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Abstract. In this paper we consider structure-preserving model reduction of second-order systems using
a balanced truncation approach. Several sets of singular values are introduced for such systems that
lead to different concepts of balancing. We present two variants of the second-order balanced truncation
method and compare their properties on numerical examples.

1. Introduction

Consider a linear time-invariant second-order system

M q̈(t) + D q̇(t) + K q(t) = B2u(t),
C2q̇(t) + C1q(t) = y(t),

(1)

where M ∈ R
n,n is a nonsingular mass matrix, D ∈ R

n,n is a damping matrix, K ∈ R
n,n is a stiffness

matrix, B2 ∈ R
n,m, C1, C2 ∈ R

p,n, q(t) ∈ R
n is a displacement vector, u(t) ∈ R

m is a control input
and y(t) ∈ R

p is an output. Such systems arise frequently in many practical applications like mechanical
systems, electrical circuits and large structures [5, 6, 14]. A transfer function of system (1) is given by

G(s) = (sC2 + C1)(s
2M + sD + K)−1B2. (2)

The model reduction problem for (1) consists in an approximation of (1) by a reduced system

M̃ ¨̃q(t) + D̃ ˙̃q(t) + K̃ q̃(t) = B̃2u(t),

C̃2
˙̃q(t) + C̃1q̃(t) = ỹ(t),

(3)

where M̃ , D̃, K̃ ∈ R
ℓ,ℓ, B̃2 ∈ R

ℓ,m and C̃1, C̃2 ∈ R
p,ℓ with ℓ ≪ n. We require for the approximate system

(3) to be stable and passive if (1) is stable and passive. Furthermore, it is desirable to have a small
approximation error that can be measured by ‖ỹ − y‖ in some norm.

The second-order system (3) can be rewritten as a first-order system

E ẋ(t) = Ax(t) + B u(t),
y(t) = C x(t),

(4)

where x(t) = [ qT (t), q̇T (t) ]T and the matrices E , A ∈ R
2n,2n, B ∈ R

2n,m and C ∈ R
p,2n have the

following form

E =

[
I 0
0 M

]
, A =

[
0 I

−K −D

]
, B =

[
0

B2

]
, C = [C1, C2 ] (5)

or

E =

[
D M

M 0

]
, A =

[
−K 0

0 M

]
, B =

[
B2

0

]
, C = [C1, C2 ]. (6)

Note that the matrices E and A in (6) are symmetric if M , D and K are symmetric. The transfer function
of system (4) is given by G(s) = C(sE − A)−1B. One can show that systems (1) and (4) have the same
transfer function, i.e., G(s) = G(s) for both forms of the matrix coefficients E , A, B and C.
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Applying any projection-based model reduction method to system (4), we obtain a reduced model

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t),

ỹ(t) = C̃ x̃(t),
(7)

where Ẽ = WTET , Ã = WTAT , B̃ = WTB, C̃ = CT and W , T ∈ R
2n,k are projection matrices.

Unfortunately, system (7) cannot, in general, be transformed into the second-order form (3), see [10, 12]
for special cases when it can be done. Note that preservation of the second-order structure in the reduced
system is important for physical interpretation.

In this paper we consider structure-preserving model reduction of second-order systems using balanced
truncation. This method has been proved to be an efficient model reduction technique for first-order large-
scale systems [1, 7, 11]. It is related to the controllability Gramian P and the observability Gramian Q
of (4) that are defined as the unique symmetric, positive semidefinite solutions of the dual generalized
Lyapunov equations

E PAT + APET = −BBT , ETQA + ATQE = −CTC

provided that the pencil λE − A is stable, i.e., all eigenvalues of λE − A have negative real part. The
balanced truncation model reduction method consists in the state space transformation of (4) into a ba-
lanced form such that P = Q = diag(ξ1, . . . , ξ2n) with nonnegative entries which are called the Hankel

singular values. Then the reduced system (7) is computed by truncating the states corresponding to the
2n − k smallest Hankel singular values. Important properties of the balanced truncation method for (4)
are that the stability is preserved in the reduced system (4) and that there is a priori error bound [7].

