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On some norms for descriptor systems singular values. Possible applications of consideredaystorms are
H, andH, control for descriptor systems as well as model reduction.
Tatjana Stykel Throughout the paper we will denote % the set of integers,

by iR the imaginary axis and b¥ the unit circle. The matrixA”

Abstract— We present generalizations of the impulse and frequency stands for the.transpose of. W? will denote by; () an_d U_j(')’
responses as well as convolution and Hankel operators for ntnuous- ~ 'espectively, eigenvalues gnd singular values of a matria bnear
time and discrete-time descriptor systems. Some norms forabcriptor ~ operator ordered decreasingly. The trace and the imagd afe
systems are introduced and their representations via the fferent linear  denoted by tfA) and Im(A), respectively. We will denote bijA||»
system concepts are considered. the spectral matrix norm and byA||» the Frobenius matrix norm

Index Terms— Descriptor system, impulse response, frequency re- of A € R™™,
sponse, controllability and observability Gramians, conwlution operator,
Hankel operator, Hankel singular values, system norms. Il. DISCRETETIME DESCRIPTOR SYSTEMS

Since the results for the continuous-time case are paridyee to

I. INTRODUCTION the discrete-time case, we begin our discussion with theretis-time
Consider a linear time-invariant descriptor system descriptor system
E(Dx(t)) = Az(t) + Bu(t),  y(t) = Cz(t), ) Expy1 = Az + Bug,  yp = Cxg. 2)

where Dz(t) = #(t), t € R, in the continuous-time case andA regular pencil\E — A can be reduced to the Weierstrass canonical

Dx(t) = 2441, t € Z, in the discrete-time case. Hefg A ¢ R,  form
B e R™™, C € RP™, z(t) € R" is the state vectoru(t) € R™

is the control input and(¢) € R? is the output. Descriptor systems
(or generalized state space syst¢méth singular £ arise naturally
in a variety of applications and have been investigated, e&ng>5],
[9], [10], [12]. We will assume that a pencAE — A is regular,
i.e., det(AE — A) # 0 for some\ € C. In this case aransfer
functionof (1) is given byG()\) = C(A\E — A) !B, where) = s

I 0 J 0
ng _
0 N ] ' [ 0 In, } IS

whereW and T are nonsingular/,, is an identity matrix of order
m, J and N are in Jordan canonical form am¥ is nilpotent with
index of nilpotencer. The numbers:; andn.. are the dimensions
of the deflating subspaces &F — A corresponding to the finite and
X . ) i infinite eigenvalues, respectively. The descriptor systgjis called
for the continuous-time syster_n and =z for the discrete-time asymptotically stabléf the pencil \E — A is d-stable i.e., all the
system. The transfer functio@ is properif lim G(A) <oo,and  fipite eigenvalues oAE — A lie inside the unit circle.
improper, otherwise. |fA1LH;O G(A) =0, thenG is said to bestrictly Using (3), the transfer functios(z) = C(zE — A)"'B of (2)
proper. Note that the improper transfer function can be additivelgan be expanded into a Laurent series arozacto as
decomposed a&(\) = G.,p(A) + P(N), where Gy, is a strictly oo
proper part and is a polynomial part ofG. G(z)= Z CF._1Bz",

In many control problems such as model order reduction, sbbu k=—o0
control, system identification, we need to measure the dic@m \yhere the matrices’, have the form
systems. Consideration of system norms makes it possitdefine

=l

k
the size of descriptor systems and distance between thammaFous F, = T! { {) 8 } wt, k>0, 4)
applications different norms are in use. If the transfercfion G is
(strictly) proper, then system norms [1], [6] known for sd_ard state F,. = T! { 0 Oki1 } Wl k>o. )
space systemsFE[ = I) can also be used for the descriptor system 0 —-N
(1). However, to the author’s knowledge, norms for desoripystems  p sequence{Gy ez With Gy = CF,_,B defines animpulse

