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Summary. In this paper we give an overview of model order reduction techniques for coupled
systems. We consider linear time-invariant control systems that are coupled through input-
output relations and discuss model reduction of such systems using moment matching approx-
imation and balanced truncation. Structure-preserving approaches to model order reduction of
coupled systems are also presented. Numerical examples are given.

1 Introduction

Modelling and simulation of complex physical and technical processes yield cou-
pled systems that consist of ordinary differential equations, differential-algebraic
equations and partial differential equations. Such systems arise in many practical
applications including very large system integrated (VLSI) chip design and micro-
electro-mechanical systems (MEMS), e.g. [10, 14, 21, 52, 58]. As the number and
density of components on a single chip increase and feature sizes decrease, differ-
ent physical effects such as thermal interaction, electromagnetic radiation, substrate
noise and crosstalk cannot be ignored anymore. Furthermore, the design of micro-
and nano-structures requires the development of new multi-physical models describ-
ing their complex internal behavior. Another application area of coupled systems
is in subdomain decomposition. Partial differential equations on complicated spa-
tial geometries may be represented as a system of partial differential equations on
simpler domains coupled, for example, through boundary conditions.

As the mathematical models get more detailed and different coupling effects have
to be included, the development of efficient simulation and optimization tools for
large-scale coupled systems is a challenging task. Such systems consist of several
subsystems whose inputs and outputs are coupled via additional algebraic relations.
The subsystems usually have a high number of internal variables that leads to large
memory requirements and computational complexity. To handle such large systems�
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in simulation, control and optimization, their model order reduction (or reduced-
order modelling) is indispensable. A general idea of model order reduction is to
approximate a large-scale system by a reduced model of lower state space dimension
that has the same behavior as the original system.

In the last years, many different model reduction methods have been developed
in computational fluid dynamics, control design and electrical and mechanical engi-
neering, see [4,11,47] for books on this topic. In this paper we review recent progress
in dimension reduction of coupled systems. In structural dynamics, model reduction
methods based on subsystem structuring have been of interest already for a long
time [16, 35, 41]. Here, we will not consider these methods, but will rather focus on
general concepts of model reduction of coupled systems developed in [42, 53, 60].

This paper is organized as follows. In Section 2 we introduce linear time-invariant
coupled systems and give their closed-loop formulation. Section 3 deals with model
order reduction of coupled systems. To make the paper self-contained, we briefly
review model reduction techniques of balanced truncation and moment matching ap-
proximation. Furthermore, we report two approaches for reduced-order modelling
of coupled systems based on the reduction of closed-loop systems (Section 3.1) and
on structure-preserving model reduction (Section 3.2). The discussion of the advan-
tages and disadvantages of these approaches is presented in Section 3.3. Finally, in
Section 4 we consider some numerical examples.

2 Coupled systems

Consider a system of
�

coupled linear time-invariant generalized state space subsys-
tems in the first-order form�	��
� ����������	� � �������������� ������"!# ��������%$�� � ������"! (1)

or in the second-order form&'�)(� ������*�,+-�.
� ������/�102� � ������	�3�����)�4����"!$�� � 
� ��������5$6� � � ������	� # ������"! (2)

that are coupled through the relations� � ����7�98 � � # � ������;:�:<:=�>8 �@? # ? ������>A � �B����C!EDF�%G�!�:<:�:C! � !
(3)# ����7�IH � # � ����/�J:<:�:=�1H ? # ? ����": (4)
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,� ������4K�L6M O are internal state vectors,
�2������VKWLBT O

are internal inputs and # �S����VKLXU O
are internal outputs. Furthermore,

8Y��Z/K;LBT O P U<[
,
A-�\K;LBT O P T

,
H��\K3L�U]P U O

,�N����-KWL T
is an external input and # ����VK^L U

is an external output. Coupled sys-
tems of the form (1)–(4) are also known as interconnected or composite systems. The
first-order systems of the form (1) arise in simulation of linear RLC circuits that con-
sist of resistors, capacitors, inductors, voltage and current sources only [2,34,62]. In
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this case the components of the state vector � � ���� are the nodal voltages, the induc-
tor currents and the currents through the voltage sources,

� � ����
contains the currents

and voltages of the current and voltage sources, respectively, and # � ���� consists of
the voltages across the current sources and the currents through the voltage sources.
The linear RLC circuits are often used to model the interconnections of VLSI net-
works. They can also be described by the second-order systems (2), where � ������
consists of the nodal voltages only. Systems of the form (2) appear also in mechani-
cal and structural dynamics. In this case, � ������ is the displacement vector and

�2�S����
is the acting force. Furthermore, systems (1) and (2) arise from spatial discretization
of instationary linear partial differential equations that describe, for example, heat
transfer, vibrations, electromagnetic radiation or fluid flow.

Since the second-order system (2) can be rewritten as an equivalent first-order
system of the form (1), in the following we will consider the coupled system (1),
(3), (4) only. The matrices

� �
in (1) may be singular, but we will assume that the

pencils _ � ��` � �
are regular, i.e., a bCc  _ � �d` � � �fegJh for

DF�iGS!�:<:�:C! �
. In this case

we can consider the transfer function of (1) given by j � lk]�d�3$ � lk<� �m` � � �"n � � �
.

If
� � � �  h ��� h , then applying the Laplace transform to (1), we find that o � pk]�.�j � lk]�rq � lk]�

, where o � lk]� and
q � pk]�

are the Laplace transforms of # � ���� and
� � ����

,
respectively. Thus, j � pk]�

describes the input-output relation of system (1) in the
frequency domain.

