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Abstract We consider passivity-preserving model reduction of d¢ireguations
using the bounded real balanced truncation method apmiedvMoebius-transfor-
med system. This method is based on balancing the solutfdhe projected Lur’e
or Riccati matrix equations. We also discuss their numésickution exploiting the
underlying structure of circuit equations. A numerical rexde is given.

1 Introduction
A modified nodal analysis (MNA) for linear RLC circuits yiedc linear system of
differential-algebraic equations (DAES)

EX(t) = AX(t) +Bu(t), (1)

y(t) = Cx(v),
where
T -1
A.cCAT 00 —AR AL —A, —A, A, 0
E=| 0 £ 0|, A= Al 0 0|, B=-|0 0|=C".
0 00 Al 0 0 01

HereA. € R, A e R, A, e R™", A cR™™ andA € R™" gzrt)a
incidence matrices describing the circuit topology, ands andc are resistance,
inductance and capacitance matrices, respectively. LIRE& circuits are often
used to model interconnects, transmission lines and pikgues in VLSI networks.
In the following we will assume that

e the matrixA , has full column rank;

e the matrix[A., A, , A, , A, ] has full row rank;

e the matrice®® , £ and¢ are symmetric and positive definite.
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These assumptions guarantee that the pareil Ais regular, i.e., déAE —A) £0.
Moreover, system (1), (2) isassive, i.e., it does not generate energy, ardpro-
cal, i.e., its transfer functiois(s) = C(sE — A) 1B satisfies the symmetry relation
G(S) = SG(S) T Sy With an external signatur®,,, = diag(ln,, —In,, ), see [1]. Fur-
thermore, passivity is equivalent to tipesitive realness of G meaning thaG is
analytic in the open right half-plan@, andG(s) + G’ (3) is positive semidefinite
forallse C, see[2].

The numben = n, + n, + n,, of state variables in (1) is related to the number of
circuit elements and usually very large. This makes theyaisabnd numerical si-
mulation of circuit equations unacceptably time consumittgerefore, model order
reduction is of great importance.

A general idea of model reduction is to approximate the lsge system (1)
by a reduced-order model

EX(t) = AX(t) +Bu(t), 3)

y(t) = CX(t)

whereE, Ac R, Be RM € e R™ and/¢ < n. It is required that the approxi-
mate system (3) captures the input-output behaviour ofq(B) tequired accuracy
and preserves passivity and reciprocity. The preservafidinese properties allows
a back interpretation of the reduced-order model (3) as ectrédal circuit which
has fewer electrical components than the original one [1, 2]

Krylov subspace based methods [3, 4] are mostly used modiettien methods
in circuit simulation. Although these methods are efficiéort very large sparse
problems, stability and passivity are not necessarilygme= in the reduced-order
model. Passivity-preserving model reduction methodsdaseKrylov subspaces
have been developed for standard state space systems ffel )]s for structured
generalized state space systems describing interconimecits [4, 7, 8]. Despite
the successful application of these methods in circuit Etan, they provide only
a good local approximation and, so far, there exist no glelrar bounds.

Balanced truncation is another model reduction approactmaanly used in con-
trol design. In order to capture specific system propertigigrent balancing tech-
niques have been developed for standard state space systgm§9, 10] and also
for DAEs [11, 12]. An important property of balancing-reddtmodel reduction is
the existence of computable error bounds. Balanced triomciatbased on the trans-
formation of the dynamical system into a balanced form whausgrollability and
observability Gramians are both equal to a diagonal mafiven a reduced-order
model is determined by the truncation of the states corredipg to small diagonal
elements of the balanced Gramians.

In this paper, we present a passivity-preserving modelatémtumethod for cir-
cuit equations (1), (2) that is based on so-called boundalidoadanced truncation
applied to a Moebius-transformed system. It requires leidgntwo Gramians that
satisfy the projected Lur'e equations. Under some assomptuch equations can
be rewritten as the projected Riccati equations. We alstudssthe numerical so-
lution of these matrix equations via Newton’s method and@né some results of
numerical experiments.
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Throughout the papeR™™ denotes the spaces ofx m real matrices and\"
stands for the transpose Afc R™™. An identity matrix of ordem is denoted by,
or simply byl. Further, for symmetric matrice§,Y € R™", we writeX >Y (X >Y)
if X —Y is positive (semi)definite. For a real diagonal maiix= diag(d,,...,d),
we havegD| = diag(|d,],...,|dn|) and sigriD) = diag(sign(d, ),...,sign(dn)).