v_vith the improper transfer functipn havg not beer_l co.nshﬂe'amethe responseof the descriptor system (2). Observe th@; = 0 for
!lteratl_Jre so far. Such systems_ arise, for |_nstance, |nmiw_il system . < —v. As in the standard state space caséeguency response
inversion, PID-controller design, modeling of economi©gesses f the discrete-time descriptor system (2) is given by thieies of
and m_echanlcal systems YVIth controlled _constralnts (4], [BQ]. the transfer function on the unit circlé(¢*). We have
A possible approach to define the norm of improfgfs to consider -
_the norm of a Weigh_ted tran_sfer functi@@, (\) = %G(/\) which G(e™) = Z Gre ™ ©)
is proper fork > d with d being the degree of the polynomial part
of G. Sinced is, in general, unknown, we may take= n. In this . ) o
case standard algorithms can be used to compute the no@of €+ {Grlrez is a sequence of the Fourier coefficients of the
It should be noted, however, that these algorithms emplajallys T€AUENCY response(e™).
state space representations, so the computation of the space
realization ofG, is required. A. Gramians and Hankel singular values

In this paper we consider different norms for descriptorteys Assume that the penci\EE — A is d-stable. Then theausal
that can be computed using given generalized state spaesegpa- controllability and observability Gramiansf the descriptor system
tion (1) of G. We also give equivalent characterizations of thes@) are defined via
norms in terms of important linear system concepts like ilsgu oo oo
and frequency responses, controllability and obsertgitramians, Guee = Z F.BBTFT, Gaco = Z Fr'cTCF,,
convolution operators, Hankel operators and closely edlddankel k=0 k=0

respectively, see [2], [12]. The matrices

k=—o0
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are thenon-causal controllabilityand observability Gramian®f (2). By Parseval's identity [11] we find from relation (6) that
Note that these Gramians are, up to the sign, the same as.ilt [2]|G||z.m ) = [|G|liz.m(z), Where G is the transfer function and
has been shown in [12] that the Gramians are the unique symmetG = {Gy }rez is the impulse response of (2). Furthermore, we get

positive semidefinite solutions of the projected geneedlidiscrete-
time Lyapunov equations

AGace A" — EGaec BT =—P,BB"P", PiGaccP! = Gace,  (8)
ATGacoA — BT Gueo E=—PCTCP,, P GucoPi = Gaco,  (9)
AGanc A" — EGancE" = QBB'Ql, Q:GancQr = Gane, (10)
A" GinoA — E' GanoE= QICTCQ,, Ql GinoQi= Gano, (11)

HGHiggm(r) = tr(BT (gdco + gdno)B) = tr(c(gdcc + gdnc)CT)-

These relations lead to a simple numerical algorithm for ating

the L2 (T')-norm of the transfer functio. Consider the full rank
factorizationsGace + Gane = RRT, Gaco + Gano = LT L. Then
|Glle:m @ = [ILB]lr = ||CR||r. Note that the full rank factors
R and L can be determined from the Lyapunov equations (8) — (11)
without computing the Gramians explicitly, see [12].

where P, and P, are the spectral projectors onto the left and right L& (I)-norm: Let LZ.™(I') be the Banach space of matrix-
deflating subspaces of the pen&i — A corresponding to the finite valued functions that are (essentially) boundedlomhe 2™ (T')-

eigenvalues@; =1 — P, and@Q, =1 — P,.
Let éd = gdccEngcoE and \Ild = gdncAngnoA- One can

norm of G is defined by||G|| z.m ) = esssup||G(e")]2. Con-
wel0,27]

sider aconvolution operatoiiCy : 15*(Z) — 15(Z) for the discrete-

show that®,; and ¥, are simultaneously diagonalizable and all the'fime descriptor system (2) that maps the inpusinto the outputs

eigenvalues are real and non-negative.

Definition 2.1: The square roots of the; largest eigenvalues of
&4, denoted byg;, are called thecausal Hankel singular values
of system (2). The square roots of the, largest eigenvalues of
¥4, denoted by;, are called thenon-causal Hankel singular values

of (2).

Similarly to the continuous-time case [13], the causal and-n

causal Gramians and Hankel singular values can be usedandzsl
truncation model reduction for discrete-time descripy@tems. Since
the Gramians are symmetric and positive semidefinite, tevare full
rank factorizations

gdcc = Rch7 gdco = LZLC7 gdnc = RnRZ7 gdno = LZL’HJ
12)

whereR,, LT, R,,, LT are full column rank factors. The following

lemma gives a connection between the Hankel singular vanes
the singular values of the matricés ER. and L, AR,,.

