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On some norms for descriptor systems

Tatjana Stykel

Abstract— We present generalizations of the impulse and frequency
responses as well as convolution and Hankel operators for continuous-
time and discrete-time descriptor systems. Some norms for descriptor
systems are introduced and their representations via the different linear
system concepts are considered.

Index Terms— Descriptor system, impulse response, frequency re-
sponse, controllability and observability Gramians, convolution operator,
Hankel operator, Hankel singular values, system norms.

I. I NTRODUCTION

Consider a linear time-invariant descriptor system

E(Dx(t)) = Ax(t) + Bu(t), y(t) = Cx(t), (1)

where Dx(t) = ẋ(t), t ∈ R, in the continuous-time case and
Dx(t) = xt+1, t ∈ Z, in the discrete-time case. HereE, A ∈ R

n,n,
B ∈ R

n,m, C ∈ R
p,n, x(t) ∈ R

n is the state vector,u(t) ∈ R
m

is the control input andy(t) ∈ R
p is the output. Descriptor systems

(or generalized state space systems) with singularE arise naturally
in a variety of applications and have been investigated, e.g., in [5],
[9], [10], [12]. We will assume that a pencilλE − A is regular,
i.e., det(λE − A) 6= 0 for someλ ∈ C. In this case atransfer
functionof (1) is given byG(λ) = C(λE − A)−1B, whereλ = s
for the continuous-time system andλ = z for the discrete-time
system. The transfer functionG is proper if lim

λ→∞
G(λ) < ∞, and

improper, otherwise. If lim
λ→∞

G(λ) = 0, thenG is said to bestrictly

proper. Note that the improper transfer function can be additively
decomposed asG(λ) = Gsp(λ) + P(λ), whereGsp is a strictly
proper part andP is a polynomial part ofG.

In many control problems such as model order reduction, robust
control, system identification, we need to measure the dynamical
systems. Consideration of system norms makes it possible todefine
the size of descriptor systems and distance between them. For various
applications different norms are in use. If the transfer function G is
(strictly) proper, then system norms [1], [6] known for standard state
space systems (E = I) can also be used for the descriptor system
(1). However, to the author’s knowledge, norms for descriptor systems
with the improper transfer function have not been considered in the
literature so far. Such systems arise, for instance, in dynamical system
inversion, PID-controller design, modeling of economic processes
and mechanical systems with controlled constraints [4], [9], [10].
A possible approach to define the norm of improperG is to consider
the norm of a weighted transfer functionGk(λ) = 1

λk G(λ) which
is proper fork ≥ d with d being the degree of the polynomial part
of G. Sinced is, in general, unknown, we may takek = n. In this
case standard algorithms can be used to compute the norm ofGk.
It should be noted, however, that these algorithms employ usually
state space representations, so the computation of the state space
realization ofGk is required.

In this paper we consider different norms for descriptor systems
that can be computed using given generalized state space representa-
tion (1) of G. We also give equivalent characterizations of these
norms in terms of important linear system concepts like impulse
and frequency responses, controllability and observability Gramians,
convolution operators, Hankel operators and closely related Hankel
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singular values. Possible applications of considered system norms are
H2 andH∞ control for descriptor systems as well as model reduction.

Throughout the paper we will denote byZ the set of integers,
by iR the imaginary axis and byΓI the unit circle. The matrixAT

stands for the transpose ofA. We will denote byλj(·) and σj(·),
respectively, eigenvalues and singular values of a matrix or a linear
operator ordered decreasingly. The trace and the image ofA are
denoted by tr(A) and Im(A), respectively. We will denote by‖A‖2

the spectral matrix norm and by‖A‖F the Frobenius matrix norm
of A ∈ R

n,m.

II. D ISCRETE-TIME DESCRIPTOR SYSTEMS

Since the results for the continuous-time case are partly related to
the discrete-time case, we begin our discussion with the discrete-time
descriptor system

Exk+1 = Axk + Buk, yk = Cxk. (2)

A regular pencilλE−A can be reduced to the Weierstrass canonical
form

E = W

»

Inf
0

0 N

–

T, A = W

»

J 0
0 In∞

–

T, (3)

whereW and T are nonsingular,Im is an identity matrix of order
m, J and N are in Jordan canonical form andN is nilpotent with
index of nilpotenceν. The numbersnf andn∞ are the dimensions
of the deflating subspaces ofλE−A corresponding to the finite and
infinite eigenvalues, respectively. The descriptor system(2) is called
asymptotically stableif the pencil λE − A is d-stable, i.e., all the
finite eigenvalues ofλE − A lie inside the unit circle.