2 Passivity-preserving balanced truncation

In this section, we present a passivity-preserving balkdaencation method for
circuit equations. This method is based on the fact thatrdrester functiorG(s) is
positive real if and only if the Moebius-transformed fuiocti

-1
9(s)=.#(G(s)) == (1-G(9) (1 +G(9)
is bounded real, i.e.,¥ is analytic inC,, andl —%(s)%" (3) is positive semidefinite
for all s€ C,, see [2]. Note that foG(s) = C(sE — A) "B+ D with a nonsin-
gular matrix| 4+ D, the transfer functiol¥ (s) = .#(G(s)) can be represented as
G(s)=C(s8 — ) 2B+ P, where
&=E, o=A-B(+D)"IC, #=-V2B(I+D) @)
¢=+v2(1+D)"1C, 2=(-D)(1+D)%
For system (1), (2), a passive reduced-order model (3) caoimputed by the
model reduction method presented in [11, 13]. First, we idemsthe Moebius-
transformed syster¥ = .#(G) and apply a bounded real balanced truncation

method to¥, i.e., to (4). The obtained bounded real reduced-ordeleﬂyf?t is
then transformed int® = .# (¢) which is positive real.

2.1 Bounded real balanced truncation

The bounded realness@fimplies that4 is proper, i.e., there exiskd, = Sliirgog(s).
Furthermore, foE, A, B andC as in (2), theprojected Lur’ e equations !

EX(A-BC)T + (A—BC)XE' + 2RBBTRT = —2KK{, )
EXCT—RBM{ = —-KJ!, 33 =1-MM, X=RXRT >0,
and
ETY(A—BC)+(A—BC)YE +2R'C'CR = —2K/K,, )
—ETYB+R'C™My=—-KJJ,, IIp=1-M{M, Y=PRTYR >0,
are solvable foX € R™, K. € R, J. € R™MandY € R™", K, € R™", J, € R™M,
respectively, see [13]. HerE, andR are the projectors onto the right and left defla-
ting subspaces of the pendE — A+ BC corresponding to the finite eigenvalues
along the right and left deflating subspaces corresponditiget eigenvalue at infi-

1 These equations are named after the Russian mathematiciangineer A.I. Lur'e (1901-1980).
In the literature, they are also known as Kalman-Yakubovich-Pepoations [14].
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nity. The minimal solutions<_;, andY,,;, of (5) and (6) that satisfy & X, < X
and 0<Y,,;, <Y for all symmetric solutionX andY of (5) and (6), respectively, are
called thebounded real controllability Gramian and thebounded real observability
Gramian of 4.

In the bounded real balanced truncation method, we deterthexCholesky fac-
torsRandL of X,;,, = RR" andY,,,, = LLT, respectively, and compute the singular

value decomposition

LTER= [Uy, U, ]diag(1,, ”2)[V1»V2]T,
where[U;, U,] and V,, V,] have orthonormal columng], = diag(rcllll,...,n;llr)
andl'l2:diag(erlI,rH,...,rqqllq) with m >...>m% >m > ... > 1. The va-
lues m; are called thecharacteristic values of ¢4. They determine the importance
of state variables. A reduced-order model #r= &£, </, ,€,1] as in (4) can

be computed by projection onto the left and right subspaoe®gponding to the
dominant characteristic values. Such a model is giveryby (&, o7, B, €, 1]

with T
- 1o . [WT(A—BC)T 0
g—{o o}’ ”—{ 0 ]
~ _ T ~
%_{ \/gw B], 7 =[V2CT, Cu],

whereW = LU, M. %/2, T =RV;N_*/?, and the matriceB., andC., are chosen such

2.2 Application to circuit equations

By exploiting the structure of circuit equations, the mogluction procedure pre-
sented above can be made more efficient and accurate. Ssnb#NA matrices in
(2) satisfy

T T T
E :SntESnU A :SntASnt’ B :SextCSntv

where§, = diag(ln,, —In, ,—In ) andS,,; = diag(ln, , —In ), we find that

R =Sn PrTSnt’ Xinin = Sint Ymin Snt = Sntl LT S-lr—ﬂ =RR'.

