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1 Introduction

Differential-algebraic equations (DAEs)
Az(t) = Bx(t) + f(t)

arise naturally in many applications, e.g., in control problems, electrical networks and constrained mechanical systems
[4, 7, 8,9, 32]. The theoretical analysis and the numerical solution of DAEs has been the subject of intense research
for many years, see [4, 21, 22] and the references therein. In the study of differential-algebraic equations one is often
interested in the existence of stationary solutions and their asymptotic behavior [9, 21, 31, 33, 37].

In this paper we propose an approach to study the asymptotic stability of the trivial solution of the equation
Ai(t) = Bz(t). The case of a nonsingular matrix A is well studied, asymptotic stability of the trivial solution is
equivalent to the condition for the matrix A=1B to have all eigenvalues in the open left half-plane, e.g., [13]. If the
matrix A is singular, then the investigation of the spectrum of the matrix pencil AA — B is necessary. However, it is
well known that the (generalized) eigenvalue problem may be ill-conditioned in the sense that eigenvalues may change
strongly even under small perturbations in A and B [36]. Recently the concept of e-pseudospectra and spectral portrait
[19, 38] was developed to better understand the influence of perturbations on the spectrum of matrices and matrix
pencils. The application of the e-pseudospectra in the study of the asymptotic stability of differential equations arising
in Computational Fluid Dynamics can be found in [11, 12, 39].

Another possible approach to investigate the asymptotic behavior of solutions of linear ordinary differential equa-
tions without explicit computing the eigenvalues is the consideration of a dichotomy parameter that characterizes nu-
merically the property of a matrix to have all eigenvalues in the open left half-plane and that is efficiently computable
[5, 16, 18]. In this paper we generalize this parameter for DAEs and discuss the computation of deflating subspaces of
the matrix pencil AA — B corresponding to the finite eigenvalues.

This paper is organized as follows. In Section 2 we recall fundamental characteristics of matrix pencils and some
properties of DAEs. In Section 3 we introduce numerical parameters the boundness of those is equivalent to the property
of the pencil AA — B to have all finite eigenvalues in the open left half-plane. Section 4 presents a generalized Lyapunov
equation that can be used to compute these parameters. In Section 5 we describe an algorithm for computing the spectral
projections onto the right and left deflating subspaces of AA — B corresponding to the finite eigenvalues and the solution
of the generalized Lyapunov equation for the case of the pencil of index one. Section 6 presents a perturbation analysis
for these projections. The sensitivity analysis for the generalized Lyapunov equation is presented in Section 7. Section
8 contains numerical examples.

Throughout the paper the space of complex matrices of size n x n is denoted by C™™. The matrix A* is the complex
conjugate transpose of the matrix A, and A=* = (A4*)~!. The inner product of vectors z and y is defined as (z,y) = y*z,
|| - || denotes the spectral matrix norm and the Euclidean vector norm, cond(A4) = || A]|||A~!]|| is the condition number of
A. We denote the nullspace of the matrix A by ker A and the range of A by im A.

2 Preliminaries

Let A and B be square complex matrices of order n. A matrix pencil AA — B is called singular if det(AA — B) = 0 for
all A € C. Otherwise, the pencil AA — B is called regular. A complex value A # oc is said to be a finite eigenvalue of
AA — B if det(AA — B) = 0. The pencil AA — B has infinite eigenvalue if the matrix A is singular.

A regular pencil AA— B can be reduced to the Weierstrass canonical form [36], i.e., there exist nonsingular matrices
W and T such that

I, 0 _ J 0
A—W( 0 N)T and B—T/V<0 In—m>T7 (2.1)
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where I, is the identity matrix of order m, J and N are matrices in Jordan canonical form and N is nilpotent with index
of nilpotency k. The number k is called index of the pencil AA — B. The block J corresponds to the finite eigenvalues,
the block N corresponds to the infinite eigenvalues of AA — B.

The representation (2.1) defines the decomposition of C" into complementary deflating subspaces of the pencil
AA — B corresponding to its finite and infinite eigenvalues [36]. The matrices

P:T—l(Ig‘ 8>T and H:W(I(’)” 8)W—1 (2.2)

are the spectral projections onto the right and left deflating subspaces of the pencil AA — B corresponding to the finite
eigenvalues. For simplicity, the deflating subspace of AA — B corresponding to the finite (infinite) eigenvalues we will call
the finite (infinite) deflating subspace.

Consider the homogeneous differential-algebraic equation

Az(t) = Bz(t), (2.3)
where A, B € C*". For equation (2.3) we may define a fundamental solution matrix as follows.

Definition 2.1. A matrix-valued function F(t) = F(¢, A, B) is called fundamental solution matriz of equation
(2.3) if it is continuously differentiable and satisfies the initial value problem

AF(t) = BF(¢), F(0) =P, (2.4)
where P is the spectral projection onto the right finite deflating subspace of the pencil AA — B.

The matrix F(t) is a generalization of the matrix exponential that is the fundamental solution matrix for linear
time-invariant ordinary differential equations [18].