Using (3), the transfer functionG(z) = C(zE − A)−1B of (2)
can be expanded into a Laurent series aroundz=∞ as

G(z)=

∞
X

k=−∞

CFk−1Bz−k,

where the matricesFk have the form

Fk = T−1

»

Jk 0
0 0

–

W−1, k ≥ 0, (4)

F−k = T−1

»

0 0

0 −Nk−1

–

W−1, k > 0. (5)

A sequence{Gk}k∈Z with Gk = CFk−1B defines animpulse
responseof the descriptor system (2). Observe thatGk = 0 for
k ≤ −ν. As in the standard state space case, afrequency response
of the discrete-time descriptor system (2) is given by the values of
the transfer function on the unit circleG(eiω). We have

G(eiω) =

∞
X

k=−∞

Gke−iωk, (6)

i.e., {Gk}k∈Z is a sequence of the Fourier coefficients of the
frequency responseG(eiω).

A. Gramians and Hankel singular values

Assume that the pencilλE − A is d-stable. Then thecausal
controllability and observability Gramiansof the descriptor system
(2) are defined via

Gdcc =

∞
X

k=0

FkBBT F T
k , Gdco =

∞
X

k=0

F T
k CT CFk,

respectively, see [2], [12]. The matrices

Gdnc =

−1
X

k=−ν

FkBBT F T
k , Gdno =

−1
X

k=−ν

F T
k CT CFk (7)
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are thenon-causal controllabilityandobservability Gramiansof (2).
Note that these Gramians are, up to the sign, the same as in [2]. It
has been shown in [12] that the Gramians are the unique symmetric,
positive semidefinite solutions of the projected generalized discrete-
time Lyapunov equations

AGdccA
T − EGdccE

T =−PlBBTP T
l , PrGdccP

T
r = Gdcc, (8)

ATGdcoA − ETGdcoE=−P T
r CTCPr, P T

l GdcoPl = Gdco, (9)

AGdncA
T − EGdncE

T = QlBBTQT
l , QrGdncQ

T
r = Gdnc, (10)

ATGdnoA − ETGdnoE= QT
rCTCQr, QT

l GdnoQl = Gdno, (11)

wherePl and Pr are the spectral projectors onto the left and right
deflating subspaces of the pencilλE −A corresponding to the finite
eigenvalues,Ql = I − Pl andQr = I − Pr.

Let Φd = GdccE
TGdcoE and Ψd = GdncA

TGdnoA. One can
show thatΦd andΨd are simultaneously diagonalizable and all their
eigenvalues are real and non-negative.

Definition 2.1: The square roots of thenf largest eigenvalues of
Φd, denoted byςj , are called thecausal Hankel singular values
of system (2). The square roots of then∞ largest eigenvalues of
Ψd, denoted byθj , are called thenon-causal Hankel singular values
of (2).

Similarly to the continuous-time case [13], the causal and non-
causal Gramians and Hankel singular values can be used in balanced
truncation model reduction for discrete-time descriptor systems. Since
the Gramians are symmetric and positive semidefinite, thereexist full
rank factorizations

Gdcc = RcR
T
c , Gdco = LT

c Lc, Gdnc = RnRT
n , Gdno = LT

nLn,
(12)

whereRc, LT
c , Rn, LT

n are full column rank factors. The following
lemma gives a connection between the Hankel singular valuesand
the singular values of the matricesLcERc andLnARn.

Lemma 2.2:Let λE − A be d-stable. Consider the full rank
factorizations (12). The non-zero causal Hankel singular values of
system (2) are the singular values of the matrixLcERc, while the
non-zero non-causal Hankel singular values of (2) are the singular
values ofLnARn.

Proof: We have

ς2
j = λj(RcR

T
cETLT

cLcE) = λj(R
T
cETLT

cLcERc) = σ2
j (LcERc).

Similarly, we can show thatθj = σj(LnARn).