Thus, for the linear circuit equations (1), (2), it is enodgltompute only one pro-
jector and solve only one projected Lur'e equation. Anoftrejector and also the
solution of the dual Lur'e equation are given for free. Farthore, we can show
thatLTER = LTES,L is symmetric. Then the characteristic valugsan be com-

puted from an eigenvalue decompositionLSESmL instead of a more expensive
singular value decomposition. Finally, using the symmefryl — M,)S,,;, we can
determineB., andC., from the eigenvalue decomposition @f— M) S,y

Summarizing, we obtain the following PAssivity-preseryiBalanced Trunca-
tion method for Electrical Circuits (PABTEC).
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Algorithm 1 Passivity-preserving balanced truncation for electrical circuits.
GivenG = [E, A, B, C] as in (2), compute a reduced-order mo@ek [E, A, B, C].
1. Compute the Cholesky factbrof Y, ;. = LLT that is the minimal solution of the
projected Lur’e equation (6).
2. Compute the eigenvalue decomposition
LT ESnL = [Uy, Uy JdiagiAg, Ay)[Uy, Uz}Tv
where[U,, U,] is orthogonalA; = diag(A,l, ..., Arl), A, = diag(A, 41,..., Aql)
and|Ay| > ... > (A > A 4| > ... > [Aql.
3. Compute the eigenvalue decompositidn- M) S, = UgAUg , whereU, is
orthogonal ana\, = diag(f\l, e ,ﬁm).
4. Compute the reduced-order system
E:{I 0} A:l{ 2WTAT \@WTBCM}

00 2 |=V2BwCT 21 —BwCo

s V2[v/2w'B < V2
5_7{ 5 ] €= [vaeT cl,
where Bi, = §|Ag|Y2Ug S, Ceo =Ugl A2, § = sign(Ay),

W=LUA |72, T =§,LU;S A2 8 =sign(A,).

One can show that the reduced-order system (7) is passiveeaipdocal [13].
Furthermore, we can estimate tHg-norm of the error defined as

IG—Glly, = sup||G(s) —G(9)],
seC,

where|| - || denotes the spectral matrix norm||If+ G| (7, +...+7g) <1, then
we have the following error bound

- N +Glf, (gt +Th)
G-G < =
I HHW*1—|\|+G||Hm(7;+l+...+m)

; (8)

see [11] for details.

3 Computation of the bounded real Gramian

If 1 —MJ M, is nonsingular, them —MyM{ is also nonsingular and the projected
Lur'e equation (6) can be rewritten as the projected algelieccati equation

ETYA+ATYE+ETYBB'YE+P'C'CR =0, Y=PRTYR, 9)

where A = A — BC — 2RB(I — M{M,)"*MJCR, B = v2RBJ; ¢, C = V2 'C,
I3 =1-MIM, and I3 =1 —MyMJ. One can show that the minimal solu-
tionY,;, of (6) is at least a semi-stabilizing solution of (9) in these that all the
finite eigenvalues oiE — A—BBTY . E are in the closed left half-plane. Thus, the
bounded real Gramiayj,;,, can be computed by solving (9) via Newton's method.
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Algorithm 2 Newton's method for the projected Riccati equation.
GivenE, Ac R™", B e R"™", C € R™", projectorsR, R and a stabilizing initial
guessy,;, compute an approximate solution of the projected Riccataé&on (9).
FORJ - 1,2,...7jmax
1. ComputeK; = BTY, ,E andA; = A+BK;.
2. Solve the projected Lyapunov equation
T T _ _PT(ATA _ kT _pT
END FOR

Similarly to the standard state space case [15, 16], onelwam that if all the
finite eigenvalues oA E — A have negative real part, then starting with= 0, all
AE —A; have finite eigenvalues in the open left half-plane only andvt =Y, ..