Theorem 2.1. Let AA— B be a regular pencil. There exists a unique fundamental solution matriz F(t) of equation
(2.3). Moreover, the initial value problem

Az(t) = Bz(t), P (z(0) —z0) =0 (2.5)
has a unique solution x(t) € im P for all xg € C*. This solution is given by x(t) = F(t)xg.

Proof: Let the pencil AA — B be in Welerstrass canonical form (2.1). Then it is easy to verify that the matrix

oy =1 o )7 26)

satisfies the initial value problem (2.4).

Let us suppose that there exist two fundamental solution matrices Fi(t) and Fy(t). Then their difference F(t) =
Fi(t) — Fa(t) satisfies the homogeneous system AF(t) = BF(t), F(0) = 0. Using (2.1) we obtain that this system has
only the trivial solution F(t) = 0. Hence, Fi(t) = Fa(t).

The straightforward verification that the function z(t) = F(t)xo is a unique solution of the initial value problem
(2.5) concludes the proof. O

Note that the initial condition F(0) = P can be replaced by the equivalent condition P(F(0) — I) = 0 with a
certain projection P along ker P, see [21].

3 A numerical criterion for asymptotic stability

Asymptotic stability is an important property of differential equations. It is well known that the trivial solution of the
differential-algebraic equation (2.3) is asymptotically stable if and only if all finite eigenvalues of the pencil AA — B have
negative real part, e.g., [9, 21].

We consider now the problem to numerically check whether all finite eigenvalues of the pencil AA — B belong
to the open left half-plane. This problem arises also in the study of the asymptotic properties of stationary solutions
autonomous quasilinear and nonlinear DAEs [30, 37] and nonautonomous DAEs with constant coefficient linear part and
small nonlinearity [31].

Set

(A, B) = 2||(AP + B(I - P)) "' B||A*ZA],
where the matrix Z has the form

1

Z=(AP+B(I-P)" (/oo F* (t)]—“(t)dt) (AP + B(I - P))~
0
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and F(t) is the fundamental solution matrix of (2.3). If AA — B is stable, i.e., all finite eigenvalues of AA — B lie in the
open left half-plane, then Re A;(J) < —n < 0 for all eigenvalues of J in (2.1). In this case we have the estimate

J“ m—-1
et.] < 6(m ” e tn/2’
eIl < o0m) (%27)
where 6(m) is a constant that depends on m only [18]. Then it follows from (2.6) that
- J -
IO < I e) < oz (120) ™ e,

Hence, the integral in (3.1) is convergent. Moreover, we obtain from (2.1) and (2.2) that AP+ B(I — P) = WT, i.e., the
matrix AP + B(I — P) is nonsingular. Thus, &(A, B) is bounded if the pencil AA — B is stable. We set &(A, B) = oo if
AA — B has at least one finite eigenvalue with nonnegative real part.

It is interesting that the parameter &(A, B) can be used for pointwise estimation of the solution of the initial value
problem (2.5). We will use a similar technique as in [19].

Theorem 3.1. Let x(t) be a solution of the initial value problem (2.5). Then
o)l < V(A B) e~ WAPHBU=PNTBIEAL) | Py | (3:2)

Proof: If &(A, B) = oo then inequality (3.2) is fulfilled. Assume that &(A, B) < co. Let us consider for ¢ > 0 the
matrix-valued function

- /t " P (s)F(s)ds

Using the properties of the fundamental matrix F(t + s) = F(¢)F(s) = F(s)F(t), we have
/ F*(5)F(s)ds = F* (¢ {/ F* (s }f(t):
= F*(t)(AP+ B(I - P))"Z(AP + B(I - P))]—'( ) = F*(t)A* ZAF(t).

Differentiating the matrix Y (t), we obtain for an arbitrary vector z € C* that

4 (e, =~ ) < - A IATORT 09 (0o
and, hence,
(N 2y (0z,2) <0,

This estimate yields

(F*()A*ZAF(t)z,z) = (Y ()2, 2) < e VI 24y (0)z2, 2) = e /1A ZANA* 2 AP2, P2). (3.3)
Furthermore, it is not difficult to verify that

F(t) = et(AP+B(1—P))—1BP — Pet(AP-',—B(I—P))_l

Then, taking into account that ||e/(AP+BUI-P)T"Bpy|| > ¢~ [tI(AP+BI-P))™"B|l|| p,|| see [18], we have

(A*Z APz, Pz) = (AP + B(I — P))*Z(AP + B(I — P))Pz, Pz) = /oo | F(t) Pz||dt >
0

‘ (3.4)
2
> |22 /OO o 2UI(AP+B(I-P)"'Bl| gy — [|Pz]| _
- 0 2||(AP + B(I - P))~'B|
Substituting in (3.4) the vector z = F(t)xo we obtain
2@ = [ F@®)zoll* < 2/l (AP + B(I = P)) " BI|(A* ZAF (t)z0, F(t)o)-
Finally, using (3.3) with z = Pz we obtain estimate (3.2). O

If &(A, B) is bounded, then it follows from (3.2) that ||z(t)|| — 0 as t — oo, i.e., the trivial solution of equation (2.3)
is asymptotically stable. On the other hand, the asymptotic stability implies that &(A4, B) < co. Thus, the boundness
of &(A, B) is equivalent to the property of the trivial solution of (2.3) to be asymptotically stable.