B. System norms

In this subsection we generalize convolution and Hankel operators
[1] to the discrete-time descriptor system (2). Moreover, we extend
some known system norms [1], [6] to (2) and establish their connec-
tion with the Gramians, the matricesΦd andΨd, the convolution and
Hankel operators as well the Hankel singular values. In the following
we will assume that the pencilλE − A is d-stable.

L
p,m
2 (ΓI )-norm: Let L

p,m
2 (ΓI ) be the Hilbert space of matrix-valued

functionsF : ΓI → C
p,m that have boundedLp,m

2 (ΓI )-norm

‖F‖
L

p,m
2

(ΓI ) =

„

1

2π

Z 2π

0

‖F(eiω)‖2
F dω

«1/2

. (13)

Consider also the Hilbert spacelp,m
2 (Z) of matrix-valued sequences

S = {Sk}k∈Z, Sk ∈ R
p,m, that have boundedlp,m

2 (Z)-norm

‖S‖lp,m
2

(Z) =

 

∞
X

k=−∞

‖Sk‖2
F

!1/2

.

By Parseval’s identity [11] we find from relation (6) that
‖G‖L

p,m
2

(ΓI ) = ‖G‖lp,m
2

(Z), whereG is the transfer function and
G = {Gk}k∈Z is the impulse response of (2). Furthermore, we get

‖G‖2
L

p,m
2

(ΓI ) = tr
`

BT (Gdco + Gdno)B
´

= tr
`

C(Gdcc + Gdnc)C
T ´.

These relations lead to a simple numerical algorithm for computing
theL

p,m
2 (ΓI )-norm of the transfer functionG. Consider the full rank

factorizationsGdcc + Gdnc = RRT , Gdco + Gdno = LT L. Then
‖G‖

L
p,m
2

(ΓI ) = ‖LB‖F = ‖CR‖F . Note that the full rank factors
R andL can be determined from the Lyapunov equations (8) – (11)
without computing the Gramians explicitly, see [12].

L
p,m
∞ (ΓI )-norm: Let L

p,m
∞ (ΓI ) be the Banach space of matrix-

valued functions that are (essentially) bounded onΓI . The L
p,m
∞ (ΓI )-

norm of G is defined by‖G‖
L

p,m
∞

(ΓI ) = esssup
ω∈[0,2π]

‖G(eiω)‖2. Con-

sider aconvolution operatorKd : lm
2 (Z) → lp

2(Z) for the discrete-
time descriptor system (2) that maps the inputsuk into the outputs
yk. This operator is defined via

yk = (Kdu)k =

k+ν−1
X

j=−∞

Gk−juj .

For the column vectorsy =
ˆ

· · ·, yT
−1, yT

0 , yT
1 , · · ·

˜T
and u =

ˆ

· · ·, uT
−1, uT

0 , uT
1 , · · ·

˜T
, this relation can be rewritten as a linear

systemy = Kdu, where

Kd =

2

6

6

6

6

6

6

4

. . .
...

...
...

· · · G0 G−1 G−2 · · ·
· · · G1 G0 G−1 · · ·
· · · G2 G1 G0 · · ·

...
...

...
. . .

3

7

7

7

7

7

7

5

is the matrix representation of the convolution operator. We see that
the operatorKd has block Toeplitz structure and gives an input-output
relationship in the time domain. The spectral norm ofKd is given
by ‖Kd‖2 = supu6=0 ‖Kdu‖lp

2
(Z)/‖u‖lm

2
(Z). By Parseval’s identity

[11] we have‖G‖
L

p,m
∞

(ΓI ) = ‖Kd‖2. Thus, theL
p,m
∞ (ΓI )-norm of G

can be interpreted as a ratio of the output energy to the inputenergy
of the descriptor system (2). For computing theL

p,m
∞ (ΓI )-norm ofG

we can use an algorithm from [7], [8].
The Hilbert-Schmidt norm and the Hankel norm:Let Z

− andZ
+
0

denote the sets of negative and non-negative integers, respectively.
A causal Hankel operatorHc : lm

2 (Z−) → lp
2(Z

+
0 ) for the descriptor

system (2) is defined via

yk = (Hcu)k =

−1
X

j=−∞

Gk−juj , k ≥ 0. (14)

A non-causal Hankel operatorHn : lp
2(Z

+
0 ) → lm

2 (Z−) for (2) is
given by

yk = (Hnu)k =

∞
X

j=0

Gk−j+1uj , k < 0. (15)

For the vectorsy+ =
ˆ

yT
0 , yT

1 , . . .
˜T

, y− =
ˆ

. . . , yT
−2, yT

−1

˜T
,

u+ =
ˆ

. . . , uT
1 , uT

0

˜T
and u− =

ˆ

uT
−1, uT

−2, . . .
˜T

, re-
lations (14) and (15) can be written as the linear systems
y+ = Hcu− and y− = Hnu+, respectively, where the Hankel
matrices

Hc =

2

6

6

6

4

G1 G2 G3 · · ·
G2 G3 G4 · · ·
G3 G4 G5 · · ·
...