Lemma 2.2:Let A\E — A be d-stable. Consider the full rank

factorizations (12). The non-zero causal Hankel singuldues of
system (2) are the singular values of the mattixZ R., while the
non-zero non-causal Hankel singular values of (2) are thgusar
values of L, AR,,.

Proof: We have

& = N(R.RIE'LIL.E) = \j(RIE'LIL.ER,) = o} (L.ER,).

Similarly, we can show tha; = ¢;(L,AR,). ]

B. System norms

In this subsection we generalize convolution and Hanketaipes
[1] to the discrete-time descriptor system (2). Moreoveg, extend
some known system norms [1], [6] to (2) and establish thaineg-
tion with the Gramians, the matricés; and ¥4, the convolution and
Hankel operators as well the Hankel singular values. In dfieviing
we will assume that the pencE — A is d-stable.

LE™(T)-norm: Let L™ (T) be the Hilbert space of matrix-valued

functionsF : I' — CP™ that have boundedl?'™ (T')-norm

1 2w . 1/2
Flgra = (5 [ IFEIE) . a3

Consider also the Hilbert spaé8™ (Z) of matrix-valued sequences

S = {Sk}rez, Sk € RP™, that have boundetf™ (Z)-norm

oo 1/2
HSHHQ*”"(Z) = < Z ||Sk|2F> .
k=—o0

yr. This operator is defined via

k+v—1
yr = (Kau)k = Z Gr—juj.
j=—o0
For the column vectory = [---, vy, yg, yi, ]T andu =

T . . . .
[+, uly, ud, ui, ---]", this relation can be rewritten as a linear
systemy = Kqu, where

e GoG_1Gg- -
i Gy Go Gy
G G G -

Kq=

is the matrix representation of the convolution operatae. $8e that
the operatokC,; has block Toeplitz structure and gives an input-output
relationship in the time domain. The spectral normigf is given

by [[Kallz = sup,. [|Kaulliz(z)/|lulli z)- By Parseval's identity
[11] we have|| G|l zm ) = |fICd||2. Thus, thelLZ;™ (T')-norm of G
can be interpreted as a ratio of the output energy to the iepeitgy

of the descriptor system (2). For computing thg™ (T')-norm of G

we can use an algorithm from [7], [8].

The Hilbert-Schmidt norm and the Hankel norioet Z~ and Z&
denote the sets of negative and non-negative integerseatsgy.
A causal Hankel operatdHt. : 15" (Z~) — 15(Z¢) for the descriptor
system (2) is defined via

-1
v = (Hew) = Y Grjuy, k> 0.

j=—00
A non-causal Hankel operatat,, : 15(ZF) — 15*(Z) for (2) is
given by

(14)

yk = (Haw)e = Y Gr—jiauy, k < 0.

=0

(15)

For the vectors/ = [y3, i, ]T y-=[..., yLs, yTI]T,
Uy = [7 ul, ug]T and u_ = [u:fl, ulsy, ...]T, re-
lations (14) and (15) can be written as the linear systems
y+ = Heu— and y— = H,uy, respectively, where the Hankel
matrices
G1G2Gs--- T
GoGsGy--- o ) ’
He=|GsGsGs---| and H,= | G-2aG3G_2| (16)
. . . ---G73G72G71
' o G_2G_1 Go
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TABLE |
GENERALIZED NORMS FOR ASYMPTOTICALLY STABLE DISCRETETIME DESCRIPTOR SYSTEMS
G() =C(zE—A) B 1Glg .
_ WY _
G(c*) —/ 1G(e)]2 dw sup |G ()2
2T ) _ o w€eR