The following example shows that estimate (3.2) is reached.
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Example 1. Consider the differential-algebraic equation

Ag.i'(t) = B(;a:(t) (3.5)
with
1 0 0 -1 0 O
As = 06 0], Bs = 0 -6 0
0 0 O 0 0 1

For 0 < &, the general solution of (3.5) is z(t) = e~tPx and, hence, the trivial solution of (3.5) is asymptotically stable.
We have &(As, Bs) = 1 and from (3.2) it follows that ||z(t)|| < e~¢||Pzo||. However, for § = 0 the pencil AA; — Bs is
singular, i.e., under a perturbation of norm § the trivial solution of (3.5) is any no more asymptotically stable.

It is possible to derive from (3.2) a weaker bound for the solution z(t). Indeed, using [|[A*ZA| < ||A|]?||Z]] we
obtain the estimate

lz(#)]| < V2IAPIZIIAP + BT = P) Bl e~/ CIAIFIZD || Py | =
= V&(4, B)A[[(AP + B(I — P))~}|| e 1B/ UAIKAED | Py,

where k(4, B) = 2||A[||| B|[|Z]l-

In spite of the fact that bound (3.6) may overestimate the solution z(t) of (2.5), the parameter x(A, B) also
characterizes the behavior of z(t) at infinity. Moreover, k(A, B) in contrast with &(A, B) may be more useful to estimate
the robustness for the asymptotic stability. We see in Example 1 that (A, Bs) = =2 — 0o as § — 0 and, hence, (3.5)
approaches to an unstable system.

Note that for A = I both the parameters &(A, B) and (A, B) coincide with the parameter &(B) introduced in
[5, 18] to study the asymptotic stability of linear ordinary differential equations.

(3.6)

4 Generalized Lyapunov equations

It is well known that the study of the asymptotic behavior of solutions of ordinary differential equations is directly related
to the analysis of Lyapunov matrix equations, see [13, 18]. In this section we present a generalized Lyapunov equation
that can be used to investigate the asymptotic stability of the differential-algebraic equation (2.3).

Consider the generalized Lyapunov equation

A*ZB + B*ZA = —P*CP, (4.1)

where A, B, C € C™" are given matrices, P is the spectral projection onto the right finite deflating subspace of
AA — B and Z € C™" is the unknown matrix. If A is nonsingular, then P = I and (4.1) is equivalent to the standard
Lyapunov equation ZBA~! + (BA™1)*Z = —A=*CA~! that has a unique Hermitian, positive definite solution Z for
every Hermitian, positive definite matrix C if and only if all eigenvalues of the matrix BA™! lie in the open left half-plane
[13].

For a singular matrix A the solvability of (4.1) depends only on the structure of the finite spectrum of AA— B. The
following theorem gives a necessary and sufficient condition for the existence of solutions of the generalized Lyapunov
equation (4.1).

Theorem 4.1. Let AA — B be a regular pencil and let P, 11 be the spectral projections onto the right and left
finite deflating subspaces of A\A — B. There exists an Hermitian, positive semidefinite matriz Z satisfying the generalized
Lyapunov equation (4.1) with an Hermitian, positive definite matriz C if and only if the pencil \A— B is stable. Moreover,
if the solution of (4.1) satisfies Z = ZI1, then it is unique and given by

z=" /Oo (i€A — B)™*P*CP(itA — B)~'dt. (4.2)
2m J_

Proof: Let the matrix pencil AA— B be in Weierstrass canonical form (2.1), where all eigenvalues of J have negative
real part. Let the matrices

- - Ti1 Tio Zn Zia
T=*CT™ ' = d W*ZW = 4.3
( T, T ) an ( Zn Ton ) (43)
be partitioned in blocks accordingly to A and B. We have from (4.1) the decoupled system of equations
ZnJ +J* Zn = ~Tn, (4.4)
Zyo + J*Z12N =0, (4.5)
N*ZonJ + Z =0, (4.6)
N*Zoos + ZooN = 0. (4.7)
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Since all eigenvalues of J lie in the open half-plane, the Lyapunov equation (4.4) with the Hermitian, positive definite
T11 has a unique Hermitian, positive definite solution which is given by

Z1 = % /oo (i€ — J) 7T (i€ — J)~'dg,

see [18]. Because the matrices J~* and —N have disjoint spectra, equations (4.5), (4.6) are uniquely solvable [25] and
have the trivial solutions Z12 = 0 and Z2; = 0. Equation (4.7) has not unique solution [25]. From Z = ZII we obtain
that Zss = 0 which also satisfies (4.7). Thus, the generalized Lyapunov equation (4.1) together with Z = ZII has the
unique Hermitian, positive semidefinite solution Z given by (4.2).