The transfer function j ��pk]�
is called proper if sutwvyx{z/|Jj ��pk]�~}��

, and im-
proper, otherwise. System (1) is asymptotically stable if the pencil _ ��� ` �	�

is
stable, i.e., all its finite eigenvalues have negative real part. The transfer functionj ��lk]�

of (1) is called stable if it has no poles in the closed right half-plane. Clearly,
the asymptotically stable system (1) has the stable transfer function j ��pk]�

. Note that
the stability of j ��lk=�

does not, in general, imply that the pencil _ �m� ` �m�
is sta-

ble. However, for any stable transfer function j ��lk=�
one can find a generalized state

space representation (1) such that j � pk]���9$ � pk=� �X` � � ��n � � �
and _ � ��` � �

is sta-
ble, see [36]. Let � | be the space of all proper and stable rational transfer functions.
We provide this space with the � | -norm defined for j K � | by� j ������� � ��� ����{��� xr����� � j lk=� � � �%��� ���� � � j  tw� � � � ! (5)

where
�7��� � denotes the matrix spectral norm.

Let � � � � �5:<:�:C� � ? , � � � � � �5:<:�:C� � ? and � � � � � �5:<:�:C� � ?
. Consider

the coupling block matricesH�����H � !X:<:�:<!)H ?�� K�L UQP U�  ! A¡�¢��A¤£� !X:�:<:C!)A¤£? � £¥K�L T7 SP T !
(6)

and
8¦�¢� 8V� P Z � ?� P Zw§ � K�LNT   P U  

together with the block diagonal matrices���
diag

�� � !�:<:�:�!@�¨?4�7K�LBM©P M6! �3�
diag

�� � !<:�:�:<!��f?4�7K�LNMªP M6!�¢�
diag

�� � !�:�:<:�!@�f?4�7K�LBM©P T   ! $%�
diag

p$ � !<:�:<:�!@$	?4�7K�L�U   P M«: (7)

Let j pk]�d�;$.lk=� ` �f��n � �¢�
diag ¬lj � lk]�"!�:<:�:<! j ?ªpk]��

. If ® ` j pk]�{8
is invertible,

then the input-output relation of the coupled system (1), (3), (4) can be written as
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, where o pk]� and

qfpk]�
are the Laplace transforms of the external

output # ���� and the external input
�B����

, respectively, and the closed-loop transfer
function

¯*pk]�
has the form¯*pk]�d�;H ¬ ® ` j pk]�{8  n � j pk]��A¦�3H j lk=� ¬ ® ` 8 j lk]�  n � A�:

(8)

A generalized state space realization of
¯-pk]�

is given by° 
� ����7��± � ������³²y�N����"!# ����7�3´ � ����"! (9)

where ° �3�µK¶L M©P M ! ±i�3�����-8'$¢K�L M©P M !²5�;�FA·K¸L M©P T ! ´¸�;H*$¢K¶L U4P M : (10)

Note that ® ` j pk]��8
is invertible if and only if the pencil _ � ` � ` �-8'$

is regular.
Moreover, if j lk]�

and
 ® ` j lk]�{8'�Cn �

are proper, then the coupled system (1), (3),
(4) is well-posed in the sense that the closed-loop transfer function

¯/pk]�
exists and

it is proper. In a schematic way, an example of a coupled system is shown in Fig. 1.
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Fig. 1. Coupled system.

The model reduction problem for the coupled system (1), (3), (4) consists in
an approximation of the global mapping from the external input

�B����
to the external

output # ���� . In other words, we want to find a reduced-order modelÀ° 
À� ����7� À± À� ������ À²y�N����"!À# ����7� À´ À� ����C! (11)

with
À°
,
À±ÁKWL�Â@P Â

,
À²1KWL�Â@P T

,
À´3KJLÃÂ@P M

and ÄyÅÆ� that approximates the closed-
loop system (9). In the frequency domain, the model reduction problem can be re-
formulated as follows: for given

¯*pk]�¸�I´6lk ° ` ±-�Cn � ²
, find an approximationÀ¯*pk]�d� À´6lk À° ` À±/��n � À²

such that
À°
,
À±µK¸LÃÂ@P Â

and
� À¯ ` ¯ �

is small in some system
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norm. For instance, the approximation error can be estimated in the � | -norm. Apart
from having a small state space dimension Ä , it is also required that the reduced-order
system (11) preserves essential properties of (9) like stability and passivity. Note that
passivity, in general, means that the system does not produce energy and it is an im-
portant system property, especially in circuit design [2].

3 Model reduction approaches for coupled systems

There exist two main approaches for model order reduction of coupled systems. The
first approach is to consider all subsystems together in the closed-loop form (9) and
to compute the reduced-order system (11) by applying any model reduction method
to (9). The second approach consists in replacing subsystems (1) by reduced-order
models that are coupled then through the same interconnection relations. In this sec-
tion we discuss these two approaches in more detail and mention their advantages
and disadvantages.

3.1 Model reduction of the closed-loop system

Most of the model reduction methods for linear time-invariant dynamical systems
are based on the projection of the system onto lower dimensional subspaces. Using
these methods for the closed-loop system (9), we can compute the reduced-order
model (11) by projectionÀ° �JÇ £ °-È ! À±i�3Ç £ ± È ! À²^�;Ç £ ²f! À´��J´ È !

(12)

where the projection matrices
Ç

,
È K¢L�M©P Â

determine the subspaces of interest.
For example, in modal model reduction the columns of

Ç
and

È
span, respectively,

the left and right deflating subspaces of the pencil _ ° ` ±
corresponding to the

dominant eigenvalues [18, 44]. Balanced truncation model reduction is based on the
projection of system (9) onto the subspaces corresponding to the dominant Hankel
singular values of (9), see [46, 54]. In the moment matching approximation, one
chooses the projection matrices

Ç
and

È
whose columns form the bases of certain

Krylov subspaces associated with (9), e.g. [5, 22]. In the next subsections we briefly
describe balanced truncation and moment matching methods.

Balanced truncation

One of the most studied model reduction techniques is balanced truncation, an ap-
proach first proposed for standard state space systems in [19, 27, 46, 54] and then
extended to generalized state space systems in [45, 50, 56]. An important property
of balanced truncation model reduction methods is that stability is preserved in the
reduced-order system. Moreover, the existence of computable error bounds allows
an adaptive choice of the state space dimension Ä of the approximate model. A disad-
vantage of these methods is that (generalized) Lyapunov equations have to be solved.
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However, recent results on low rank approximations to the solutions of matrix equa-
tions [9, 13, 29, 33, 43, 49] make the balanced truncation model reduction approach
attractive for large-scale problems.

