t)V q̃(t). Then the L∞-norm and L2-norm of the
error y − ỹ can be estimated as

‖y − ỹ‖L∞(0,T ) ≤ α ‖B − B̂Ψ‖L2(0,T ) ‖u‖L∞(0,T ) (3.6)

+‖C‖L∞(0,T ) ‖H − H̃‖H2
‖û‖L2(0,∞),

‖y − ỹ‖L2(0,T ) ≤ α
√
T ‖B − B̂Ψ‖L2(0,T ) ‖u‖L∞(0,T ) (3.7)

+‖C‖L∞(0,T ) ‖H − H̃‖H∞ ‖û‖L2(0,∞),

where α is as in (2.10).
Proof. For ŷ(t) = C(t) ŷI(t), we have

‖y − ỹ‖L∞(0,T ) ≤ ‖y − ŷ‖L∞(0,T ) + ‖C ŷI − C ỹI‖L∞(0,T ).

Then the estimate (3.6) immediately follows from (2.5) and (3.4). The estimate (3.7)
can be proved analogously using (2.6) and (3.5).

For model reduction of LTI systems, many different model reduction methods
have been developed in the last four decades, see [1, 35]. One of the most popular
approaches is balanced truncation. It is based on balancing the controllability and
observability Gramians which solve dual Lyapunov equations [26]. Transforming the
second-order system (3.1) into the first-order form and applying balanced truncation,
one gets the reduced system with a computable error bound on the H∞-norm of the
transfer function. Structure-preserving balanced truncation for second-order systems
has been considered in [25, 31]. This approach relies on balancing the position and
velocity controllability and observability Gramians defined by the diagonal blocks
of the Gramians of the corresponding first-order system of doubled dimension. For
solving large-scale Lyapunov equations, a second-order low-rank alternating directions
implicit (SO-LR-ADI) method has been developed in [8, 9] which employs the second-
order structure of the matrix coefficients. It should, however, be noticed that, unlike
the first-order version, second-order balanced truncation is lacking the error bound.
Another difficulty is that the SO-LR-ADI method has a rather slow convergence for
mechanical systems with a weak damping.

Alternative model reduction approaches are moment matching approximation and
tangential interpolation which are based on (rational) Krylov subspace methods, e.g.,
[2, 18]. Structure-preserving Krylov-based algorithms for second-order systems have
been presented in [3, 6, 16, 33]. The approximation quality of these methods strongly
depends on the choice of interpolation points. Iterative Krylov subspace methods
with an adaptive choice of interpolation points have been developed in [23, 19]. An
extension of these methods to second-order systems can be found in [37, 40].

For model reduction of system (3.1), we use a modification of the second-order
iterative rational Krylov algorithm (SO-IRKA) presented in [40]. In this algorithm,
the projection matrix is constructed iteratively in the form

Vj =
[

(σ2
1jM + σ1jD +K)−1B̂w1j , . . . , (σ

2
rjM + σrjD +K)−1B̂wrj

]
,

where the interpolation points σ1j , . . . , σrj ∈ C are selected from the mirror images
of 2r eigenvalues of the reduced pencil

λ2V Tj−1MVj−1 + λV Tj−1DVj−1 + V Tj−1KVj−1 (3.8)
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closest to the imaginary axis, and the tangential directions w1j , . . . , wrj are deter-
mined from the corresponding eigenvectors, see [40, Section 5.3.2] for details. Our
modification, called M-SO-IRKA, is based on the observation in [18] that the use
of imaginary interpolation points seems to be the most natural if one is interested in
minimizing the frequency response error H(ιω)− H̃(ιω). Therefore, we choose the in-
terpolation points σkj as the positive imaginary parts of the eigenvalues of the reduced
pencil in (3.8). Such a choice is justified by the numerical experiments presented in
the next section. In order to keep the reduced model real, we determine the projection
matrix V with orthogonal columns from a rank-revealing QR decomposition of the
matrix [ Re(Vj), Im(Vj) ].

4. Numerical example. We consider the vibration of a simply supported Euler-
Bernoulli beam of length l subjected to a point force moving along the beam with
a constant velocity v. The transverse displacement of the beam is described by a func-
tion w(x, t) satisfying Euler-Bernoulli equation (1.2) with f(x, t) = −δ(x − ξ(t))u,
where u > 0 is the constant magnitude and ξ(t) = vt is the instantaneous position
of the acting force at time t ∈ [0, T ], T = l/v, see [17]. The model parameters are
collected in Table 1.