Gy

( i ||le%> :

k=—o0

Gdce + Gdane = RRT

VT(C(Gace + Gaee)CT) = |CR] 5

Gdco + Gdno = LTL
K

V(B (Gaco + Gano) B) = |ILB|

1Kall2

G(2)=C(zE—-A)"'B

IGllas

Gl &

Gy

He, Hn

Gace = R.RY, Gaeo = LTL,

Gane = Ry RY, Gano = LTL,,
g4, Yy

( F(IGI + uG_Mn%))
k=1

VIHellZ + [1HallZ

[LeERc, LnARy]|| F

tr(Pg+ Vyq)

[N

max([|[Hell2, [[Hnll2)
max(||LeERell2, [ LnARn||2)

)\max(q)d + \Ild)

9>y, 012 >0

Moo

VRt R, R 0

max(s1, 01)

are the matrix representations of the causal and non-calesgtel
operators. The operatd. maps past inputsug, = 0, k¥ > 0) to

present and future outputgy = 0, & < 0), whereas the operator

We summarize the considered norms for the asymptoticalylet
discrete-time descriptor system (2) in Table I.
In the remainder of this section we establish a connectioangm

‘H,, maps present and future inputs,(= 0, & < 0) to past outputs different system norms. It follows from (17)—(19) tﬂk(EHLg,m(F) <

(yx =0, k > 0).

IG|lzs and |G|la < ||G|las < v/n||G| a. Furthermore, taking

We will now establish a connection between the singularagluinto account the matrix representations of the convolutiperator
of the Hankel operator$i., H, and the Hankel singular values ofand the Hankel operators, we get

system (2).

Theorem 2.3:Consider a discrete-time descriptor system (2),
where a pencihE — A is d-stable. The causal and non-causal Hankel
operatorsH. and H,, as in (16) have the finite set of non-zer

singular values that coincide with the non-zero causal amdaausal
Hankel singular values of (2), respectively.
Proof: Using (3) and (4), we obtain thal; EF}, = F;, for

owhere G, (2)

1Glla < [1Gllizm @y < NIGspllizm @y + Pz @),

=) v—1
=3 Grz7F andP(z)= 3 G_x2" are the strictly

k=1 k=0
proper and polynomial parts @. As in the standard state space case
[6], we have an _estima[té}sp\hhgém(r)g?(g—s—. . .'+<nf). Furthermore,
a transfer functionGo(z) = —<P(2) is strictly proper and has

all j,k > 0. Then the causal Hankel operator can be representedly zero poles. Clearlyzo andP have the same Hankel singular

as H. = O4+EC4, whereC. = [FyB,..., FyB...] and
O, =[FyC”, ..., Frc”,...]". Hence} = 07 (0+ECy) =
o?(H.). Similarly, we can prove that; = o;(Hn,). [ |

A Hilbert-Schmidt norm(HS-norn) of the transfer functiorG is
defined via

gk

IGIEs=>_ > (IGjrillF + I1G—j-rlIF)

k

k(IGk + 1|G—k41l7) -

J

Il
<}
<}

17

M

e
Il
A

It follows from (16) and Theorem 2.3 that

1GI s =IHellF + | Hallz =+ .+, + 07+ ... + 00
:tr(<I>d =+ \I/d).
(18)
A Hankel normof the transfer functiorG is defined via

1Gllz = max(||Hell2, [[Hnll2) = max(ci, 61), (19)

whereg; andf, are the largest causal and non-causal Hankel singular

values of (2), respectively. We hay& || = /Amax (Pa + Ta).

To compute the HS-norm and the Hankel norm of the transfer

values that are just the improper Hankel singular val@iesf (2).
Then ||P|liz,m @y = Gollugymay < 2(61 + ... + 6n.,). Hence,
IG sy < 2(nfs1 + nocds) < 20]|G]la. Thus, thel2™ (T)-
norm, the HS-norm and the Hankel norm of the asymptoticaiiple
discrete-time descriptor system (2) are equivalent.

I1l. CONTINUOUS-TIME DESCRIPTOR SYSTEMS
In this section we consider the continuous-time descripystem

Ez(t) = Az(t) + Bu(t), y(t) = Cx(t). (20)

Although there are differences between the continuous-tand
discrete-time descriptor systems, some linear systemepisicare
similar. Therefore, to avoid repetition, results for (20 anly listed
without proof unless necessary.