Consider the closed-loop system (9) with the stable pencil _ ° ` ±
. For sim-

plicity, we will assume that the matrix
°

is nonsingular. However, all results of this
subsection can also be extended for systems with singular

°
, see [45, 56] for details.

The balanced truncation model reduction method is closely related to the controllabi-
lity Gramian É and the observability Gramian Ê that are unique symmetric, positive
semidefinite solutions of the generalized Lyapunov equations° É ±/£~�1± É ° £/� ` ²Ë²	£6!

(13)° £ Ê ±Æ�1± £ Ê ° � ` ´ £ ´V:
(14)

The matrix É ° £ Ê °
has nonnegative eigenvalues, and the square roots of these

eigenvalues Ì � �ÎÍ _ �  É ° £ Ê ° �
define the Hankel singular values of system

(9). We will assume that Ì � are ordered decreasingly. System (9) is called bal-
anced if É � Ê �

diag
 Ì � !<:�:<:C! Ì M � . The Hankel singular values characterize

the ‘importance’ of state variables in (9). States of the balanced system corre-
sponding to the small Hankel singular values are difficult to reach and to observe
at the same time. Such states are less involved in the energy transfer from in-
puts to outputs, and, therefore, they can be truncated without changing the sys-
tem properties significantly [46]. Thus, a general idea of balanced truncation is
to transform system (9) into a balanced form and to truncate the states that cor-
respond to the small Hankel singular values. In practice, balancing and truncation
can be combined by projecting system (9) onto the dominant subspaces of the ma-
trix É ° £ Ê °

. This can be done in a numerically efficient way using the follow-
ing algorithm that is an obvious generalization of the square root method [39, 59].

Algorithm 1. Generalized square root balanced truncation method.

Given system (9) with the transfer function
¯*lk=�F�,´�lk ° ` ±F�Cn � ²

, compute the
reduced-order system (11).

1. Compute the Cholesky factors Ï�Ð and ÏÒÑ of the Gramians É � Ï Ð Ï £Ð andÊ � Ï Ñ Ï £ Ñ that satisfy the Lyapunov equations (13) and (14).
2. Compute the singular value decomposition

Ï £Ð ° £ Ï Ñ ����Ó � !�Ó � �dÔ4Õ � hh Õ ��Ö �@× � !d× � � £ !
(15)

where the matrices
��Ó � !IÓ � � and

��× � !I× � � have orthonormal columns,Õ � � diag
 Ì � !<:�:<:C! Ì Â � , Õ � � diag

 Ì Â�Ø � !<:�:�:�! Ì)Ù � with Ú � rank
 Ï £Ð ° £ Ï Ñ � .

3. Compute the reduced system (11) withÀ° �3Ç%£ °/È ! À±¢�JÇ%£]± È ! À²5�;Ç%£�²Ò! À´¸�W´ È !
where

ÇÛ� Ï Ñ × � Õ n ��Ü��� and
È � Ï Ð Ó � Õ n ��Ü@�� .
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One can show that the reduced-order system
À¯*pk]��� À´6pk À° ` À±V��n � À²

computed
by this algorithm is stable and the � | -norm error bound� À¯ ` ¯ �"�S��ÝJÞ  Ì ÂrØ � �J:<:�:Q� Ì2Ù � (16)

holds, where Ì Â�Ø � !�:<:�:<! Ì Ù are the truncated Hankel singular values of (9), see [19,
27,51]. To solve the large-scale generalized Lyapunov equations (13) and (14) for the
Cholesky factors without forming the Gramians É and Ê explicitly, we can use the
ADI method [43, 49], the cyclic Smith method [33, 49] or the sign function method
[9, 13].

Apart from the balanced truncation method considered here, other balancing-
based model reduction techniques have been developed, see [32, 47]. These include
LQG balancing, stochastic balancing, positive real balancing and bounded real bal-
ancing. All these techniques are related to algebraic Riccati equations and aim to
capture specific system properties like closed-loop performance, minimum phase
property, passivity and �¨| -gain.

Moment matching approximation

An alternative model reduction approach for linear time-invariant systems is a mo-
ment matching approximation based on Krylov subspace methods, see [4, 5, 22] for
recent surveys on these methods. Suppose that

k � K;ß
is not an eigenvalue of the

pencil _ ° ` ±
. Then the matrix

± ` k � ° is nonsingular, and the transfer function¯*pk]�d�W´6lk ° ` ±-�"n � ²
of the closed-loop system (9) can be expanded into a Taylor

series at
k � as¯-pk]��� ` ´ ¬ ® ` pk ` k � �Cp± ` k � ° ��n � °  n � �± ` k � ° �"n � ²�9à � ��à � lk ` k � �X��à � pk ` k � � � �;:�:<:X!

where the matrices àá�¨� ` ´ ¬ �± ` k � ° � n � °  � �± ` k � ° � n � ² (17)

are called the moments of system (9) at the expansion point
k � . The moment matching

approximation problem consists in determining a reduced-order system (11) whose
transfer function

À¯*lk]�d� À´6pk À° ` À±-�"n � À²
has the Taylor series expansion at

k � of the
form À¯*pk]�d�ãâà � ��âà � pk ` k � �X�äâà � pk ` k � � � �;:�:<:X!