...
...

. . .

3

7

7

7

5

and Hn =

2

6

6

6

4

. . .
...

...
...

· · · G−4 G−3 G−2

· · · G−3 G−2 G−1

· · · G−2 G−1 G0

3

7

7

7

5

(16)
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TABLE I
GENERALIZED NORMS FOR ASYMPTOTICALLY STABLE DISCRETE-TIME DESCRIPTOR SYSTEMS

G(z) = C(zE − A)−1B ‖G‖
L

p,m
2

(ΓI ) ‖G‖
L

p,m
∞

(ΓI )

G(eiω)

„

1

2π

Z ∞

−∞

‖G(eiω)‖2
F dω

« 1

2

sup
ω∈R

‖G(eiω)‖2

Gk

0

@

∞
X

k=−∞

‖Gk‖
2
F

1

A

1

2

Gdcc + Gdnc = RRT
q

tr
`

C(Gdcc + Gdcc)CT
´

= ‖CR‖F

Gdco + Gdno = LTL

q

tr
`

BT (Gdco + Gdno)B
´

= ‖LB‖F

Kd ‖Kd‖2

G(z) = C(zE − A)−1B ‖G‖HS ‖G‖H

Gk

 

∞
X

k=1

k
`

‖Gk‖
2
F + ‖G−k+1‖

2
F

´

! 1

2

Hc, Hn

q

‖Hc‖2
F + ‖Hn‖2

F max(‖Hc‖2, ‖Hn‖2)

Gdcc = RcRT
c , Gdco = LT

cLc

Gdnc = RnRT
n , Gdno = LT

nLn

‖[LcERc, LnARn]‖F max(‖LcERc‖2, ‖LnARn‖2)

Φd, Ψd

p

tr(Φd + Ψd)
p

λmax(Φd + Ψd)

ς1 ≥ . . . ≥ ςnf
, θ1 ≥ . . . ≥ θn∞

q

ς21 + . . . + ς2nf
+ θ2

1 + . . . + θ2
n∞

max(ς1, θ1)

are the matrix representations of the causal and non-causalHankel
operators. The operatorHc maps past inputs (uk = 0, k ≥ 0) to
present and future outputs (yk = 0, k < 0), whereas the operator
Hn maps present and future inputs (uk = 0, k < 0) to past outputs
(yk = 0, k ≥ 0).

We will now establish a connection between the singular values
of the Hankel operatorsHc, Hn and the Hankel singular values of
system (2).

Theorem 2.3:Consider a discrete-time descriptor system (2),
where a pencilλE−A is d-stable. The causal and non-causal Hankel
operatorsHc and Hn as in (16) have the finite set of non-zero
singular values that coincide with the non-zero causal and non-causal
Hankel singular values of (2), respectively.

Proof: Using (3) and (4), we obtain thatFjEFk = Fj+k for
all j, k ≥ 0. Then the causal Hankel operator can be represented
as Hc = O+EC+, where C+ = [ F0B, . . . , FkB . . . ] and
O+ = [ F T

0 CT , . . . , F T
k CT , . . . ]T . Hence,ς2

j = σ2
j (O+EC+) =

σ2
j (Hc). Similarly, we can prove thatθj = σj(Hn).
A Hilbert-Schmidt norm(HS-norm) of the transfer functionG is

defined via

‖G‖2
HS =

∞
X

j=0

∞
X

k=0

`

‖Gj+k+1‖2
F + ‖G−j−k‖2

F

´

=

∞
X

k=1

k
`

‖Gk‖2
F + ‖G−k+1‖2

F

´

.