The continuous-time descriptor system (20) is cadlegmptotically
stableif the pencilAE — A is c-stable that is, all the finite eigenvalues
of AE — A have negative real part. Aimpulse responsef the
continuous-time descriptor system (20) is defined via

v—1
G(t)=CFt)B+ Y _ CF  1Bs™ (1),

k=0

t>0, (21)

function G we can solve the generalized Lyapunov equations (8) — . . . .
(11) for the full rank factorsR., L., R, and L, as in (12) using the where the matriceg’, are as in (5)4(¢) is the delta function and

generalized Schur-Hammarling method [12]. Then by Lemnta Zf(t)

we find that ||G|lgs = ||[[L.ER:, Ln ARy ]||F and |G|z =
max(||LeERc||2, || LnARR]|2).

is thefundamental solution matrinf (20) given by

tJ
Ft)y=7" [60 8} WL
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A frequency responsef the continuous-time descriptor system (20yystem (20). We denote Wl the space of transfer functiorG
is given byG (iw), i.e., the values 0G(s)=C(sE—A) !B onthe such thatG,,(s) € Hz. The HL.-norm of G is defined via

; ; ; ; N —iwt
imaginary axis. From (21) we obtain thét(iw)= [ e "'G(t)dt. G |, = \/HGSPH]%IQ + HPHIQLg»""(ry

Therefore, the frequency resporSéiw) is just the Fourier transform

of the impulse respons@(t). wherel| - [lug r) IS as in (13).

Let T denote eitheR = (—o0,00), R~ = (—00,0) or Rf =
[0, 00). Consider the Hilbert spade’ ™ (I) of matrix-valued func-

A. Gramians and Hankel singular values tions F : T — R”™ that have boundefly ™ (I)-norm
Assume that the pencihE — A is c-stable. Then theroper ) 1/2
1 il | inuous-ti Fllugme = ( [ IF@IF dt
controllability and observability Gramiansof the continuous-time | LE™ (I) : F

descriptor system (20) are defined via . . . . . . .
P y (20) ! v Using Parseval’s identity [11] in the continuous-time andctete-

time case, we get

v—1

Gepe = / F@)BB"F(t)dt, Gepo = / Fr)cTCF(t) dt.
0 0

Gl = [ G @ di+ Y Gl
It has been shown in [12] that the proper Gramians are theueniq 0 k=0
symmetric, positive semidefinite solutions of the projdcgeneral- Moreover, just as in the discrete-time case, we have
ized continuous-time Lyapunov equations G wpll2, = (B Gepo B) = t1(CGupeCT),
2 T T
EGepeA” + AGepe BT = —PIBB" P, Gepe = PoGepe P, IPlIEgm ) = tr(B" GeioB) =tr(CGeicC")
ETQCPOA + ATQCPOE =-PrcTCPp,, Gepo = PngchPl- and, hence,
Theimproper controllability GramiarG.;. and theimproper observ- |G Ifw, =tr(B" (Gepo + Geio) B) = tr(C(Gepe + Geic)CT)
ability Gramian G.;, of the continuous-time system (20) coincide =|LB||% = ||CR||%,

with the non-causal controllability and observability &ians of the
discrete-time system (2) given in (7).

e . . . + Geie = LT L.
Similarly to the discrete-time case, theoperandimproper Hankel Gepe cre ) [
singular valuesof system (20) are defined vigg = +/\;(®.), Hoo-norm andHLe,-norm: Let L™ (iR) be the Banach space

G =1,....n5 and0; = /3 (o), j = 1,...,n, respectively, of matrlx-valueg functlons that are (essen_tlally) boundedR. T_he

_ T i T subspace of.2;™ (iR), denoted by, consists of all proper rational
Whereq)c - gcch ngOE and\pc - gcicA gcioA- The prOper and f ti that Ivti db dedin th I d riatit
improper Gramians and Hankel singular values play an inaporble %Jhncﬂglons a arfet:nay Ic ant o:‘m fe 'rtl. ﬁf;_codsef_ rlg !“a”e'
in balanced truncation model reduction for continuousetaescriptor € Hoo-NOrm ol the proper transter funcltio 1S defined via

where R and L are the full rank factors of.p, + Geio = RRT and

systems, see [13] for details. Gullie ir) .
Gl = sup ———"— = sup || G(iw)||2.
u#0 HuH[Lg‘(iIR) w€eR
B. System norms LetHL.. denote a space of transfer functidé$s) = G, (s)+P(s)

with the proper parG,(s) = Gap(s) + Go € Hoo. Let L3 (iR) be
the space of vector-valued functiofis ;R — C™ that have bounded
-norm