The Gramians for the second-order system (1) have been considered in [3, 10, 13]. Using these
Gramians we will define different concepts of balanced realizations and singular values for (1). The latter
play a crucial role in identifying which states are important and which states can be truncated without
changing the system properties significantly. We will compare different variants of second-order balanced
truncation on numerical examples.

2. Singular values of second-order systems

Assume that a matrix polynomial P (λ) = λ2M + λD + K is stable, i.e., all zeros of P (λ) have
negative real part. In this case all eigenvalues of the pencil λE −A have also negative real part. Let the
controllability and observability Gramians of the first-order system (4) be partitioned as

P =

[
Pp P12

P21 Pv

]
, Q =

[
Qp Q12

Q21 Qv

]
,

where all blocks are of size n× n. Then Pp and Pv are the position and velocity controllability Gramians

of the second-order system (1) and Qp and Qv are the position and velocity observability Gramians of
(1). An energy interpretation of these Gramians can be found in [3, 10].

Consider the block diagonal matrices

W =

[
W1

W2

]
, T =

[
T1

T2

]
, (8)

with nonsingular Wj , Tj ∈ R
n,n for j = 1, 2. Multiplying system (4), (5) by WT from the left and setting

T −1x(t) = [xT
1 (t), xT

2 (t) ]T , we obtain the equivalent system

WT
1 T1 ẋ1(t) = WT

1 T2 x2(t),
WT

2 MT2ẋ2(t) = −WT
2 KT1x1(t) − WT

2 DT2x2(t) +WT
2 B2u(t),

y(t) = C1T1x1(t) + C2T2x2(t).
(9)

Since WT
1 T2 is nonsingular, we have x2(t) = (WT

1 T2)
−1WT

1 T1ẋ1(t) = T−1

2 T1ẋ1(t). Substituting this
vector in the last two equations in (9) gives the transformed second-order system

M̂ ¨̂q(t) + D̂ ˙̂q(t) + K̂ q̂(t) = B̂2u(t),

Ĉ2
˙̂q(t) + Ĉ1q̂(t) = y(t),

(10)
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where q̂(t) = x1(t) = T−1

1 q(t), M̂ = WT
2 MT1, D̂ = WT

2 DT1, K̂ = WT
2 KT1, B̂2 = WT

2 B2, Ĉ1 = C1T1

and Ĉ2 = C2T1. Note that systems (1) and (10) have the same transfer function G(s). The position and
velocity Gramians of (10) can be computed from the Gramians of (1) as

P̂p = T−1

1 PpT
−T
1 , P̂v = T−1

2 PvT−T
2 , Q̂p = W−1

1 QpW
−T
1 , Q̂v = W−1

2 QvW−T
2 .

Thus, from the equation
P̂pM̂

TQ̂vM̂ = T−1

1 PpM
TQvMT1,

it follows that the eigenvalues of the matrix PpM
TQvM do not change under the system transformations

W and T . For the special choice of matrices Wj and Tj in (8) we obtain also the invariance of the
eigenvalues of other matrices constructed from the position and velocity Gramians. Such matrices are
collected in the following table.

W1 = T−T
1 P̂pQ̂p = T−1

1 PpQpT1

W2 = T−T
2 P̂vQ̂v = T−1

2 PvQvT2

W1 = T−T
2 P̂vQ̂p = T−1

2 PvQpT2

W2 = T−T
1 P̂pQ̂v = T−1

1 PpQvT1

W1 = W2 P̂pM̂
T Q̂pM̂ = T−1

1 PpM
TQpMT1

T1 = T2 P̂vM̂T Q̂vM̂ = T−1

1 PvMTQvMT1

W1 = W2, T1 = T2 P̂vM̂T Q̂pM̂ = T−1

1 PvMTQpMT1

Using the position and velocity Gramians, we can define different sets of singular values for the
second-order system (1).

Definition 2.1. Consider a second-order system (1) with a stable matrix polynomial λ2M +λD+K.