(18)

where the moments
âà �

satisfy the moment matching conditionsàá���Áâàá�S! DV� h !<GS!<:�:�:�!�å©: (19)

For
k � � h , the approximation (18), (19) is the matrix Padé approximation of

¯/pk]�
,

e.g. [8]. For an arbitrary complex number
k � e� h , the moment matching approx-

imation is the problem of rational interpolation [1]. Besides a single interpolation



88 Timo Reis and Tatjana Stykel

point, it is also possible to construct a reduced-order system with the transfer func-
tion

À¯/pk]�
that matches

¯/lk=�
at multiple points æ k � !@k � !<:�:<:C!@k Z�ç . Such an approxi-

mation is called a multi-point rational interpolant and has been studied in [25, 30].
Furthermore, one can consider the Laurent expansion of

¯-pk]�
at
k � �9�

given by¯/pk]�d�3à n«è k è �J:<:�:=��à n � k��5à � ��à � k n � ��à � k n � �J:<:�:�!
where the coefficients

àä�
are known as Markov parameters of system (9). In this

case, computing the approximationÀ¯*lk]���ãâà n�è k è �;:�:<:]��âà n � k���âà � �äâà � k n � ��âà � k n � �;:�:<:
with

à � �Ûâà �
for

Dé� `�ê !<:�:�:�! ` GS! h !<GS!�:<:�:�!�å reduces to the partial realization
problem [12, 28].

In order to determine the reduced-order system (11) satisfying the moment
matching condition (19), the explicit computation of the moments can be avoided
by using the following connection between the Padé (or Padé-type) approximation
and the right and left Krylov subspacesë*ì�í S± n �� ° !d± n �� ²~���

Im
�4± n �� ²¤!%± n �� ° ± n �� ²\!¡:�:<:m!��± n �� ° � ì í n � ± n �� ² � !ë ì [ p± n £� ° £ !@± n £� ´ £ ���

Im
��± n £� ´ £ !�± n £� ° £ ± n £� ´ £ !m:<:�:m!��± n £� ° £ � ì [�n � ± n £� ´ £ � !

with
± � �;± ` k � ° and

± n £� ���± n �� � £
.

Theorem 1. [26, 30] Consider the closed-loop system (9) and the reduced-order
system (11), (12) with some projection matrices

Ç
,
È KWL�M©P Â

. Let
k � KJß

be not
an eigenvalue of _ ° ` ± and _ À° ` À±

, and let
àä�

and
âàá�

be the moments of systems
(9) and (11), (12), respectively.

1. If
ë*ì�í p± n �� ° !@± n �� ²	�7î

Im
È

and
Ç¦� È

, then
à � �iâà �

for
DB� h !w:<:�:w! å Ù ` G

.

2. If
ë ì í �± n �� ° !@± n �� ²	��î

Im
È

and
ë ì [ p± n £� ° £ !�± n £� ´ £ �mî

Im
Ç

, then
àä�ï�âàá�

for
DV� h !�:�:<:C!�å Ù ��åCZ ` G

.

This theorem proposes to take the projection matrices
È

and
Ç

as the bases of
the Krylov subspaces

ë ì í p± n �� ° !�± n �� ²	�
and

ë ì [ p± n £� ° £ !�± n £� ´ £ �
, respectively.

Such bases can be efficiently computed by a Lanczos or Arnoldi process [5, 20, 25]
in the single-input single-output case and by Lanczos- or Arnoldi-type methods [22,
24, 30, 48] in the multi-input multi-output case.

While the Krylov-based moment matching methods are efficient for very large
sparse problems, the reduced-order systems computed by these methods have only
locally good approximation properties. So far, no global error bound is known, see
[5,6,31] for recent contributions to this topic. The location of the interpolation points
strongly influences the approximation quality. The optimal choice of these points
remains an open problem. Another drawback of the moment matching methods is
that stability and passivity are not necessarily preserved in the resulting reduced-
order model, so that usually post-processing is needed to realize these properties.
Recently, passivity-preserving model reduction methods based on Krylov subspaces
have been developed for standard state space systems [3, 55] and also for structured
generalized state space systems arising in circuit simulation [23, 24, 38, 48].
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3.2 Structure-preserving model reduction

Model order reduction of the closed-loop system (9) does not preserve the inter-
connection structure in the approximate system (11). Although many different mo-
del reduction methods have been developed for linear dynamical systems, structure-
preserving reduced-order modelling of coupled systems has received only recently
attention [41,42,53,60]. Instead of reduction of the entire system (9), one can replace
each subsystem (1), or a suitable selection of them, by a reduced-order modelÀ�	� 
À� �������� À�	� À� �������� À��� À� ������"!À# �������� À$�� À� ������"! (20)

where
À�7�

,
À�	�ËK³L Â O P Â O

,
À���.K³L Â O P T O

,
À$6�ËK¥L U O P Â O

with Ä � Åð� � , and then couple
these subsystems through the same interconnection relationsÀ�)�4����7�98V� � À# � ������;:�:<:=�>8.�@? À# ?ª������>A-���B����C!EDF�%G�!�:<:�:C! � !

(21)À# ����7�IH � À# � ����/��:<:�:=�1Hf? À# ?©����": (22)

Note that since the internal outputs # � ���� are replaced by the approximate outputsÀ# � ���� , due to (21), the internal inputs
� � ����

in (20) should also be replaced by the
approximate inputs

À� � ����
. LetÀ���

diag
 À� � !<:�:<:C! À� ? �"! À�3�

diag
 À� � !<:�:�:<! À� ? �"!À�ñ�

diag
 À� � !�:<:�:C! À�f?4�C! À$i�

diag
 À$ � !�:<:�:<! À$	?4�": (23)

If the reduced-order pencils _ À� ` À�
and _ À� ` À� ` À�-8 À$

are regular, then the
reduced-order closed-loop system has the form (11) withÀ° � À�Y! À±�� À�5� À�-8 À$F! À²^� À�FA�! À´��3H À$V:

(24)

The transfer function of this system is given byÀ¯*pk]�d�;H ¬ ® ` Àj pk]�{8  n � Àj pk]��A¦�3H Àj lk=� ¬ ® ` 8 Àj lk]�  n � A�!
(25)

where
Àj pk]�d�

diag
 Àj � lk=�C!�:<:�:�! Àj ? pk]���

with
Àj ��lk=��� À$���pk À�7� ` À�	�=��n � À���

.
The reduced-order subsystems (20) can be computed by projectionÀ� � �3ò £� � ��ó)� ! À� � �3ò £� � ��ó2� ! À� � �3ò £� � � ! À$ � �3$ �=ó)� ! (26)

where the projection matrices
ò¤�

, ó �VK'LBM O P Â O
are determined for every subsystem

either independently or using interconnection structure as it was proposed in [42,60].
Note that in this case the matrix coefficients of the reduced-order system (11) have
the form (12) with the block diagonal projection matricesÇÆ�

diag
lò � !�:<:�:<!@òé?4�"! È �

diag
 ó � !<:�:<:�! ó ?Q�C: (27)