Assume now that an Hermitian, positive semidefinite matrix Z as in (4.3) satisfies (4.1) with an Hermitian, positive
definite matrix C'. Then equations (4.4)-(4.7) are fulfilled. Since T} is positive definite and Z;; is positive semidefinite,
we have from (4.4) that the eigenvalues of J have negative real part, i.e., all finite eigenvalues of the pencil AA — B lie
in the open left half-plane. O

Remark 4.1. Note that the assertion of Theorem 4.1 remains valid if the matrix C' is positive definite only on
the subspace im P, i.e., (C'z,2) > 0 for all nonzero z € im P, since in this case the property of the matrix 71, in (4.3) to
be positive definite is preserved.

We will now establish a connection between the solution of the generalized Lyapunov equation and the differential-
algebraic equation (2.3). This connection is well known for the standard Lyapunov equation (A = I) and the linear
ordinary differential equation, see [18, 24].

Let the pencil AA — B be stable and let Z be the Hermitian solution of the generalized Lyapunov equation

A*ZB+ B*ZA= —P*P (4.8)
together with Z = ZII. For all nonzero solution z(t) € im P of the differential-algebraic equation (2.3) we have

%(A*ZAﬂf(t),w(t)) =((A"ZB + B*ZA)x(t), x(t)) = —(Px(t), Px(t)) = —(x(t), z(t)).
The quadratic form (A*ZAx,z) is an extension of the Lyapunov function for ordinary differential equations [18] to

differential-algebraic equations. Furthermore, taking into account the relation

o

1 .
et = e (iel — J)Lde,

=g- N

see [18], we obtain from (2.6) that

F(t) = X / b et P(i¢A — B) "L Ad¢, (4.9)

—0o0

i.e., the entries of the matrix P(i€A — B)~1 A are the Fourier transformations of the entries of the fundamental solution
matrix F(t). Then it follows from (4.2) with C' = I and Parseval’s identity [35] that

A*ZA = % /_Oo A*(i€A — B) *P*P(itA— B) ' Ad¢ = /0 F*(t)F(t)dt.

Thus, the solution of the generalized Lyapunov equation (4.8) may be used to compute the parameters &(A, B) and
k(A, B) that characterize the asymptotic stability of the differential-algebraic equation (2.3).

The numerical solution of the standard Lyapunov equation has been studied in numerous publications, see, e.g.,
[2, 23] and the references therein. Numerical methods for the generalized Lyapunov equation with nonsingular A have
been considered in [3, 14, 15, 34]. However, the case of singular A is more complicated, since the solution of the generalized
Lyapunov equation is not unique. We need the special solution Z of (4.8), namely, such that Z = ZII. In the next section
we present an algorithm for computing the projections P, IT and the desired matrix Z for the matrix pencil AA — B with
index at most one.

5 Computing projections and the matrix 7

We now assume that the matrix pencil AA — B is regular of index at most one. Recall that AA — B has index one if and
only if the matrix A + B(Q is nonsingular for any projection () onto the nullspace of A [21]. In this case the spectral
projections P and II onto the right and left finite deflating subspaces of AA — B can be represented as

P=1-Q(A+BQ)'B, I=1I-BQA+BQ)™, (5.1)

see [21]. The norms of these projections characterize the conditioning of the deflating subspaces of AA — B associated
with the finite and infinite eigenvalues and the property of AA — B to be regular of index one. A large value of ||P|| or
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||TT|| indicates that the problem to find the finite deflating subspace of the pencil AA — B with index one is ill-conditioned,
i.e., either the finite and infinite eigenvalues are hard to be separated from each other, or AA — B is nearly a pencil of
index greater than one or a singular pencil.

We now describe an algorithm for computing the projections P and II for the matrix pencil AA — B of index one.
Let » = rank A and let

A:V(§ 8)U (5.2)

be the singular value decomposition of A [17, 20], where U and V are unitary matrices and ¥ is a nonsingular diagonal
(r x r)-matrix with positive diagonal elements o1 (A4) > 02(4) > ... > 6,-1(4) > 0-(A) > 0 which are the nonzero
singular values of A. Then

1 0 0 *
@ _U(o In_T>U

is the orthogonal projection onto ker A. Let the matrix

* Bll Bl2
V*BU = .
( By B ) (53)

be partitioned in blocks in accordance with V*AU. Then from (5.1) with @ = Q1 we obtain

_ I 0 . _ I —B13B5, .
P_U(_BQ_;B210>U, H_V(O 0 V*. (5.4)

The accuracy in the computation of the projections P and II will clearly depend on the condition number of By, with
respect to inversion. But it also depends on the condition number of ¥ as is shown in the following example.

Example 2. Let

100 100
A= 0 € O and B=|0 01
0 00 01946

For € # 0 we have Bss = 4. If § is small, then the pencil AA — B is nearly a pencil of index two. If ¢ = 0, then the
2 X 2-matrix Bss is well-conditioned for § not too large. But for ¢ = 0 the dimension of the finite deflating subspace
changes.