1. The square roots of the eigenvalues of the matrix PpQp, denoted by ξ
p
j , are called the position

singular values of (1).

2. The square roots of the eigenvalues of the matrix PvMTQvM , denoted by ξv
j , are called the velocity

singular values of (1).

3. The square roots of the eigenvalues of the matrix PpM
TQvM , denoted by ξ

pv
j , are called the

position-velocity singular values of (1).

We will assume that the position, velocity and position-velocity singular values of (1) are ordered
decreasingly, i.e., ξ

p
1 ≥ . . . ≥ ξp

n ≥ 0, ξv
1 ≥ . . . ≥ ξv

n ≥ 0 and ξ
pv
1 ≥ . . . ≥ ξpv

n ≥ 0. One can show that if the
second-order system (1) is minimal, i.e., it is controllable and observable [8], then the controllability and
observability Gramians P and Q of (4) are positive definite. In this case all the singular values of (1) are
strictly positive. However, the positivity of ξ

p
j , ξv

j and ξ
pv
j does not imply that system (1) is minimal.

Definition 2.2. Consider a second-order system (1) with a stable matrix polynomial λ2M +λD+K.

1. System (1) is called position balanced if Pp and Qp are equal and diagonal.

2. System (1) is called velocity balanced if Pv and Qv are equal and diagonal.

3. System (1) is called position-velocity balanced if Pp, Qp, Pv and Qv are equal and diagonal.

Now we will show that if P (λ) = λ2M +λD +K is stable and system (1) is minimal, then there exist
nonsingular matrices W and T as in (8) such that the Gramians of the transformed system (10) satisfy

P̂p = Q̂p = Σ1, P̂v = Q̂v = Σ2, (11)

where Σ1 and Σ2 are diagonal. Consider the Cholesky factorizations of the position and velocity Gramians

Pp = RpR
T
p , Pv = RvRT

v , Qp = LpL
T
p , Qv = LvLT

v , (12)

where Rp, Rv, Lp, Lv ∈ R
n,n are nonsingular lower triangular Cholesky factors. Then the position

singular values of (1) can be computed as the classical singular values of the matrix RT
p Lp. Indeed, we

have
(ξp

j )2 = λj(PpQp) = λj(RpR
T
p LpL

T
p ) = λj(L

T
p RpR

T
pLp) = σ2

j (RT
pLp),
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where λj(·) and σj(·) denote, respectively, the eigenvalues and the singular values. Analogously we can
show that the velocity and position-velocity singular values of (1) are the classical singular values of the
matrices RT

v MTLv and RT
p MTLv, respectively, i.e., ξv

j = σj(R
T
v MTLv) and ξ

pv
j = σj(R

T
p MTLv). Let

RT
p Lp = UpΣpV

T
p , RT

v MTLv = UvΣvV T
v , RT

p MTLv = UpvΣpvV T
pv

be singular value decompositions of RT
p Lp, RT

v MTLv and RT
p MTLv, where Up, Vp, Uv, Vv, Upv and Vpv

are orthogonal, and

Σp = diag(ξp
1 , . . . , ξp

n), Σv = diag(ξv
1 , . . . , ξv

n), Σpv = diag(ξpv
1 , . . . , ξpv

n )

are nonsingular. Consider the matrices

W1 = LpVpΣ
−1/2

1 , T1 = RpUpΣ
−1/2

1 , W2 = LvVvΣ
−1/2

2 , T2 = RvUvΣ
−1/2

2 . (13)

One can show that these matrices are nonsingular and the Gramians of the transformed system (10) have
the form

P̂p = T−1

1 Pp T−T
1 = Σ1 = W−1

1 QpW
−T
1 = Q̂p,

P̂v = T−1

2 Pv T−T
2 = Σ2 = W−1

2 QvW−T
2 = Q̂v.

Thus, system (10) is position balanced and velocity balanced. For Σ1 = Σ2, system (10) is also position-
velocity balanced and has the equal position, velocity and position-velocity singular values that coincide
with the position-velocity singular values of (1). If we additionally take Σ1 = Σp, then W1 = T−T

1 and,
hence, systems (1) and (10) have the same position singular values, but, in general, different velocity
singular values. Note that the balancing transformation is not unique. For matrices W1 and T2 as in (13)

and T1 = RpUpvΣ
−1/2

1 , W2 = LvVpvΣ
−1/2

2 , we obtain (11) again.