(17)

It follows from (16) and Theorem 2.3 that

‖G‖2
HS =‖Hc‖2

F + ‖Hn‖2
F = ς2

1 + . . . + ς2
nf

+ θ2
1 + . . . + θ2

n∞

= tr(Φd + Ψd).
(18)

A Hankel normof the transfer functionG is defined via

‖G‖H = max(‖Hc‖2, ‖Hn‖2) = max(ς1, θ1), (19)

whereς1 andθ1 are the largest causal and non-causal Hankel singular
values of (2), respectively. We have‖G‖H =

p

λmax(Φd + Ψd).
To compute the HS-norm and the Hankel norm of the transfer

function G we can solve the generalized Lyapunov equations (8) –
(11) for the full rank factorsRc, Lc, Rn andLn as in (12) using the
generalized Schur-Hammarling method [12]. Then by Lemma 2.2
we find that ‖G‖HS = ‖[ LcERc, LnARn ]‖F and ‖G‖H =
max(‖LcERc‖2, ‖LnARn‖2).

We summarize the considered norms for the asymptotically stable
discrete-time descriptor system (2) in Table I.

In the remainder of this section we establish a connection among
different system norms. It follows from (17)–(19) that‖G‖L

p,m
2

(ΓI ) ≤
‖G‖HS and ‖G‖H ≤ ‖G‖HS ≤ √

n‖G‖H . Furthermore, taking
into account the matrix representations of the convolutionoperator
and the Hankel operators, we get

‖G‖H ≤ ‖G‖
L

p,m
∞

(ΓI ) ≤ ‖Gsp‖L
p,m
∞

(ΓI ) + ‖P‖
L

p,m
∞

(ΓI ),

whereGsp(z)=
∞
P

k=1

Gkz−k andP(z)=
ν−1
P

k=0

G−kzk are the strictly

proper and polynomial parts ofG. As in the standard state space case
[6], we have an estimate‖Gsp‖L

p,m
∞

(ΓI )≤2(ς1+. . .+ςnf
). Furthermore,

a transfer functionG0(z) = − 1
z
P( 1

z
) is strictly proper and has

only zero poles. Clearly,G0 andP have the same Hankel singular
values that are just the improper Hankel singular valuesθj of (2).
Then ‖P‖

L
p,m
∞

(ΓI ) = ‖G0‖L
p,m
∞

(ΓI ) ≤ 2(θ1 + . . . + θn∞
). Hence,

‖G‖
L

p,m
∞

(ΓI ) ≤ 2(nf ς1 + n∞θ1) ≤ 2n‖G‖H . Thus, theL
p,m
∞ (ΓI )-

norm, the HS-norm and the Hankel norm of the asymptotically stable
discrete-time descriptor system (2) are equivalent.

III. C ONTINUOUS-TIME DESCRIPTOR SYSTEMS

In this section we consider the continuous-time descriptorsystem

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t). (20)

Although there are differences between the continuous-time and
discrete-time descriptor systems, some linear system concepts are
similar. Therefore, to avoid repetition, results for (20) are only listed
without proof unless necessary.

The continuous-time descriptor system (20) is calledasymptotically
stableif the pencilλE−A is c-stable, that is, all the finite eigenvalues
of λE − A have negative real part. Animpulse responseof the
continuous-time descriptor system (20) is defined via

G(t) = CF(t)B +

ν−1
X

k=0

CF−k−1Bδ(k)(t), t ≥ 0, (21)

where the matricesFk are as in (5),δ(t) is the delta function and
F(t) is the fundamental solution matrixof (20) given by

F(t) = T−1

»

etJ 0
0 0

–

W−1.
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A frequency responseof the continuous-time descriptor system (20)
is given byG(iω), i.e., the values ofG(s)=C(sE−A)−1B on the

imaginary axis. From (21) we obtain thatG(iω)=
∞
R

−∞

e−iωtG(t)dt.

Therefore, the frequency responseG(iω) is just the Fourier transform
of the impulse responseG(t).

A. Gramians and Hankel singular values

Assume that the pencilλE − A is c-stable. Then theproper
controllability and observability Gramiansof the continuous-time
descriptor system (20) are defined via

Gcpc =

∞
Z

0

F(t)BBTFT (t) dt, Gcpo =

∞
Z

0

FT (t)CT CF(t) dt.