If the matrices ¥ and Bss are well-conditioned, then we can easily compute the Weierstrass canonical form (2.1).
The transformation matrices W and T are given by

_ ¥ B . I 0 "
W_V(O 322)’ T_(Bz_len I)U’

and the block .J associated with the finite eigenvalues has the form J = ¥~}(B;; — B12B2_21B21). Note that a transfor-
mation of J to Jordan form is not necessary.
Consider now the generalized Lyapunov equation (4.8). Let the matrix

X1 Xio *
zZ=V « Vv 5.5
( Xis Xoo ) (5.5)
partitioned conformally with A in (5.2) be the solution of (4.8). Substituting (5.2)-(5.5) in (4.8) and Z = ZII, we obtain
2*X11Bi1 + £*X12Bo1 + Bj; X112 + B3 X1, = —(I + B}, B3y By, Bot), (5.6
Y*X11B12 + X* X12Byp = 0, (5.7)

Xy = =X}, B12B5".
It follows from (5.7) that X125 = —X1; B2 By, . Inserting X5 in (5.6) we have

¥ X1 (Bi1 — 3123521321) + (B11 — BwB;QlBgl)*XHE =—(I+ B;lB;;B;;Bgl). (5.8)
Thus, the matrix

X1 —X11B12 By )
7=V e . 22 V*,
( —B'Bf,X11 By BiyX11B12B3y'

where X, is the solution of (5.8), satisfies (4.8) and Z = ZII.
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We rewrite the generalized Lyapunov equation (5.8) as
S* X1 F + F*X1 % = —D, (5.9)

where F = By1 — 312B22 By and D = I + B3, B3, B;, ! Boy. This equation with nonsingular ¥ can be solved using the
generalized Bartels-Stewart algorithm [14, 15, 34] or the sign function method [3].

Note that for computing the matrix D we have to multiply the matrices B3, By, and By, Bs;. This may lead to
a larger sensitivity, in the worst case the condition number may be squared. In fact, this multiplication is not necessary.
The matrix D can be represented as

I : I
_ * —*xn—1 —
D =1+ B}, B5;'Bss Bay = [ By B ] { By B ] .

Then using the generalized Hammarling method [34] we compute the solution of (5.9) in factored form X;; = Y*Y. In
this case the solution Z of (4.8) can be written as

Z=V[I -Bi:By |"Y'Y[I -BuBy, |V*.

Hence, ||Z|| = ||[Y[I - B12B5;']||? and ||A*ZA|| = ||[YZ|%.
The described methods to compute the projections P, II and to solve the generalized Lyapunov equation (4.8) can
be used if the matrices ¥ and Bss are well-conditioned. Since

cond(X) < cond(A + BQY) and cond(Bjs) < cond(A + BQ1),

we can take the condition number of the matrix A + BQ' as a measure for the sensitivity of the projection onto the
finite deflating subspace of the pencil AA — B of index at most one.

6 Perturbation analysis for the projections

The numerical computation of the deflating subspaces associated with specified eigenvalues of a regular matrix pencil
and condition estimations for this problem have been studied extensively in recent years, e.g., [1, 10, 28]. Unfortunately,
this problem may be ill-conditioned, since arbitrary small perturbations may change the structure of subspaces and even
their dimension. In this section we present an error and perturbation analysis for the spectral projections onto the right
and left finite deflating subspaces of the pencil AA — B of index at most one computed by the method described in Section
5.

The computation of the projections P and II requires as a first step the decision about the numerical rank of A. The
usual procedure is to compute the singular value decomposition of A and to set all singular values satisfying o; < ec||Al|
to zero, where ¢ is a constant and € is the machine precision. If A and B are perturbed then the same procedure is
performed. Due to the perturbation the numerical rank of A may change and, hence, also the spectral projections P and
IT may change to P and II, respectively. Even if we assume that the rank decision yields the same result r in both cases,
then the accuracy of P and IT depends on the gap between o, and o,41 which is defined as

1Al
Or (A) —Or41 (A) )

Consider the perturbed matrices A = A+AA, B = B+ AB, where ||AA|| < ¢||A|] and ||AB|| < ¢||B]|. Let r be the
numerical rank of A and let PL and P be the orthogonal projections onto the spans of the right singular vectors of A
and A, respectively, corresponding to their largest r singular values. Set A, = AP+ and A, = APL. Then Q+ =T- P+
and QL = I — P are the orthogonal projections onto ker A4, and ker A, with the same . We will show that if the matrix
pencil AA, — B is regular of index one, then for sufficiently small ¢ the pencil AA,. — B is regular of index one as well.

dy = (6.1)

Lemma 6.1. Let d, be as in (6.1). If the matriz (A, + BQ™ ) is nonsingular and
erll(Ar + BQH)THICIAI + 1B < 1,
where €, = (1 + 2d,), then the matriz (A, + BQL) is also nonsingular and
erll(Ar + BQH) P(IAll + 11BI])

A, + BQY)™' — (4, + BQYH)! ) 6.2
1A+ BRI = (A + BRI < 1= a5 B 1| (AT + 181 (62)
Proof: From the relation
(A, + BQY) ' = (4, + BQY) ™' — (4, + BQY) Y(A, — A, + BQ* - BQ*)(4, + BQH)? (6.3)
we obtain the estimate
I, + BG) 1) < (4. + 5 )| (6.4

