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Tatjana Stykel

Abstract In recent years, model order reduction has been recognizbd & po-
werful tool in analysis and simulation of integrated citsulWe consider balancing-
related model reduction methods for differential-alg@bemuations arising in cir-
cuit simulation. We show how positive real and bounded reddiced truncation
can be used for passivity-preserving model reduction afudirequations. These
methods are based on balancing the solutions of projectéd buRiccati matrix
equations and admit computable error bounds. We also digffisient algorithms
for solving such matrix equations that exploit the topobagdjistructure of circuit
equations. Numerical experiments demonstrate the peafocen of the presented
model reduction methods.

1 Introduction

Modern integrated circuits have hundreds of millions of memductor devices
whose feature size is nowadays reaching the nanometer.réhgse devices are
placed on several layers and interconnected to each othveiréy. Due to increased
packing density and interconnect length, modelling ofriedrand electromagnetic
effects is highly required in order to verify that the heahdoction and internal
electromagnetic field do not disturb signal propagationsi@e of VLSI circuits
with distributed elements is no longer possible without pater simulations that
involve numerical solution of coupled systems of partidfedential equations and
differential-algebraic equations (DAES). After spatig@aetization, such systems
have very large state space dimension that makes the anahdisimulations un-
acceptably time consuming and expensive. In this contexdiainorder reduction is
of great importance.
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A general idea of model order reduction is to approximatddige-scale system
by a much smaller model that captures the input-output behafithe original sys-
tem to a required accuracy and also preserves essentiatghgsoperties such as
stability and passivity. Many different model reductiorpepaches have been deve-
loped in computational fluid dynamics, control design aratgical and mechani-
cal engineering, see [2, 12, 70] for recent books on thictdpne of the most used
model reduction techniques in circuit simulationn®ment matching approxima-
tion based on Krylov subspace methods, e.g., [4, 30, 38]. Althdhgse methods
are efficient for very large sparse problems, the resulteduced-order systems
have only locally good approximation properties. Anotheveback of the moment
matching methods is that stability and passivity are noessarily preserved in the
reduced-order models, so that usually post-processirggided to realize these pro-
perties. Recently, passivity-preserving model reducti@thods based on Krylov
subspaces have been developed for structured systenmganisiircuit simulation
[31, 33, 45, 56] and also for general systems [3, 28, 41, 7@véver, none of these
methods provides computable global error bounds.

Balanced truncatioris another model reduction approach commonly used in
control design. In order to capture specific system progeriiifferent balancing
techniques have been developed in the last thirty yearddodard state space sys-
tems [26, 39, 53, 55, 60, 77] and also for DAEs [7, 17, 59, 63, [Mparticular,
passivity-preserving balanced truncation has been cereidn [8, 16, 60, 63, 64,
65, 83]. An important property of balancing-related modeduction methods is
the existence of computable error bounds. Unfortunateése methods have a re-
putation for being very expensive since they involve sajViprojected) Lyapunov
and/or Riccati matrix equations. However, recent develemision iterative methods
for such equations [10, 49, 57, 71, 75] show that balancedation methods can
also be applied to large-scale problems.

In this paper, we give a brief survey on model reduction ofuiirequations
using balanced truncation and its relatives. In Section & pnesent some basic
foundations from graph theory and network analysis requinethe following. In
Section 3, the balanced truncation model reduction apprimadAEs is described.
Passivity-preserving model reduction methods for ciregitations based on posi-
tive real and bounded real balanced truncation are alsadaresl. In Section 4, we
discuss numerical solution of projected Lyapunov and Riezpuations with large-
scale matrix coefficients. Section 5 contains some restiismerical experiments
demonstrating the efficiency of the balancing-related rhasthuction techniques.

Throughout the papeR™™ andC"™ denote the spaces o mreal and complex
matrices, respectively. The open left and right half-ptaaee denoted b and
C_, respectively, and = /—1. The matricesA” and A* denote, respectively, the
transpose and the conjugate transposg ©fC™™, andA~T = (A~1)T. An identity
matrix of ordern is denoted byt,, or simply byl. We use raniA) and kefA) for
the rank and the kernel @&, respectively. A matrixA € C™" is positive definite
(semidefinity if v:"Av > 0 (v*Av > 0) for all non-zerov € C". Note that positive
(semi)definiteness of does not requiréd to be Hermitian. FoiA,B € C™", we
write A > B (A > B) if A— B s positive definite (semidefinite).
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2 Circuit equations

In this section, we briefly describe the formulation of lin€a.C circuits via DAEs
and discuss their properties. For more details on graphmyteea network analysis,
we refer to [1, 22, 44, 79].