J—>oo

Some difficulties may occur if the pendiE — A has eigenvalues on the imaginary
axis. This problem remains for future work.

If the eigenvalues of;,, decay to zero very rapidly, thefy,;, can be well appro-
ximated by a matrix of low rank. Such a low-rank approximatéan be computed
in factored formy, . ~ LLT with L € R, k < n. To determine the low-rank factor
L we can use the same approach as in [17]. Starting Yyith=Y, andY, , = 0, in
each Newton iteration we computg = BT (Yj-1—Y2j_1)E Aj = A+ I§KJ- and
then solve two projected Lyapunov equations

E'Y, A +ATY, E=-R'CTCR, Y, =RV, R, (10)
T T T T 1)
E YZ,JAJ+AJ Y2,jE = —Pr KJ ijr’ Y2,j :H Y21].|:17 (11)

for the low-rank factors, ; andL,; such thaty; ; ~ L, ;L1; andY,; ~ L, L],
respectively. Once the convergence is observed, an ajppatxisolutiorY,  ~ LCT
of the projected Riccati equation (9) can be computed irofact form by solving
the projected Lyapunov equation

ETYA+ATYE=-R'ClCPR, Y=RTYR (12)

with C, = [CT, ET(Y,; _ — Y, . )B]T. For computing low-rank factors of the
solutions of the projected Lyapunov equations (10)—-(12),can use the genera-
lized alternating direction implicit method [18]. Note tha this method we need
to compute the productE™ + A]) v with T € C_ andv € R". Taking into ac-

count thaE + TA; = E+ 1(A—BC) — BK; with the low-rank matrice8 € R™" and
Kj =1(J; "MICR — K;) € R™" we can use the Sherman-Morrison-Woodbury for-
mula [19, Section 2.1.3] to compute these products as

(ET+7AT) Wv=v, + M, ((|m— éTMK)*léT) v,

wherev, = (ET +1(A—BC)T) *vandM, = (ET + 1(A—BC)T) K] The latter
can be determined by solving linear systems with the spaasgx& " +1(A—BC)T
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either by computing sparse LU factorization or by usingatiee Krylov subspace
methods [20].

A major difficulty in the numerical solution of the projectegapunov and Ric-
cati equations with large matrix coefficients is that the nwaWl, and the spec-
tral projectorsR, andP, are required. Fortunately, we can exploit the structure of
the MNA matrices (2) to construct the required projectorgiplicit form using
a matrix chain approach from [21]. Furthermore, we can otaai explicit formula
for the matrixM, and derive necessary and sufficient conditions for inviittitof
| — Mg M, in terms of the circuit topology, see [13] for details.

4 Numerical example

In this section, we present some results of numerical exygaris to demonstrate the
feasibility of the PABTEC method.

Example This example describing a three-port RC circuit was pravyidg NEC
Laboratories Europe. We have a passive system of arde2007. The minimal
solution of the projected Riccati equation (9) was appr@ted by a low-rank mat-
rix Y, ~ LLT with L € R"18 using
Newton’s method. Figure 1 shows tha '
the characteristic values decay rapidl

SO we can expect a good approxime 10°}
tion by a reduced-order model. The
original system was approximated b
a model of order = 44. The spec-
tral norms of the frequency response
|G(iw)|| and||G(iw)|| for a frequency
range w € [1, 10'] are presented in -
Figure 2. We also display there the ak L T L
solute error|G(iw) — G(iw)|| and the

error bound (8).

10790

Characteristic values

10780

Fig. 1 RC circuit: characteristic values @&f.

Frequency responses Absolute error and error bound

10°

— Full order
o PABTEC, |=44

(o2

Magnitude
N
Magnitude

—e—Error

N

— Error bound

20 0 5 20

10" 10 10 10 10" 10
Frequency w Frequency w

100 105 15 15 10

Fig. 2 RC circuit: (left) the frequency responses of the original and theaed-order systems;
(right) the absolute error and error bound.
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