It has been shown in [12] that the proper Gramians are the unique
symmetric, positive semidefinite solutions of the projected general-
ized continuous-time Lyapunov equations

EGcpcA
T + AGcpcE

T = −PlBBT P T
l , Gcpc = PrGcpcP

T
r ,

ETGcpoA + ATGcpoE = −P T
r CT CPr, Gcpo = P T

l GcpoPl.

The improper controllability GramianGcic and theimproper observ-
ability Gramian Gcio of the continuous-time system (20) coincide
with the non-causal controllability and observability Gramians of the
discrete-time system (2) given in (7).

Similarly to the discrete-time case, theproperandimproper Hankel
singular valuesof system (20) are defined viaςj =

p

λj(Φc),
j = 1, . . . , nf , and θj =

p

λj(Ψc), j = 1, . . . , n∞, respectively,
whereΦc = GcpcE

TGcpoE andΨc = GcicA
TGcioA. The proper and

improper Gramians and Hankel singular values play an important role
in balanced truncation model reduction for continuous-time descriptor
systems, see [13] for details.

B. System norms

In this subsection we introduce convolution and Hankel operators
for the continuous-time descriptor system (20). We also consider
system norms for (20) and establish their connection with the
frequency responseG(t), the Gramians, the matricesΦc and Ψc,
the convolution and Hankel operators and the Hankel singular values
of (20).

H2-norm and HL2-norm: Let L
p,m
2 (iR) be

the Hilbert space of matrix-valued functions
F : iR → C

p,m that have boundedLp,m
2 (iR)-norm

‖F‖L
p,m
2

(iR) =

„

1

2π

Z ∞

−∞

‖F(iω)‖2
F dω

«1/2

.

The subspaceH2 of L
p,m
2 (iR) consists of all strictly proper rational

functions that are analytic in the closed right half-plane.TheH2-norm
of the transfer functionG of (20) coincides with theLp,m

2 (iR)-norm.
If the pencilλE−A is c-stable andG is strictly proper, thenG ∈ H2.
However, the conditionG ∈ H2 does not imply thatλE − A is c-
stable. Note that improperG does not belong toLp,m

2 (iR) even if
the pencilλE − A is c-stable.

Consider an additive decomposition of the transfer function
G(s) = Gsp(s) + P(s), where

Gsp(s) =
∞
X

k=1

Gks−k and P(s) =

ν−1
X

k=0

G−ksk (22)

are, respectively, thestrictly proper partand thepolynomial partof
G, andGk = CFk−1B are theMarkov parametersof the descriptor

system (20). We denote byHL2 the space of transfer functionsG
such thatGsp(s) ∈ H2. The HL2-norm of G is defined via

‖G‖HL2
=
q

‖Gsp‖2
H2

+ ‖P‖2
L

p,m
2

(ΓI )
,

where‖ · ‖
L

p,m
2

(ΓI ) is as in (13).
Let I denote eitherR = (−∞,∞), R

− = (−∞, 0) or R
+
0 =

[ 0,∞). Consider the Hilbert spaceLp,m
2 (I) of matrix-valued func-

tions F : I → R
p,m that have boundedLp,m

2 (I)-norm

‖F‖
L

p,m
2

(I) =

„Z

I

‖F (t)‖2
F dt

«1/2

.

Using Parseval’s identity [11] in the continuous-time and discrete-
time case, we get

‖G‖2
HL2

=

Z ∞

0

‖Gsp(t)‖2
F dt +

ν−1
X

k=0

‖G−k‖2
F .

Moreover, just as in the discrete-time case, we have

‖Gsp‖2
H2

= tr
`

BTGcpoB
´

= tr
`

CGcpcC
T
´

,

‖P‖2
L

p,m
2

(ΓI ) = tr
`

BTGcioB
´

= tr
`

CGcicC
T
´

and, hence,

‖G‖2
HL2

= tr
`

BT (Gcpo + Gcio)B
´

= tr
`

C(Gcpc + Gcic)C
T
´

=‖LB‖2
F = ‖CR‖2

F ,

whereR andL are the full rank factors ofGcpo + Gcio = RRT and
Gcpc + Gcic = LT L.