The following theorem gives a bound on the �¨| -norm of the error
À¯ ` ¯

. For
the time being, we assume that all the subsystems are asymptotically stable.
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Theorem 2. Consider the coupled system (1)–(4) with asymptotically stable subsys-
tems and consider the reduced-order coupled system (20)–(22). LetôFZ��

diag
�õ � ® U<ö !�:<:�:�!�õ<? ® U<÷ �C! ô Ù � diag

�õ � ® T�ö !�:<:�:C!�õ<? ® Tm÷ �C! (28)

where
õ"�Ò�iG

if
Àj �Ve� j �

and
õ��Ò� h , otherwise. Letø � � � ô Ù 85 ® ` j 8'��n � �"�S� ! ø � � � H. ® ` j 8'�"n � ôVZ �"�S� !øSù � �  ® ` 8 j �"n � 8\ô Z � � � ! ø4ú � � ô Ù  ® ` 8 j �"n � A � � � : (29)

If Þ v.û4ü)æ ø � ! øSù ç vYûQü�"ý � ý ? � Àj ��` j � � � � }9GS!
(30)

then the absolute error
À¯ ` ¯

is bounded as� À¯ ` ¯ ���S�1Ý v.twþXæ=ÿ � ! ÿ � ç v.û4ü��ý � ý ? � Àj � ` j � �"�4� !
(31)

where ÿ � � Þ ø �  � A � � � ø � � j A ���S� �
and ÿ � � Þ ø ú  � H � � � ø ù � H j ���S� �

.

Proof. The result immediately follows from [53, Theorem 3.1]. ��
Note that Theorem 2 provides not only the approximation error bounds but also

gives sufficient criteria for the stability of the reduced-order system. Indeed, if
¯

is
stable,

� j A � � �
or

� H j � � �
is bounded and condition (30) holds, then Theorem 2

implies that
À¯

is also stable. Further aspects of stability of coupled systems can be
found in [37, 53].

Subsystem model reduction by balanced truncation

Now we apply the � | -norm estimates provided by balanced truncation to the cou-
pled system (1)–(4), where all subsystems are asymptotically stable. As a conse-
quence of Theorem 2 we obtain the following error bounds for the closed-loop sys-
tem (11) computed by the balanced truncation model reduction method applied to
the subsystems.

Corollary 1. Consider the coupled system (1)–(4) with asymptotically stable subsys-
tems and consider the reduced-order coupled system (20)–(22), where subsystems
(20) are computed by Algorithm 1 applied to (1). Let� � Þ v.û4ü��ý � ý ?  Ì � � �Â�O�Ø � �;:�:<:]� Ì � � �M O �C!
where Ì � � �Â O Ø � !�:<:�:C! Ì � � �M O denote the truncated Hankel singular values of the

D
th sub-

system (1). Further, let ø � , ø ù , ÿ � and ÿ � be as in Theorem 2. If
Þ � vYûQü«æ ø � ! ø ù ç }3G

,
then the �¨| -norm of the error

À¯ ` ¯
can be bounded as� À¯ ` ¯ � � ��Ý � v.tuþXæ]ÿ � ! ÿ � ç : (32)
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Note that the computation of the a priori error bounds (31) and (32) for large-
scale systems is expensive, since we need to calculate the � | -norm of the transfer
functions of the state space dimension � � �ñ:�:�: � � ? . Similar to Theorem 2 and
Corollary 1, we can also obtain the a posteriori error bounds like (31) and (32), withj replaced by

Àj in the constants ø � and ÿ � .
An essential assumption in Theorem 2 and Corollary 1 was the asymptotic stabil-

ity of the subsystems (1). However, the asymptotic stability of the involved subsys-
tems is neither necessary nor sufficient for the asymptotic stability of the closed-loop
system (9). Since unstable subsystems can be artificially represented as a coupling of
stable subsystems, we are then in the situation of Theorem 2 and Corollary 1. A pos-
sibility for the representation of an unstable subsystem (1) as a coupling of stable
ones is based on the coprime factorization.

Consider now the transfer function j ��pk]�J� $���pk=�7� ` �m�=��n � �m�
which is

not necessarily in � | . Such a transfer function admits a representation j � lk=�~�� � lk=��� � pk]�"n �
, where

� � K � | is square and
� � K � | has the same ma-

trix dimensions as j �
. If, additionally, there exist � �

, � � K � | such that� � pk]��� � lk]� � � � pk]��� � lk=��� ® , then
� �

and
� �

are called right coprime factors
of j �

. For system (1) with no unstable and coevally uncontrollable modes, the co-
prime factors can be determined via a state feedback matrix 	 � K5L T7OSP MQO

with the
property that the pencil

k=�	� ` �	� ` ��� 	 � is stable and of index at most one [15,61].
In this case,

�J�
and

�'�
can be chosen as� � lk=�7�%$ � pk=� ��` � ��` � � 	 � �"n � � � !�'��lk=�7� 	 ��lk=�7� ` �m� ` ��� 	 �=�"n � �m��� ® : (33)

Then the extended transfer function

j ��
� P � pk]�d� Ô �W��lk=��'��pk]� ` ® Ö (34)

is stable and has the generalized state space representation�	��
� ��������µ��m�7�>��� 	 �=� � ����������m���=������"!Ô # � �S����# � �S���� Ö � Ô $��	 � Ö � � ����": (35)

Coupling this system with itself by the relations� � ����	� ` # � � ������>� � ����d�i� h ! ` ® � Ô # � ������# � ������ Ö �³� � ����C!
# � ����	� # � � ������¢� ® ! h � Ô # � ������# � � ���� Ö ! (36)

we obtain the coupled system which has the same transfer function j ��pk]�
as system

(1). Such a coupled system is shown in Fig. 2. Note that the state space dimension of
(35) coincides with that of (1).
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Fig. 2. Coprime factorization as a coupled system.