A general electrical circuit can be modelled aslieected graph® = (91,8)
whose verticesy, € 9 correspond to the nodes of the circuit and whose edges
(branches)Jkr|<2 = <nkl,nk2> € B correspond to the circuit elements like capacitors,

inductors and resistors. For the ordered pgir, = (n, ,n, ), we say thab,
I d enters, . An alternating se uelﬁcz(a b ’ n ’ n, b nl §
eaves_nkl an =~ g seq 8, Oy oo BT
of vertices and edges it is called apathconnectlng1kl andnks if b, = (n 0, 1)
] ] 1+
andnK #n, for2<i < j<s Apath isclosedif My andnkS are the same, armpen
]

if they are different. A closed path is calledaop. A graph® is calledconnected
if for every two vertices there exists an open path conngdtiem. Acutsetis a set
of edges of a connected graph whose removal disconnectsapk,@nd this set is
minimal with this property. A subgraph of the graghis called atreeif it has all
nodes of®, is connected and does not contain loops.

Any directed grapl® = (9,B) with M = {n,,... ’nnn+l} and® = {by,...,bn }

can be described by ancidence matriA, = [a,] € R™ "1 defined as

1 ifedgeb, leaves vertex,,
a, =4 —1 ifedgeb, enters vertex,,
0 otherwise

In a connected graph, amy, rows of A, are linearly independent. Thus, deleting
any row fromA, yields a full rank matrixA € R™-™ known asreduced incidence
matrix. For circuits, the deleted row corresponds to a referenogrémnding) node.
We now consider a general linear RLC circuit that containedr resistors, in-
ductors, capacitors, independent voltage sources angéndent current sources
only. Such circuits are often used to model the intercoméatnsmission lines and
pin packages in VLSI networks. They arise also in the liresion of nonlinear cir-
cuit equations around DC operating points. RLC circuitsam@pletely described
by the graph-theoretic relations like Kirchhoff’s curremtd voltage laws together
with the branch constitutive relations that characterieedircuit elementsKirch-
hoff’s current lawstates that the sum of the currents along all edges leavidg an
entering any circuit node is zerKirchhoff’s voltage lawstates that the sum of the
voltages along the branches of any loop is zero.jLet[ &, jL, il .V, if |7 € R™
andv = [vk,vE, v, W, v T € R™ denote the vectors of branch currents and branch
voltages, respectively, and let the reduced incidenceixmate [Ag, Ac, AL A, A, ]
be partitioned accordingly, where the subscript€, L,V andl stand for resistors,
capacitors, inductors, voltage sources and current seunegspectively. Then Kirch-
hoff’s current and voltage laws can be expressed in the confipan as

Aj=0, ATn =y, 1)
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respectively, wherg € R™ denotes the vector of potentials of all nodes excepting
the reference node.

Thebranch constitutive relationf®r the linear capacitors, inductors and resistors
are given by

CEEO=icl),  WO=LTi0, WO=Ri0, @

wherec e Re'c, £ ¢ R™" and® € R™®"r are thecapacitanceinductanceand
resistance matricegespectively. These matrices are often diagonal and thieir
gonal entries are the capacitances, inductances andaressst of the capacitors,
resistors and inductors, respectively. However, the diabetructure gets lost in
case of mutually coupled elements®fand £ are nonsingular, theg = 9{’1 and
S=r tare theconductancendsusceptance matricegespectively.

Using relations (1) and (2), the behaviour of a linear RL€wircan be described
via modified nodal analysis (MNA) [79] by the following systieof DAES

Ex(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Dul(t), ?
where
ACAL 0 0 ~AGAR AL A
E— 0 L 0], A= AI 0 S
0 0 0 A 0 0 4)
AT 0 o] .
C= =B s D= Oa
0 0 -l
n(t) i® W
-

The number of state variablas= n, +n_+n,, is called theorder of system (3), and

m = n, +n,, is the number of inputs and outputs. In the following we wisame
that the circuit iswell-posedin the sense that it has neither V-loops nor I-cutsets.
These assumptions can be written in terms of the incidentecasias follows:

(A1) The matrixA, has full column rank, i.e., rafR,) =
(A2) The matrixA~ ry=[Ac, AL, Ag,Ay] has full row rank i.e., ranli\c ry) =

We will also assume that
(A3) ¢, G andL are positive definite.