Table 4.1
Beam and load parameters

Parameter Value
l 50 m
µA 4650 kg/m
ωd 1000 m3Hz/(4l2(0.3 m− 1.2× 10−3l))
EJ µA(500l/π)2 Hz2m2

u 1.96133× 105 N
v 40 km/h (≈ 11 m/s)

For the FEM discretization of the Euler-Bernoulli equation (1.2), we partition
the interval [0, l] into nx = l/h subintervals [xi, xi+1] of length h with xi = ih for
i = 0, . . . , nx. Then w(x, t) can be approximated by

wh(x, t) = θ0(t)φ
(1)
0 (x) +

nx−1∑
i=1

(
wi(t)φ

(0)
i (x) + θi(t)φ

(1)
i (x)

)
+ θnx

(t)φ(1)nx
(x)

with the functions

φ
(1)
0 (x) =

{
x− 2x2/h+ x3/h2 for x ∈ [x0, x1],

0 otherwise,

φ
(0)
i (x) =


1− 3(x− ih)2/h2 − 2(x− ih)3/h3 for x ∈ [xi−1, xi],

1− 3(x− ih)2/h2 + 2(x− ih)3/h3 for x ∈ [xi, xi+1],

0 otherwise,

φ
(1)
i (x) =


(x− ih) + 2(x− ih)2/h+ (x− ih)3/h2 for x ∈ [xi−1, xi],

(x− ih)− 2(x− ih)2/h+ (x− ih)3/h2 for x ∈ [xi, xi+1],

0 otherwise,

φ
(1)
nx (x) =

{
(x− l) + 2(x− l)2/h+ (x− l)3/h2 for x ∈ [xnx−1, xnx ],

0 otherwise.
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The FEM discretization of (1.2) yields the second-order system (1.1), where

q(t) = [ θ0(t), w1(t), θ1(t), . . . , wnx−1(t), θnx−1(t), θnx
(t) ]T

and the entries of the mass matrix M = [mij ] and the stiffness matrix K = [kij ] are
defined as

mij = µA

∫ l

0

ϕN,i(x)ϕN,j(x) dx,

kij = EJ

∫ l

0

d2

dx2
ϕN,i(x)

d2

dx2
ϕN,j(x) dx

for i, j = 1, . . . , N , e.g., [7]. Here, N = 2nx, and the FEM basis functions have the
form

ϕN,1(x) = φ
(1)
0 (x), ϕN,N (x) = φ

(1)
nx (x),

ϕN,2i(x) = φ
(0)
i (x), ϕN,2i+1(x) = φ

(1)
i (x), i = 1, . . . , nx − 1.

Furthermore, the damping matrix is proportional to the mass matrix, i.e., D = 2ωdM .
We assume that the observation position coincides with the position of the acting force
implying that CT (t) = B(t) with the input matrix B(t) as in (2.11).

In our experiments, the dimension of system (1.1) is N = 5000. For time integra-
tion, we use the trapezoidal rule. Figure 4.1 shows the output y(t). In Figure 4.2, we
present the absolute errors ‖y(t)− ỹ(t)‖, where y(t) = C(t)q(t) and ỹ(t) = C(t)V q̃(t)
are the outputs of (1.1) and the reduced models of different dimensions obtained by
applying M-SO-IRKA to system (1.5) with the input matrix being the identity matrix.

In Figures 4.3, 4.9 and 4.13, we present the absolute errors in the output for
systems with the approximated input matrix obtained by the LLS method with the
FEM basis functions on a coarse grid (LLS-FEM), the LLS method with the Leg-
endre polynomials (LLS-Legendre) and cubic B-spline interpolation (Spline interp.)
with n = 30, 50 and 100. One can observe that all three approximation methods
provide very similar results. Moreover, with increasing n, we obtain more accurate
approximations. In Figure 4.3, we include also the absolute error in the output for
the system with the approximated input matrix obtained by the EIM combined with
the LLS method (LLS-EIM). This error is much larger than the other errors.

Next, we compare different model reduction techniques for system (2.2) with the
input matrix with n = 30 columns obtained by the LLS-FEM approach. Figure 4.4
shows the spectral norms of the frequency response

H(ιω) = ((ιω)2M + ιωD +K)−1B̂

and the absolute errors H(ιω) − H̃(ιω) for the reduced models obtained by
M-SO-IRKA, SO-IRKA and MIRA from [37] with one expansion point. We see that
the reduced model computed by MIRA has, in general, a smaller error than the other
models, but it has the larger dimension. Comparing M-SO-IRKA and SO-IRKA,
we find a significant difference in the error for higher frequencies. In Figure 4.5, we
present the absolute errors in the output for three reduced models. One can see that
M-SO-IRKA provides the best result with respect to the reduced dimension and the
error in comparison with SO-IRKA and MIRA. Therefore, in the following, we use
only M-SO-IRKA for model reduction of system (2.2).