3. Balanced truncation

Similarly to balanced truncation model reduction of the first-order system (4), the approximate second-
order model (3) can be computed by the transformation of system (1) into one of the balanced forms and
truncation of the states corresponding to the small singular values.

In summary, we have the following algorithms that are generalizations of the square root balanced

truncation method [9, 15] for the second-order system (1).

Algorithm 3.1. Second-order square root method with position balancing.

Input: [M, D, K, B2, C1, C2 ] such that λ2M + λD + K is stable.

Output: A reduced order system [ M̃, D̃, K̃, B̃2, C̃1, C̃2 ].

1. Compute the Cholesky factors Rp, Rv, Lp and Lv of the position and velocity Gramians as in (12).

2. Compute the ’thin’ singular value decompositions

RT
p Lp = [Up1, Up2 ]

[
Σp1 0
0 Σp2

]
[Vp1, Vp2 ]

T
,

RT
v MTLv = [Uv1, Uv2 ]

[
Σv1 0
0 Σv2

]
[Vv1, Vv2 ]

T

where [Up1, Up2 ], [Vp1, Vp2 ], [Uv1, Uv2 ] and [Vv1, Vv2 ] are orthogonal and

Σp1 = diag(ξp
1 , . . . , ξ

p
ℓ ), Σp2 = diag(ξp

ℓ+1
, . . . , ξp

n),
Σv1 = diag(ξv

1 , . . . , ξv
ℓ ), Σv2 = diag(ξv

ℓ+1
, . . . , ξv

n).

3. Compute the reduced system

M̃ = WT MT, D̃ = WT DT, K̃ = WT KT, B̃2 = WT B2, C̃1 = C1T, C̃2 = C2T

with the projection matrices W = LvVv1Σ
−1/2

p1 and T = RpUp1Σ
−1/2

p1 .
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Algorithm 3.2. Second-order square root method with position-velocity balancing.

Input: [M, D, K, B2, C1, C2 ] such that λ2M + λD + K is stable.

Output: A reduced order system [ M̃, D̃, K̃, B̃2, C̃1, C̃2 ].

1. Compute the Cholesky factors Rp and Lv of the position controllability Gramians Pp and the velocity

observability Gramian Qv as in (12).

2. Compute the singular value decomposition

RT
p MT Lv = [Upv,1, Upv,2 ]

[
Σpv,1 0

0 Σpv,2

]
[Vpv,1, Vpv,2 ]

T
,

where [Upv,1, Upv,2 ] and [Vpv,1, Vpv,2 ] are orthogonal and

Σpv,1 = diag(ξpv
1 , . . . , ξ

pv
ℓ ), Σpv,2 = diag(ξpv

ℓ+1
, . . . , ξpv

n ).

3. Compute the reduced system

M̃ = WTMT, D̃ = WTDT, K̃ = WTKT, B̃2 = WTB2, C̃1 = C1T, C̃2 = C2T

with the projection matrices W = LvVpv,1Σ
−1/2

pv,1 and T = RpUpv,1Σ
−1/2

pv,1 .

Note that the projection matrices W and T in Algorithm 3.1 are up to the factor Σ
−1/2

p1 the same as
those proposed in [2, Section 3].