H∞-norm andHL∞-norm: Let L
p,m
∞ (iR) be the Banach space

of matrix-valued functions that are (essentially) boundedon iR. The
subspace ofLp,m

∞ (iR), denoted byH∞, consists of all proper rational
functions that are analytic and bounded in the closed right half-plane.
The H∞-norm of the proper transfer functionG is defined via

‖G‖H∞
= sup

u 6=0

‖Gu‖L
p
2
(iR)

‖u‖Lm
2

(iR)

= sup
ω∈R

‖G(iω)‖2.

Let HL∞ denote a space of transfer functionsG(s) = Gsp(s)+P(s)
with the proper partGp(s) = Gsp(s) + G0 ∈ H∞. Let L

m
2,l(iR) be

the space of vector-valued functionsf : iR → C
m that have bounded

L
m
2,l(iR)-norm

‖f‖L
m
2,l

(iR) =

 

1

2π

Z ∞

−∞

“

l
X

k=0

|ω|2k
”

‖f(iω)‖2dω

!1/2

.

The HL∞-norm of the transfer functionG is defined via

‖G‖HL∞
= sup

u 6=0

‖Gu‖
L

p
2
(iR)

‖u‖Lm
2,ν−1

(iR)
.

The following lemma gives an upper bound on theHL∞-norm ofG.
Lemma 3.1:Consider a transfer functionG(s) = Gsp(s)+P(s),

whereGsp andP are as in (22). LetGp(s) = Gsp(s) + G0 be the
proper part ofG. We have

‖G‖HL∞
≤
 

‖Gp‖2
H∞

+

ν−1
X

k=1

‖G−k‖2
2

!1/2

. (23)

Proof: For anyu ∈ L
m
2,ν−1(iR), we obtain

‖Gu‖2
L

p
2
(iR)≤

1

2π

∞
Z

−∞

‖Gp(iω)‖2
2

ν−1
X

k=0

|ω|2k‖u(iω)‖2dω

+
1

2π

∞
Z

−∞

 

ν−1
X

k=1

‖G−k‖2
2

!

ν−1
X

k=0

|ω|2k‖u(iω)‖2dω

≤
 

‖Gp‖2
H∞

+

ν−1
X

k=1

‖G−k‖2
2

!

‖u‖2
Lm
2,ν−1

(iR).
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Thus, estimate (23) holds.
Note that if the transfer functionG(s) = Gp(s) is proper, then

the equality in (23) holds.
For the continuous-time descriptor system (20), we consider a con-

volution operatorKc that maps the inputu(t) into the outputy(t).
This operator is defined via

y(t) = (Kcu)(t) =

Z ∞

−∞

G(t − τ)u(τ) dτ. (24)

It describes the input-output behavior of the descriptor system (20)
in the time domain. Substituting (21) in (24), we find that

(Kcu)(t) =

Z t

−∞

CF(t − τ)Bu(τ) dτ +

ν−1
X

k=0

CF−k−1Bu(k)(t),

whereu(k)(t) are the distributional derivatives.
Let L

m
2,l(R) denote the Sobolev space consisting of vector-valued

functionsf : R → R
m such thatf (k)(t) ∈ L

m
2 (R), k = 0, 1, . . . , l.

The L
m
2,l(R)-norm is defined via

‖f‖Lm
2,l

(R) =

 

l
X

k=0

‖f (k)‖2
L

m
2

(R)

!1/2

.

If λE − A is c-stable, thenKc is the bounded operator mapping
L

m
2,ν−1(R) into L

p
2(R). In this case the spectral norm ofKc is given

by ‖Kc‖2 = supu6=0 ‖Kcu‖L
p
2
(R)/‖u‖Lm

2,ν−1
(R). Using the Fourier

transform, the time domain relationy(t) = (Kcu)(t) is expressed in
the frequency domain viay(iω) = G(iω)u(iω). Since the Fourier
transform gives an isometric isomorphism betweenL

m
2,ν−1(R) and

L
m
2,ν−1(iR), we obtain by Parseval’s identity that‖Kc‖2 = ‖G‖HL∞

.
TheH∞-norm of the proper transfer functionG can be computed

by the method proposed in [3]. Computing theHL∞-norm of the
improper transfer functionG is still an open problem.

The Hilbert-Schmidt norm and the Hankel norm:For system (20),
we define aproper Hankel operatorHp transforming the past inputs
u−(t) (u−(t)=0 for t ≥ 0) into the present and future outputsy+(t)
(y+(t)=0 for t < 0) through the statex(0)∈ Im(Pr) via

y+(t) = (Hpu−)(t) =

0
Z

−∞

Gsp(t − τ)u−(τ) dτ, t ≥ 0. (25)

If λE − A is c-stable, thenHp acts fromL
m
2 (R−) into L

p
2(R

+
0 ).