In the following, we discuss the benefits of the coprime factorization in the struc-
ture-preserving model reduction of the coupled system (1), (3), (4), where we now
allow some unstable subsystems. Without loss of generality, we may assume that the
first

å
subsystems are unstable and the corresponding right coprime factorizations

are given by j � lk=�/��� � pk]��� � lk]��n �
for

D'��G�!�:<:�:C!@å
. The unstable subsystems

can now be replaced by the asymptotically stable models (35) with the internal inputs
and outputs satisfying (36). In this case, the coupling relations (3) and (4) take the
form� � ����	� ` # � � ������>� � ���� G Ý D Ý å©!�98V� � # ��� ������;:�:<:=��8V� ì # � ì ���� ` # � �������;8.� P ì Ø � # ì Ø � ������;:�:�:]�>8V�@? # ?ª����Ã�>A-���B����"!� � ����	�98 � � # ��� ������;:�:<:=��8 � ì # � ì ���� å-}¥D Ý � !�;8.� P ì Ø � # ì Ø � ������;:�:�:]�>8V�@? # ?ª����Ã�>A-���B����"!# ������9H � # �@� ������J:<:�:=��H ì # � ì ����Ã�>H ì Ø � # ì Ø � ������J:<:�:"�¸Hf? # ?©����C:

(37)
The closed-loop transfer function of the new extended coupled system is given by¯ ��
� pk]���;H ��
�  ® ` j ��
� lk]�{8 ��
� � n � j ��
� pk]�{A , where8 ��
� �;8

diag ¬ � ® U ö ! h � !<:�:�:�!<� ® U� ! h � ! ®  ` diag ¬ � h ! ® T ö � !<:�:�:�!<� h ! ® T � � ! h B!H �!
�� �#" H � ! h !2:<:�:C!©H ì ! h !�H ì Ø � !©H ì Ø � !�:�:<:�!�Hf?%$
(38)

and j ��
� pk]�d� diag ¬rj �!
�� P � pk]�"!<:�:�:<! j ��
� P ì lk=�C! j ì Ø � pk]�C!�:�:<:�! j ? pk]��
(39)

with j �!
�� P ��lk=� as in (34). It has been shown in [53] that
¯ ��
� pk]� coincides with the

transfer function
¯*pk]�

of the closed-loop system (9). This allows us to apply The-
orem 2 and Corollary 1 to the extended coupled system with all subsystems being
asymptotically stable in order to obtain the error bounds for the reduced-order sys-
tem.

Another structure-preserving balancing-based model reduction method for cou-
pled systems has been considered in [60]. There it has been proposed to project
the subsystems (1) with

�	�J� ® onto the dominant eigenspaces of the matrices& �r�('f�r�
, where

& �r�
,
'Ò�r� K\LBMQOSP MQO

are the diagonal blocks of the controllability and
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observability Gramians É �¦� & ��Z�� ?� P Zw§ � and Ê ��� 'Ò��Z � ?� P Z § � of the closed-loop sys-
tem (9). Clearly, in the generalized state space case we should consider the matrices& �r� � £� 'Ò�r� � � . A drawback of this approach is that stability is not necessarily pre-
served in the reduced-order subsystems (20). Furthermore, we cannot make use of
the error bound (31) since there are no global error estimates on

Àj ��` j �
.

Krylov subspace structure-preserving techniques

In this subsection we review structure-preserving model reduction methods based on
Krylov subspaces. These methods have been previously proposed for second-order
systems from structural dynamics, MEMS simulation and electronic circuit design
[7, 23, 57] and then extended to coupled systems in [60]. A general framework for
Krylov-based structure-preserving model reduction methods for partitioned systems
can be found in [40, 42].

As mentioned above, for general projection matrices
Ç

and
È

, the reduced-
order system (11), (12) does not preserve the interconnection structure. This can
be avoided if we take the block diagonal projection matrices

Ç
and

È
as in (27).

However, in order to guarantee the moment matching conditions (19), the diagonal
blocks in

Ç
and

È
have to satisfy certain subspace conditions as specified in the

following theorem.

Theorem 3. Let )ÇÛ�¢� )ò £� !X:�:<:C! )ò £? � £
and *È ��� *ó £� !X:<:�:<! *ó £? � £

with )ò��
, *ó �ïKLNM O P Â

. Assume that the reduced-order systems (20) are computed by projection (26),
where

ò��
, ó �fK¸LNM O P Â O

have full column rank and satisfy

Im )ò��/î
Im

ò���!
Im *ó �fî Im ó �Q:

Let
à �

and
âà �

be the moments of the closed-loop systems (9), (10) and (11), (24),
respectively.

1. If
ë ì í �± n �� ° !�± n �� ²m�¨î

Im *È and
ò,+�� ó + for - �RG�!�:<:�:C! �

, then
àä�/� âàá�

for
DV� h !<:�:<:�!�å Ù ` G

.

2. If
ë ì í �± n �� ° !�± n �� ²m�«î

Im *È and
ë ì [ �± n £� ° £ !�± n £� ´ £ �Xî

Im )Ç , then
àá�F�âàá�

for
DV� h !�:�:<:C!�å Ù ��åCZ ` G

.