1— |4, — A, + BQ* — BQH||[I(4, + B
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For 2ed, < 1 one has the bound

IPE = PH = 1§ - Q4 < 12 (65)
see [17]. Then using the identities A, = AP+, A, = APL and ||PL|| = ||Q+|| = 1 we have
|4, — A, + BQ* — BQY|| < || A - Al + ||A||||1BL — PH+ B - B[ + Bl - @*[| <
Se(l+ - )(||A||+||B||) < er(IA]l + [IBI])- (0
Combining (6.4) and (6.6) we obtain
(4, + B

I(A, + BQH) ™' <

1—e||(Ar + BQH) (Al + [I1BI)

under the condition that e,[(A, + BQ)"!(|(|Al| + |B|l) < 1. Hence (A, + BQ< ) is nonsingular if (A, + BQL) is
nonsingular. Bound (6.2) immediately follows from (6.3) and (6.6). O
As a consequence of Lemma 6.1 we have the following theorem.

Theorem 6.2. Let r be the numerical rank of the matriz A and let PL be the orthogonal projection onto the span
of the right singular vectors of A corresponding to its largest v singular values. Assume that the pencil AA, — B is of
index one, where A, = AP*. Then for e, cond(A, + BQL)(||A|| +IBI) < |4y + BQ™Y||, the perturbed pencil A, — B

is of index one. Moreover, for the spectral projections P and P onto the right finite deflating subspaces of AA, — B and
AA, — B, respectively, one has the bound

3er cond® (4, + BQ) (| Al + IBI)I1BIl
14, + BQL|(1A, + BQ|| — & cond(A, + BQL)([|A[l + [|BI]))"

1P - Pl| < (6.7)

Proof: If the pencil A4, — B has index one, then (A4, + BQ™) is nonsingular and the spectral projection onto the
right finite deflating subspace of AA, — B can be computed as P = I — Q+(A, + BQ1)~!B [21]. Then by Lemma 6.1 the
matrix (A, + BQ1) is nonsingular and, hence, the pencil / M, — B is of index one and the spectral projection P onto the

right finite deflating subspace of M, — B has the form P =1 — QJ-(A + BQJ-) 1B. Then by adding and subtracting
equal terms we obtain

IP - P|| = [|Q*(4, + BQ*) "B - Q*(A, + BQ*) 'B|| <
<N(Ar + BQ™) = (A + BQY) YIIBIl + I(Ar + BQ™) H(I(I1B = Bl| + |Q* — @*[l|BI))-
Using bounds (6.2), (6.5) and 1 < cond(4, + BQ*) < ||(A, + BQY)"Y|(||Al| + || B]|), we obtain that

1+ (A, + BQY M PAUAL+IBDIBL , 1+ sy
T ell(A, B (Af+ B el BeDTIIE] <
3¢, cond”(4, + BQL)(JA]| + [ BI)IIBI
< T4, T BQTI(1A, + BQ L — 2, cond(A, + BQL)([AT + 1B

Bound (6.7) implies that if the gap between the singular values o,. and 0,41 of the matrix A is not small, i.e., the
value d, is not large, and if the condition number of A, + BQ"' is not large, then the error of the projection P is small
for enough small . Large values of d, and cond(4, + BQ™') indicate that either the deflating subspace of the matrix
pencil AA,. — B corresponding to the finite eigenvalues is ill-conditioned or AA, — B is near to a pencil with index greater
than one.

For the projection IT = I — BQ*(A, + BQ') ', the same perturbation estimate holds.

1P — Pl <

O

7 Sensitivity analysis for the generalized Lyapunov equation

In this section we present a bound on the sensitivity of the solution Z of the generalized Lyapunov equation (4.8).
The perturbation analysis for the standard Lyapunov equation was the topic of numerous papers [18, 23, 24, 26]. The
sensitivity of the generalized Lyapunov equation with nonsingular A is studied in [29]. The analysis of the general problem
with a singular matrix A is very complicated and still not completely known. The difficulty is that small perturbations
in the stable pencil AA — B may alter strongly its eigenstructure. This may lead to the change of the dimension of the
finite deflating subspace, loss of the regularity or jumping of eigenvalues to the closed right half-plane [6].

In the sequel we consider only perturbations which exclude the case when the dimension of the finite deflating
subspace of the pencil is changed. In many practical applications this is justified. Consider, for example, semi-explicit
differential-algebraic equations

Ao (t) = B (t) + BisTo (t), (71)
0= DBz (t) + Byoxo (t), (72)
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with a nonsingular matrix Ay; [4, 32]. Equation (7.1) describes the dynamic behavior of the system, while equation
(7.2) gives algebraic constraints on the states. Obviously, it is unreasonable to consider perturbations which cause the
algebraic constraints to become differential.