In this subsection we introduce convolution and Hankel afes
for the continuous-time descriptor system (20). We alsosicer = >
system norms for (20) and establish their connection with tﬁ“?yl(lR)

frequency responséi/(t), the Gramians, the matriceB. and ¥, 1o 1/2
the convolution and Hankel operators and the Hankel simgalaies IEllLm my = | =— Z 1w 2) [1£ (i) | 2dw _
(%) 2
of (20). —° k=0
Hp-norm  and  HLp-norm:  Let  Ly™(iR)  be TheHL..,-norm of the transfer functiorG is defined via

the Hilbert space of matrix-valued functions Gz,

F : iR — CP™ that have boundetl?™ (<R)-norm |Gl = sup Ly(®)
12 uzo [[ulluy,_ m)

[IF|lzm iy = (% / | F (iw)]|3 dw> . The following lemma gives an upper bound on #ie..-norm of G.
™ — 00

Lemma 3.1:Consider a transfer functio&(s) = G.p(s) +P(s),
The subspacél, of L2 (iR) consists of all strictly proper rational whereG., andP are as in (22). LeG,(s) = G.p(s) + Go be the
functions that are analytic in the closed right half-plafiee Hy-norm  Proper part ofG. We have

of the transfer functiorG of (20) coincides with th&2™ (R)-norm. v 1/2

If the pencil\E/— A is c-stable andx is strictly proper, theiG € H. 1Gu.. < [ IG5 + Z G_r||2 . (23)
However, the conditiorG € Hy does not imply thalE — A is c- 1

stable. Note that impropeB does not belong td.5™ (iR) even if Proof: For anyu € L3, ;(iR), we obtain

the pencilAE — A is c-stable. - .
Consider an additive decomposition of the transfer fumctio ||Gu”12u’<m) < 1 / G (iw)|2 z ]2 |u(iw) || 2dw
G(s) = Ggp(s) + P(s), where 2 By |

o v—1 1 0 v—1 v—1 .
Gu(s)=Y Gis™ and P(s)=> Gus"  (22) +5- / (; IIGkI§> kZO |w] ** [ (iw) || *dw
k=1 k=0 —oo = =

v—1
are, respectively, thstrictly proper partand thepolynomial partof <(Ie H]%I + Z HGkai HUHIQW .
G, andG = CFy_1B are theMarkov parametersf the descriptor - Pifee S -1 ()

k=0

k=1
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Thus, estimate (23) holds. [ ]
Note that if the transfer functio(s) = G, (s) is proper, then
the equality in (23) holds.
For the continuous-time descriptor system (20), we comsiden-
volution operatoriC. that maps the input(t) into the outputy(t).

This operator is defined via
w(t) = () = [~ Gt =mulrydr

It describes the input-output behavior of the descriptatey (20)
in the time domain. Substituting (21) in (24), we find that

(24)

v—1

/ CF(t—7)Bu(r)dr + Y CF_,Bu™ (1),

k=0

(Kou)(t

wherew ¥ (t) are the distributional derivatives.

Let L1,
functions f : R — R™ such thatf®(¢) € LP'(R), k = 0,1, ..., L.
The L3, (R)-norm is defined via

. 1/2
k
1l ) = <Z|f( ”ﬁgﬁ(m) :
k=0

If AE — A is c-stable, theriC. is the bounded operator mappingWhereG.s(t)

L3, _1(R) into LE(R). In this case the spectral norm &, is given
by [[Kell2 = supyo [IKeullie @ /llulluy, ). Using the Fourier
transform, the time domain relath;v(t)
the frequency domain vig(iw) = G(iw)u(iw
transform gives an isometric isomorphism betwégh, ;(R) and
L3, _1(iR), we obtain by Parseval’s identity thgk’. ||2 = || G||eL. -