Proof. See [42, Theorem 4.1] and [60, Lemma 7]. ��
A natural way to determine the projection matrices ó � and

ò��
is to compute

the QR decomposition or the singular value decomposition of the matrices *ó � and) ò¸�
such that the columns of *È �·� *ó £� !X:�:<:�! *ó £? � £

and )Ç �ã� )ò £� !X:�:<:C! )ò £? � £
span the Krylov subspaces

ë ì í �± n �� ° !�± n �� ²m�
and

ë ì [ p± n £� ° £ !�± n £� ´ £ �
, respec-

tively. The matrices *ó � and )ò¸�
, in turn, can be computed simultaneously by apply-

ing a Lanczos- or Arnoldi-type method to the closed-loop system (9). The following
theorem shows that *ó � and )ò��

can also be generated separately by Krylov subspace
methods applied to (1).
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Theorem 4. Consider the closed-loop system (9), (10). Let
k � K ß

be neither
an eigenvalue of the pencil _ � ` �

nor an eigenvalue of the pencil _ ° ` ±
. Thenë ì í �± n �� ° !�± n �� ²¶��î ë ì í �lk � � ` �f��n � �Y!�lk � � ` �Ò��n � ���C!ë ì [ p± n £� ° £ !�± n £� ´ £ �7î ë ì [ �lk � � ` �f��n £ � £ !=pk � � ` �Ò�"n £ $ £ �C:

Proof. These inclusions can be proved similarly to the case
� � ® , see

[60, Lemma 6]. ��
3.3 Comparison of two approaches for model reduction of coupled systems

The computation of the reduced-order model (11) by applying a model reduction
method to the closed-loop system (9) has a couple of disadvantages. First of all
note that the behavior of coupled systems is determined by different interconnected
subsystems that are usually governed by entirely different physical laws and they
often act in different spaces and time scales. There is no general model reduction
technique, which can be considered as optimal, since the reliability, computation
time and approximation quality of reduced-order models strongly depend on system
properties. In model reduction of the closed-loop system (9), we ignore the special
properties of the subsystems and destroy the coupling structure. Also in structure-
preserving model reduction, where the projection matrices

ò �
and ó � are determined

from the closed-loop system (9), we do not make use of subsystem properties. If we
slightly change the coupled system, for example, by adding new subsystems, by re-
placing some of them by new ones or by changing the coupling configuration, we
have to re-compute the reduced-order model again.

Subsystem model reduction, where the projection matrices
ò\�

and ó � are com-
puted separately from the subsystems (1), is free of these difficulties. In this ap-
proach, every subsystem can be reduced by a most suitable model reduction method
that takes into consideration the structure and properties of the subsystem. If error
estimates for subsystems are available, then using bound (31) we can evaluate how
well the subsystems should be approximated to attain a prescribed accuracy in the
reduced-order closed-loop system (11). Finally, subsystem model reduction is attrac-
tive for parallelization, since all

�
subsystems may be reduced simultaneously using�

processors.
On the other hand, separate reduction of the subsystems usually yields the ap-

proximate model (11) of larger state space dimension than the system computed by
projection of the closed-loop system (9). Furthermore, subsystem model reduction
is often restricted to coupled systems whose subsystems have a small number of
internal inputs and outputs.

4 Numerical examples

In this section we present two numerical examples to demonstrate the properties of
the discussed model reduction approaches for coupled systems. The computations
were performed using MATLAB 7.
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Fig. 3. A heated beam with a PI-controller.

Example 1. Consider a heated beam whose temperature is steered by a PI-con-
troller as shown in Fig. 3. The transfer function of the PI-controller is given byj � pk]��� �DC � �DE kSn �

and it is realized by the descriptor systemÔ G hh h Ö 
� � ����	� Ô h hh G Ö � � ������ Ô � E` � C Ö � � ����C!# � ����	� � G G � � � ����": (40)

The heat transfer along the 1D beam of length 1 is described byFHGF � ��"!0I����KJ F � GF I � ��"!0I��C! (41)

where
�ML h is the time,

IWKR� h !�G � is the position,
G ��"!0I��

is the temperature dis-
tribution and

J
is the heat conductivity of the material. On the left-hand side of the

beam, the temperature flux is controlled by an input
� � ���� , whereas the beam is as-

sumed to be perfectly isolated on the right-hand side. From this, we get the boundary
conditions FHGF I ��"! h ���J� � ����C! FHGF I ��"!�G]��� h : (42)

The temperature is measured at
I>�ãG

and it forms the output of the system, i.e.,# � ����.� G ��"!<G=�
and # ����Ë� # � ���� . By a spatial discretization of the heat equation

with � � �;G
equidistant grid points, we obtain the system� � 
� � ����7�3� � � � �������� � � � ����"!# � ����7�9$ � � � ����C! (43)

where
� � � ® M = and

� � �KJ� � � �;G=� �ONPPPPPPQ
` G GG ` Þ G

. . . . . . . . .G ` Þ GG ` G
RTSSSSSSU !�� � � NPPPPPPQ

J� � � �JG]�h
...hh

RTSSSSSSU !d$ � � NPPPPPPQ
hh
...h G
RTSSSSSSU
£
:

(44)
The interconnection of the PI-controller and the beam is expressed by the rela-

tions
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Note that both the subsystems (40) and (43) are not asymptotically stable, since their
transfer functionsj � lk]���3$ � lk=� � ` � � � n � � � and j � lk]���3$ � lk=� � ` � � � n � � �
have a pole at the origin. The stabilizing state feedback matrices can be chosen as	 � �ñ� h ! ` G � and 	 � ��� ` � � ` G�! h ! �<��� ! h � . In this case, we obtain an extended
coupled system with the stable subsystems j ��
� P � lk=� and j ��
� P � pk]� as in (34) and
the interconnection matrices8 ��
�� � Ô h ` G ` G hG h h ` G Ö ! A¡� Ô Gh Ö ! H �!
�� �i� h ! h !	G�! h � :
For our experiments, we chose the numerical values

�VC � �DE �WJ¦� G
and� � �EG h�hSh . The second subsystem j ��
� P � has been approximated by a reduced

model
Àj �!
�� P � of order Ä � � Þ G

computed by balanced truncation. Figure 4 shows the
absolute error

� Àj ��
�� P �  tw� � ` j ��
�� P �  tw� � � � for the frequency range � K³�CG h n � !�G h ú �
and the error bound � that is twice the sum of the truncated Hankel singular values
of j ��
�� P � . We chose Ä � such that � }�G h nBX . The resulting approximate closed-loop
system with the transfer function

À¯/pk]�
has order Ä � Þ3Y

.
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Fig. 4. Example 1: the absolute error ZV[»]\;^�_9` ��acb>dfe � »g\;^�_9` �hacb>dfe Z � and the error bound i .