Theorem 3.2:Consider system (20), whereλE − A is c-stable.
The non-zero proper Hankel singular values of (20) are the non-zero
singular values of the proper Hankel operatorHp.

Proof: Consider an adjoint operatorH∗
p of the proper Hankel

operatorHp that has the form

(H∗
py)(τ) =

∞
Z

0

BTFT (t − τ)CT y(t) dt.

Let σ 6= 0 be a singular value ofHp and let u ∈ L
m
2 (R−) be

a corresponding right singular vector, i.e.,σ2u(t) = (H∗
pHpu)(t).

Then

σ2u(t) =

∞
Z

0

0
Z

−∞

BTFT (τ − t)CT CF(τ − ξ)Bu(ξ) dξ dτ

=

∞
Z

0

0
Z

−∞

BTFT (−t)ETFT (τ)CT CF(τ)EF(−ξ)Bu(ξ) dξ dτ.

(26)
It follows from (26) thatv =

R 0

−∞
F(−ξ)Bu(ξ) dξ 6= 0 and

σ2v = GcpcE
TGcpoEv = Φcv, (27)

i.e., v is an eigenvector of the matrixΦc corresponding to the
eigenvalueσ2.

On the other hand, consider an eigenvalueσ2 6= 0 of Φc with an
eigenvectorv. Then from (27) we haveσ2u(τ) = (H∗

pHpu)(τ) with

u(τ)=

Z ∞

0

BTFT (ξ − τ)CT CF(ξ)Evdξ. Since the proper Hankel

operator of the asymptotically stable system (20) is the Hilbert-
Schmidt operator, it is compact. In this caseHp has a discrete set of
non-zero singular values and they coincide with the non-zero proper
Hankel singular values.

Remark 3.3:Note that the proper Hankel singular values of the
continuous-time descriptor system (20) are not equal to thesingular
values of the causal Hankel matrixHc as in (16). However, as in
the discrete-time case, the non-zero improper Hankel singular values
coincide with the classical non-zero singular values of thenon-causal
Hankel matrixHn given in (16).

A Hilbert-Schmidt norm(HS-norm) of the transfer functionG is
defined by

‖G‖HS =

0

@

∞
Z

0

∞
Z

0

‖Gsp(t + τ)‖2
F dt dτ +

∞
X

j=0

∞
X

k=0

‖G−j−k‖2
F

1

A

1/2

,

whereGsp(t) = CF(t)B, G−k = CF−k−1B. Taking into account
thatF(t + τ) = F(t)EF(τ) andF−j−k−1 = −F−j−1AF−k−1 for
j, k ≥ 0, we obtain that

∞
Z

0

∞
Z

0

‖Gsp(t + τ)‖2
F dt dτ = tr

`

GcpcE
TGcpoE

´

= tr(Φc),

∞
X

j=0

∞
X

k=0

‖G−j−k‖2
F = tr

`

GcicA
TGcioA

´

= tr(Ψc).

Hence,‖G‖2
HS = tr(Φc + Ψc) = ς2

1 + . . . + ς2
nf

+ θ2
1 + . . . + θ2

n∞
.

As a consequence of Theorem 3.2 and Remark 3.3 we have

‖G‖2
HS = ‖Hp‖2

F + ‖Hn‖2
F = ‖[ LpERp, LiARi ]‖2

F ,

whereRp, Lp, Ri andLi are the full rank factors of the Gramians
Gcpc = RpRT

p , Gcpo = LT
p Lp, Gcic = RiR

T
i andGcio = LT

i Li.
A Hankel normof the transfer functionG is defined by

‖G‖H = max(‖Hp‖2, ‖Hn‖2) = max(ς1, θ1),

whereς1 andθ1 are the largest proper and improper Hankel singular
values of the descriptor system (20). From the definition of the Hankel
singular values we find that

‖G‖H =
p

λmax(Φc + Ψc) = max(‖LpERp‖2, ‖LiARi‖2).

We summarize system norms for the asymptotically stable
continuous-time descriptor system (20) in Table II.
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