Note that in the study of the asymptotic stability of the differential-algebraic equation (2.3) it is allowed for the
index of the matrix pencil AA — B to be changed by perturbations. It is important only that finite eigenvalues stay finite
and infinite eigenvalues must stay infinite. However, the perturbation analysis in this case is very complicated. We will
deal only with perturbations which preserve the nilpotency structure of the pencil AA — B, i.e., the right and left infinite
deflating subspaces of AA — B are not changed. In this case

ker P =ker P,  kerIl = kerlI, (7.3)

where P and P (II and II) are the spectral projections onto the right (left) finite deflating subspaces of the pencil A\A — B
and the perturbed pencil M — B respectively. It follows from (7.3) that

PP=P and PP =P,

~ ~ ~ 7.4
i =11 and IIIT = 1II. (7-4)

Moreover, we will assume that for the allowable perturbations AA and AB of the matrix pencil AA — B such that
[|AA| < €¢||A]] and ||AB|| < ¢||B||, we have an error bound ||P — P|| < e K with some constant K. This estimate implies
that the right finite deflating subspace of the perturbed pencil AA — B = A(A + AA) — (B + AB) is close to the right
finite deflating subspace of AA — B. For example, in the case of a matrix pencil AA — B of index at most one bound (6.7)
implies that

3(1 + 2d,) cond®(4 + BQM)([|All + | BI) | Bl
|14+ BQHI(I1A + BQ*|| — &y cond(A + BQH) (4]l + |1 BI)))

Nevertheless, under allowable perturbations the perturbed pencil may have a finite eigenvalue in the closed right
half-plane. We will show that if all finite eigenvalues of the regular pencil AA — B lie in the open left half-plane, then for
small enough €, the pencil M —Bis regular and it has no finite eigenvalues with nonnegative real part.

Consider now the perturbed equations

K =

A*ZB+B*ZA=-P'P, Z=7ZI (7.5)
The following theorem gives an error bound for the solution of (4.8).

Theorem 7.1. Let AA — B be stable and let Z be a solution of the generalized Lyapunov equation (4.8) together
with Z = ZII. Assume that for the spectral projections P and 11 onto the right and left finite deflating subspaces of the
perturbed pencil AA — B = \(A + AA) — (B + AB) with [|AA[| < e[|A]| and [|AB|| < ¢||B||, relations (7.4) are satisfied
and a bound ||P — P|| < eK < 1 holds with some constant K. If 3ex(A, B) < 1, then the pencil A\A — B is stable, the
perturbed equations (7.5) have a unique solution Z and

1Z = Z|| _ 3e (K||PIl + £(A, B))
1Z] = 1-3ew(A,B)

(7.6)

Proof: The perturbed generalized Lyapunov equation in (7.5) can be rewritten as
A*ZB+B*ZA= - (13*13 + D(Z)) ,

where D(Z) = (AA)*ZB + A*ZAB + (AB)*ZA + B*ZAA. Using (2.1) we can verify that T4 = IIAP = AP
and TIB = IIBP = BP. Analogous relations hold for the perturbed pencil AA — B. Then by (7.4) we obtain that
Z = ZII = ZIII = Z1I and

ZA=ZUA=ZAP = ZUAPP = ZAP, ZA=ZUA=ZAP = ZUAPP = ZAP.
These relationships remain valid if we replace A by B and A by B. In this case we obtain

P*P+D(Z) = P* (ﬁ*ﬁ + D('Z”)) p=p (I + D('z”)) P. (7.7)
Then the perturbed equations (7.5) are equivalent to

A*ZB+ B*ZA=-P*(P*P+D(Z))P, Z=ZIL

Since the pencil AA — B is stable, then by Theorem 4.1 these equations have a unique solution Z that has the form

oo

Z (i¢A — B)~*P* (P*P+D( )) P(i€A — B)'de. (7.8)

o2
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Thus, we have the integral equation Z = T (Z ) with respect to unknown matrix Z, where

I(Z) = % /_Oo (i€A — B)~*P* (13*13 + D(Z)) P(i€A — B)~lde.

From [[D(Z)]| < 2(IAAJIBI| + |ABIIAIDIZI| < 6lIANlIBII[I Z]| we obtain that

I5(2) - T(20)] = H% | iea-mpoz - z)piea - B)lde <
< ID(Z = 211211 < 3eh(A, B)|Z1 - 2]

for any matrices Z; and Zs. Since 3ek(A4, B) < 1, the operator Z(Z) is contracting. Then by the fixed point theorem
[27] the equation Z = Z(Z) has a unique solution Z and we can estimate the error

~ 1 [ o~ ~ ~
\Z - 2| = H o / (i€A — B)~* P* (P*P +D(Z) - P*P) P(i€A — B)ldgu <
7T — 00
< (I17*P - PP+ ID(Z)]) 11 2.
Taking into account that
|P*P — P*P| < ||P - P||(|IP - P|| +2||P||) < 3K]||P]|

and ||D(Z)|| < 6¢||A||||1BI|(/1Z]| + ||Z — Z]||) we obtain the relative perturbation bound (7.6). O

Bound (7.6) shows that for not large (A, B) and K||P||, the solution of the perturbed equations (7.5) is a small
perturbation of the solution of (4.8) together with Z = ZII. The parameter (A, B) may be used as a condition number
for the generalized Lyapunov equation (4.8).