The H..-norm of the proper transfer functiad®@ can be computed

by the method proposed in [3]. Computing tH&...-norm of the
improper transfer functioitx is still an open problem.
The Hilbert-Schmidt norm and the Hankel noriffor system (20),

we define goroper Hankel operatof,, transforming the past inputs

u—(t) (u—(t)=0 for ¢t > 0) into the present and future outputs(t)
(y+(¢t)=0 for t < 0) through the state:(0) €Im(P,) via

0

y+(t) = (Hpu-)(t) = / Gep(t —T)u_(1)dr, t>0. (25)

If \E — A is c-stable, therH,, acts fromL3*(R™) into L5 (RZ).
Theorem 3.2:Consider system (20), whereE — A is c-stable.
The non-zero proper Hankel singular values of (20) are thezeso
singular values of the proper Hankel operatoy.
Proof: Consider an adjoint operatdt,, of the proper Hankel
operatorH, that has the form

/ B'F 7)CTy(t) dt
Let o # 0 be a singular value of{, and letu € L3'(R™) be
a corresponding right singular vector, i.e2u(t) = (H;Hpu)(t).
Then
co 0
o?u(t) :/ / BT F' (1 —t)CTCF(r — €)Bu(€) dé dr
- 0 0 —oo
= / / BT FY(—t)ET F'(1)CT CF (1) EF (—€)Bu(€) dé dr.
v (26)
It follows from (26) thatv = [°_ F(—€)Bu(€) d¢ # 0 and
0'27] = gcchTgcpoEU = (I)cvy (27)

(KCeu)(t) is expressed in
). Since the Fourier

i.e.,, v is an eigenvector of the matri®.
eigenvalues?.

On the other hand, consider an eigenvadife# 0 of ®. with an
eigenvectogm. Then from (27) we have®u(r) = (H;H,u)(T) with

BT FT (¢ — r)CTCF (&) Evde. Since the proper Hankel

operatorQ of the asymptotically stable system (20) is thebéiit
Schmidt operator, it is compact. In this cadg has a discrete set of
non-zero singular values and they coincide with the now-peoper
Hankel singular values. [ ]

Remark 3.3:Note that the proper Hankel singular values of the
continuous-time descriptor system (20) are not equal tcsihgular
values of the causal Hankel matri. as in (16). However, as in
the discrete-time case, the non-zero improper Hankel Engalues
coincide with the classical non-zero singular values ofrtbe-causal
Hankel matrixH,, given in (16).

corresponding to the

u(r) =

(R) denote the Sobolev space consisting of vector-valued o jjhertschmidt norm(HS-norn) of the transfer functiorG is

defined by

1/2

1G5 = //|\Gspt+r|\thdf+22uaﬂ d2 ]

7=0 k=0

= CF(t)B, G_, = CF_j_1B. Taking into account
that]:(t—FT) = :F(t)E]:(T) andF,j,k,l = —F,jflAF,kfl for
j,k > 0, we obtain that

//HGSp(tJrr)H% dtdr = t1(Gepe B Gepo E) = tr(®e),
0 0

STNG—j-klF = tr(Geic AT Geio A) = tr(We).

k=0

¢

Il
o

J

Hence,||Gll7s = tH(®c + V) = +... 4+, +07+...+07
As a consequence of Theorem 3.2 and Remark 3. 3 we have

IGIEs = IHpllE + 1HallE = I[LyERy, LiAR: ]|,

whereR,, L,, R; and L; are the full rank factors of the Gramians
gcpc = RpR;l;: gcpo = LZpr gcic = RLRZT and gcic = LZTLL
A Hankel normof the transfer functiorG is defined by

1Glla = max(|Hp |2, [Hnll2) = max(1, 61),

whereg; andé; are the largest proper and improper Hankel singular
values of the descriptor system (20). From the definitiomeftiankel
singular values we find that

1Gllz = VAmax(Pe + We) = max(||[ Ly ERyp |2, | LiAR:|2).

We summarize system norms for the asymptotically stable
continuous-time descriptor system (20) in Table II.
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