Figures 4.6, 4.7 and 4.8 show the absolute errors in the output for the reduced
models of dimension r = 15, 20, 25 and 30 obtained by the approximation of the
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Figure 4.1. The output y(t) of the original model of dimension N = 5000.

input matrix using the LLS-FEM, LSS-Legendre methods and spline interpolation
with n = 30 combined with model reduction by M-SO-IRKA. We see that for the
reduced models of dimension r = 15, the model reduction errors dominate over the
input matrix approximation errors, while for larger dimensions r, both types of errors
have about the same order. For comparison, we also present in Figures 4.10-4.12
and 4.14-4.16 the absolute errors in the output for the reduced models of different
dimensions with the approximated input matrix with n = 50 and 100 columns. Note
that for a fixed dimension r, increasing n does not necessarily lead to smaller errors
in the output. This can be explained by the fact that the smaller an approximation
error in the input matrix is, the larger a model reduction error is, so that the total
error remains nearly unchanged.

5. Conclusion. In this paper, we have presented a two-step model reduction
approach for mechanical systems subjected to moving loads. Such systems have
a time-varying input matrix constructed from the FEM basis functions. The first step
consists of an approximation of the time-varying input matrix in a low-dimensional
subspace enabling the application of standard model reduction methods to the result-
ing time-invariant system with a new input in the second step. We have also derived
output error bounds which depend on the approximation errors for the input ma-
trix and the model reduction errors. For the approximation of the input matrix, we
have used B-spline interpolation and the linear least-squares method with two types
of basis functions: Legendre polynomials and FEM basis functions on a coarse grid.
For structure-preserving model reduction, we have employed a modified SO-IRKA
method. The presented methods have been tested on the Euler-Bernoulli beam model.
For such a model, all approximation approaches combined with model reduction give
about the same results.

In the future work, it would be interesting to investigate other strategies for the
approximation of the input matrix which may depend on time-varying parameters de-
scribing the force position. For this purpose, one could use the empirical interpolation
method [4] to construct an affine approximation to the non-affine force distribution.
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Figure 4.2. The absolute errors in the output for the reduced models of different dimensions
computed by M-SO-IRKA applied to the system with the input matrix being the identity matrix.
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Figure 4.3. The absolute errors in the output for the systems with the approximated input
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polation and LLS-EIM.
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Figure 4.4. The spectral norm of the frequency response ‖H(ιω)‖2 of the system with the
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reduced models computed by M-SO-IRKA, SO-IRKA and MIRA.

time / sec
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

a
b
s
o
lu

te
 e

rr
o
r 

/ 
m

10
-9

10
-8

10
-7

10
-6

LLS-FEM (n=30) + M-SO-IRKA (r=25)
LLS-FEM (n=30) + SO-IRKA (r=25) 
LLS-FEM (n=30) + MIRA (r=60) 
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Figure 4.8. The absolute errors in the output for the reduced models of different dimensions
obtained by the LLS approximation of the input matrix using cubic B-spline interpolation with n = 30
combined with M-SO-IRKA.
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Figure 4.9. The absolute errors in the output for the systems with the approximated input
matrix (n = 50) obtained by three different approaches: LLS-FEM, LLS-Legendre and B-splines
interpolation.
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Figure 4.10. The absolute errors in the output for the reduced models of different dimensions
obtained by the LLS approximation of the input matrix using n = 50 FEM basis functions on a coarse
grid combined with M-SO-IRKA.
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Figure 4.11. The absolute errors in the output for the reduced models of different dimensions
obtained by the LLS approximation of the input matrix using n = 50 Legendre polynomials combined
with M-SO-IRKA.
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Figure 4.12. The absolute errors in the output for the reduced models of different dimensions
obtained by the LLS approximation of the input matrix using cubic B-spline interpolation with n = 50
combined with M-SO-IRKA.
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Figure 4.13. The absolute errors in the output for the systems with the approximated input
matrix (n = 100) obtained by three different approaches: LLS-FEM, LLS-Legendre and B-splines
interpolation.
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Figure 4.14. The absolute errors in the output for the reduced models of different dimensions
obtained by the LLS approximation of the input matrix using n = 100 FEM basis functions on
a coarse grid combined with M-SO-IRKA.
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Figure 4.15. The absolute errors in the output for the reduced models of different dimensions
obtained by the LLS approximation of the input matrix using n = 100 Legendre polynomials combined
with M-SO-IRKA.
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Figure 4.16. The absolute errors in the output for the reduced models of different dimensions
obtained by the LLS approximation of the input matrix using cubic B-spline interpolation with
n = 100 combined with M-SO-IRKA.
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