8 Numerical experiments

In this section we present results of numerical experiments of computing the projection P and the parameters &(A, B),
k(A, B). Computations were performed in MATLAB 5.2 on HP-UX 10.20 workstation using double precision arithmetic
with machine precision € & 2.2-107!¢. In the rank decision problem we set the computed singular value o;(A) to zero if
0;(A) < en||A||. The number of remaining nonzero singular values is taken to be the numerical rank of the matrix. To
solve the generalized Lyapunov equation (5.9) we use the generalized Bartels-Stewart method from [34]. The normalized
residual

|A*ZB + B*ZA + P*P|
2(AlLIBIHI Z]]

is a measure of the quality of the computed solution of the generalized Lyapunov equation (4.8).

A:'

Example 3. [9, Example 1-3.1] Consider the system

Ai(t) = Bx(t) + Fus(t) (8.1)
with the measured output y(t) = Gz(t), where
L 0 00 0 1 00 0
o010 1/C 0 0 0 | o
A= 000 0} B= —-R 0 0 1 |’ F= 0 ’ (8.2)
0 00O 0 1 11 -1

G=(0 0 10), a@)=(It vt ve) ovr®t) )"

Equation (8.1) with (8.2) describes a simple RLC electrical circuit. The voltage source v(t) is the control input, R = 2,
L = 1.1 and C = 10* are the resistance, inductance and capacitance, respectively, vg(t), vz (t) and vo(t) are the
corresponding voltage drops and I(t) is the current. For the proportional output feedback control vs(t) = Ky(t) =
KGz(t) we have the closed loop system Az(t) = (B + FKG)xz(t). The finite eigenvalues of the matrix pencil AA — B
with Bx = B+ FKG are given by

R R\’ K-1
Arz2 = =57 \/(ZL) L

It is easy to see that if K > 1, then the pencil AA — Bk has one eigenvalue in the closed right half-plane, and both its
finite eigenvalues have negative real part, otherwise.

Table 1 gives the numerical results for different values of K. For all K the gap is do = 1.1. We see that as
K approaches to 1, the values of ||A*ZA|| and, respectively, &(A, Bk), (A, Bxk) increase. For K = 1, the Lyapunov
equation (4.8) is not solvable.
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Table 1: Example 3
K cond(As + BkQ71) A [|A*ZAl| 2(A, Bk) k(A, Bg)
0 3.9022 3.57-10720 | 6.0525-10% | 1.7114-10% | 3.3018-108
1-1072 3.9022 2.36-10720 | 3.0253-10°% | 6.0509-10° | 1.6502-10°
1-10"* 3.9022 2.53-1072° | 3.0250- 107 | 6.0500- 10'* | 1.6500 - 10'2
1-10-° 3.9022 1.73-10720 | 3.0250-10° | 6.0500-10'3 | 1.6500 - 10*
1 3.9022 - 00 oo 00

Example 4. [22] The following example is a model for the transistor amplifier. The equation has the form

dy
A2 = 8.3
praRACON (83)
where
¢, G 0 0 0 -G+ B
¢, -C¢ 0 0 0 —& + (g + 75) +0.01g(y2 — ys)
A=| 0 0 -C 0 0 |, fly= —9(y2 —ys) + £
00 0 -G G — 7, = +0999(y> — ys)
0 0 0 03 —03 Y5
Rs
with

g(z) = 10~ (ez/°~°26 - 1) . U.(t) = 0.1sin(200mt); Ry = 1000;

Cr=k-107% £k=1,23; Rp =9000, k=1,...,5.
Asymptotic stability of the stationary solution y, of (8.3) is equivalent to asymptotic stability of the trivial solution of
the linearized system Az(t) = Bz(t) with B = f'(y.) [30].
The stationary solution of (8.3) is given by y. = (0, 2.98582, 2.83616, 3.19220, 0)7. The following computed
parameters
d3 = 37

cond(As + BQ1) = 7.9915 - 10*, [|P|| = 1.0656 - 102,

A=1.0661-10""8  a(A,B)=1.2077-105  k(A, B) = 4.7521-10°.
show that the pencil AA — B is of index 1 and has no finite eigenvalues in the closed right half-plane, i.e., the stationary

solution y. of (8.3) is asymptotically stable.

Conclusion

We have derived parameters that can be used to investigate the asymptotic stability of the trivial solution of linear
DAE without computing the eigenvalues of the corresponding matrix pencil explicitly. To determine numerically these
parameters it is necessary to compute the spectral projections onto the right and left deflating subspaces of the pencil
corresponding to the finite eigenvalues and to solve a generalized Lyapunov equation. We have described a method for
computing such projections and for solving the generalized Lyapunov equation for the matrix pencil of index at most one.
This method is based on the singular value decomposition and admits error analysis for the computed projections. The
sensitivity of the generalized Lyapunov equation under allowable perturbations which preserve the nilpotency structure
of the pencil has been discussed. The computation of the projection onto the finite deflating subspace and the solution
of the generalized Lyapunov equation for a pencil of higher index together with a complete perturbation analysis are still
open problems and currently under investigation.
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