Figure 5 shows the absolute error
� À¯ï tw� � ` ¯/ tw� � � � and the a posteriori error

bound � ��
�� � � v.twþ�æ]ÿ � ! ÿ � ç , where ÿ � and ÿ � are as in Theorem 2 with j ,
8

and
H
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Fig. 5. Example 1: the absolute errors Zh[¿ acb dfe � ¿ acb dfe Z � and the error bounds i \;^�_ (dashed
line) and i3j;k (dotted line).

replaced by
Àj �!
�� � diag

 j ��
� P � ! Àj ��
� P � � , 8 ��
� and
H ��
� , respectively. Comparing

the approximation errors, we see that the error in the closed-loop system is larger
than the error in the subsystem due to the coupling. Furthermore, we applied the
balanced truncation method to the closed-loop system and selected the order of the
reduced model as a minimal integer Ä such that the error bound �ml Z � Þ  Ì ÂrØ � �:�:�:4� Ì M � is smaller than � ��
� . We obtained the reduced model of order Ä �on

with
the approximation error comparable with the error in subsystem model reduction,
see Fig. 5. Note, however, that if we change the parameters

� C
,
� E

and
J

, then the
closed-loop system is also changed, and we need to re-compute the reduced model.
On the other hand, the reduced closed-loop system computed by subsystem model
reduction can easily be modified by changing the first subsystem and by re-scaling
the matrix coefficients in the reduced-order second subsystem.

Example 2. Consider the delay-differential system
� ����7� ` � �� ` G=�X�>�N����"!# ����7� � ����C: (46)

This system can be represented as an interconnection of
� � ����	� h � � � ����	� " G�! ` Gm$ � � ����"!# � ����	� � � ���� (47)

with the system representing the pure unit delay
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(48)

The coupling relations are� � ������ Ô h G Ö *# � ������ Ô Gh Ö �N����"!� � ������ # � ����"! # ����d� # � ����C: (49)

The subsystems (47) and (48) have the transfer functions j � pk]�Ë� ��G(p4k�! ` G(pSk �
and *j � lk]��� b n x , respectively. Due to the irrationality of *j � , its system realizations
have an infinite dimensional state space [17, 52]. The delay can be achieved by the
following partial differential equation with boundary control and observationF�qF � ��"!�I©��� ` F�qF I ��"!0I��C!q ��"! h ���3� � ����"!q ��"!<G=��� *# � ����C: (50)

A spatial discretization of this equation with � � equidistant grid points leads to the
subsystem � � 
� � ����7�3� � � � �������� � � � ����"!*# � ����7�9$ � � � ����C! (51)

with
� � � ® M = and

� � � � � NPPPPPPQ
` G G` GiG

. . . . . .` G G` G
RTSSSSSSU ! � � � NPPPPPPQ

hh
...h� �

RTSSSSSSU ! $ � � NPPPPPPQ
Gh
...hh

RTSSSSSSU
£
:

(52)

The transfer function of this subsystem is given byj � pk]��� � � � � �5k]� M = : (53)

Clearly, j � K �m| . The coupled system (47), (49) and (51) is a finite dimensional
approximant of the originally infinite dimensional delay-differential system (46). The
estimation of the discretization error in the �¨| -norm is treated in [52].

The first subsystem (47) is not asymptotically stable since its transfer functionj � pk]� has a pole at the origin. A stabilizing state feedback matrix can be taken as	 � �µ� h ! Þ � £ . Thus, we obtain an extended coupled system with the stable subsys-
tems j ��
� P � pk]� as in (34), j � lk=� and the interconnection matrices

8 ��
� � NQ h ` G hEhh h ` GEGG h hEh
RU ! A¡� NQ Ghh RU ! H ��
� �¢�CG�! h ! h ! h � :
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Fig. 6. Example 2: the absolute values of frequency responses
» � acb dfe and [» � acb>dfe .

The second subsystem (51) of order � � �iG h�hSh has been approximated by a reduced
model of order Ä � �sr2G computed by the balanced truncation method. The absolute
values of the frequency responses

Àj �  tw� � and j �  tw� � of the original and reduced-
order subsystems are given in Fig. 6, whereas the absolute error

� Àj �  t � � ` j �  t � � � �
and the error bound � � Þ  Ì � � �Â = Ø � �J:<:�:Q� Ì � � �M = �
are presented in Fig. 7. We see that the reduced-order subsystem approximates (51)
satisfactorily.

In Fig. 8 we plotted the absolute values of the frequency responses
¯* t � � andÀ¯* tw� � of the original and the reduced-order closed-loop systems. Figure 9 shows the

error
� À¯/ tw� � ` ¯/ tw� � � � and the a posteriori error bound� ��
� � � v.tuþ�æ=ÿ � ! ÿ � ç !

where the constants ÿ � and ÿ � are as in Theorem 2 with j ,
8

and
H

replaced byÀj �!
�� � diag
 j �!
�� P � ! Àj � � , 8 �!
�� and

H �!
�� , respectively. One can see that over the
frequency range

��G h n � !XG h ù � there is no visible difference between the magnitude
plots of

À¯
and

¯
and that the absolute error is smaller than

G h n � .
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Fig. 7. Example 2: the absolute error ZV[» � acb>dfe � » � acb dfe Z � and the error bound i .
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Fig. 9. Example 2: the absolute error Zh[¿ acb dfe � ¿ acb dfe Z � and the error bound i \;^�_ .
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by Padé approximation via the Lanczos process. IEEE Trans. Comput. Aided
Design, 18, 133–141 (1999)

7. Bai, Z., Su, Y.: Dimension reduction of large-scale second-order dynamical sys-
tems via a second-order Arnoldi method. SIAM J. Sci. Comp., 26, 1692–1709
(2005)
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