4. Numerical examples

In this section we present numerical examples to demonstrate the properties of the presented balanced
truncation model reduction methods for the second-order system (1). We consider three models1: the
building model, the International Space Station (ISS) model and the clamped beam model, see [4] for
detailed description. For every model, we compare the reduced first-order system (7) of dimension
2ℓ computed by the balanced truncation (BT) method applied to (4), (5) and the reduced second-order
systems of the form (3) of dimension ℓ computed by Algorithm 3.1 (SOBTp) and Algorithm 3.2 (SOBTpv).
For comparison, we present

(a) the Hankel singular values ξj of the first-order system (7), the position singular values ξ
p
j , the velocity

singular values ξv
j and the position-velocity singular values ξ

pv
j of the second-order system (1);

(b) the eigenvalues of systems (1) and (3);

(c) the spectral norms ‖G(iω)‖, ‖G̃(iω)‖ and ‖G̃(iω)‖ of the frequency responses

G(iω) = (sC2 + C1)(s
2M + sD + K)−1B2 = C(s E − A)−1B,

G̃(iω) = (sC̃2 + C̃1)(s
2M̃ + sD̃ + K̃)−1B̃2, G̃(iω) = C̃(s Ẽ − Ã)−1B̃

for the frequency range ω ∈ [ωmin, ωmax ];

(d) the absolute errors ‖G̃(iω) − G(iω)‖ and ‖G̃(iω) − G(iω)‖ for the same frequency range and the
error bound

‖G̃ − G‖H∞
:= sup

ω∈R

‖G̃(iω) − G(iω)‖ ≤ 2(ξ2ℓ+1 + . . . + ξ2n) (14)

for the first-order balanced truncation method. Here ξ2ℓ+1, . . . , ξ2n are the truncated Hankel sin-
gular values of (4).

1Available from http://www.win.tue.nl/niconet/niconet.html
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Example 4.1. Building model: n = 24, m = 1, p = 1, ℓ = 4
Figures 1(c) and 1(d) show that for low frequencies the both reduced second-order systems have the
better approximate properties than the reduced first-order system, whereas for higher frequencies, all
three approximations are about the same. If we compare the reduced second-order systems, we see that
Algorithm 3.1 provides only slightly better approximation.
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Figure 1: Building model: (a) the Hankel singular values of the first-order system, the position, veloci-
ty and position-velocity singular values of the second-order system; (b) the eigenvalues of the full and
reduced systems; (c) the frequency responses; (d) the absolute errors and the error bound.

Example 4.2. ISS model: n = 135, m = 3, p = 3, ℓ = 13
Figure 2(d) demonstrates that the reduced first-order system and the reduced second-order system com-
puted by Algorithm 3.1 have almost the same errors that are smaller for high frequencies than the error
for the system computed by Algorithm 3.2. The latter system provides a better approximation for low
frequencies.

Example 4.3. Clamped beam model: n = 174, m = 1, p = 1, ℓ = 17
Figures 4(c) and 4(d) show that the reduced first-order system has better approximation properties than
the reduced second-order systems. We also see that the approximation error for the system computed by
Algorithm 3.1 is smaller than the error for the system computed by Algorithm 3.2. Finally, this example
shows that the error bound (14) does not hold anymore for the second-order balanced truncation methods.
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Figure 2: ISS model: (a) the Hankel singular values of the first-order system, the position, velocity and
position-velocity singular values of the second-order system; (b) the eigenvalues of the full and reduced
systems; (c) the frequency responses; (d) the absolute errors and the error bound.
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Figure 3: Clamped beam model: (a) the Hankel singular values of the first-order system, the position,
velocity and position-velocity singular values of the second-order system; (b) the eigenvalues of the full
and reduced systems.
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Figure 4: Clamped beam model: (c) the frequency responses; (d) the absolute errors and the error bound.

5. Conclusions

In this paper we have considered structure-preserving model reduction of second-order systems based
on balanced truncation. Using the pairs (Pp,Qp) and (Pv,Qv) of the position and velocity Gramians
from [3, 10, 13], we have introduced the position, velocity and position-velocity singular values that can be
used to characterize the importance of the position and velocity components. It has been shown that all
four Gramians can be diagonalized simultaneously by the coordinate transformation. We have presented
two structure-preserving balanced truncation model reduction methods for second-order systems. The
questions whether the stability is preserved in the reduced system and whether there exists a global error
bound for these methods remain open.
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