Assumptions (A1)—(A3) together guarantee that the magncgA E — Aisregular,
i.e., defAE — A) #£ 0 for someA € C, see [32]. In this case, we can define a transfer
matrix G(s) = C(sE— A)~1B+ D that describes the input-output relation of (3) in
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the frequency domain. The transfer funct@ris calledproperif ganG(s) < oo, and
improper, otherwise. IfsﬂmG(s) =0, thenG is calledstrictly proper.
Any regular pencih E — A can be reduced into th&eierstrass canonical form

__[ln, O A0
ET||:O Eoo:|Tr’ AT||:0 |n°°:|TI'; (5)

whereT, andT; are the left and right nonsingular transformation matrices E,

is nilpotent with index of nilpotencyu, see [34]. The eigenvalues &f are the
finite eigenvalues oAE — A, andE., corresponds to an eigenvalue at infinity. The
numbery is called theindexof AE — A and also of the DAE system (3). Index
concept plays an important role in the analysis and numesmation of DAES,
e.g., [19, 20, 37, 46, 66]. The following proposition chaesizes the index of the
MNA equations (3), (4).

Proposition 1. [27] Let E and A be as if4) and let(A1)—(A3) be fulfilled.

1. The index of the pendcllE — A is at most two.
2. The index oAE — A is equal to zero if and only if

n, =0, rank(Az) = n,. (6)
3. The index oA E — A is equal to one if and only if
rank(QEA,) = ny, rankAc, Ag, Ay =1y, 7)

where Q is a projector onto keAL).

Considering the topological structure of the circuit, teaditions (6) imply that
the circuit does not contain voltage sources and the cigrajph contains a capa-
citive tree. Furthermore, the first condition in (7) impligmt the circuit does not
contain CV-loops except for C-loops, whereas the seconditon in (7) means
that the circuit does not contain LI-cutsets.

Using the Weierstrass canonical form (5), the MNA system (@) can be de-
coupled into theslowsubsystem

X (1) = Asxq (1) +Bgu(t), (8a)
y1(t) = Cexq (1), (8b)
and thefastsubsystem
Eeo X, (1) = X, (t) + Be U(t), (9a)
Yo(t) = CooXa (1), (9b)

whereT x(t) = [(x,(t))T, (%(1))T]T, y(t) =y, (t) +¥,(t) and

B
—1p f
TI B= |:B

o0

] ,  CTt=[C, Cal. (10)
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Equation (8a) with the initial conditior, (t) = x? has a unique solution
t
X (1) = tAfx?Jr/ e DAB u(T)dT
0

for any integrable inputi and any initial vectmx? € R". Since the indexu of
system (3), (4) does not exceed two, a unique solution oftequéda) is given by

Xo(t) = —Bol(t) — EwoBooli(t).

This representation shows that for the existence of a contisly differentiable
solutionx of (3), (4), it is necessary that the input functiers u times continuously
differentiable. Moreover, the initial conditiox(0) = x, has to be consistent, i.e.,
X =T ()T, (3)"]" must satisfy

X3 = —BoU(0) — EBwU(0).

If the initial vectorx, is inconsistent or the input is not sufficiently smooth, then
the solution of the MNA system (3), (4) may have impulsive e®{P0].

2.1 Stability

Stability is a qualitative property of dynamical systemsickhdescribes the be-
haviour of their solutions under small perturbations inittigal data. For the linear
time-invariant DAE system (3), stability can be charaaediin terms of the finite
eigenvalues of the penclE — A, e.g., [24]. System (3) istableif all the finite
eigenvalues oA E — A lie in the closed left half-plane and the eigenvalues on the
imaginary axis are semi-simple, i.e., they have the samebedic and geometric
multiplicity. System (3) issymptotically stablé the pencilAE — Ais c-stablei.e.,

all its finite eigenvalues lie in the open left half-plane.eTiollowing proposition
gives the topological conditions for the asymptotic sigbf the MNA equations

@3). 4.

Proposition 2. [67] Let the matrices E and A be as {#) and let (A1)—(A3) be
fulfilled. Assume that and £ are symmetric and one of the following two pairs of
topological conditions holds:

1. ranklA, Ayl =n_+ny, rank Az, A, | =ny, (11)
2. rank[Ac, A, Ayl =nc+n_+ny, rankA , Ag, Ay ] =ny. (12)

Then the MNA syste(), (4) is asymptotically stable.

Conditions (11) are equivalent to the absence of LV-loogs @hl-cutsets (ex-
cept maybe for Ll-cutsets), whereas (12) implies that tiheud@ does not contain
CLV-loops (except maybe for CV-loops) and Cl-cutsets.
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If system (3) is asymptotically stable, then tfig-normof its transfer functior
is defined ag/G||;; = sup||G(iw)||, where]| - || denotes the spectral matrix norm.
weR

2.2 Passivity and positive realness

Passivity is a most basic property of circuit equations. €sally speaking, passi-
vity means that the system does not produce energy. Morésphgcsystem (3) is
passiveaf

/Ot u(t)Ty(r)dr >0 (13)

for all t > 0 and all admissible such thatu"y is locally integrable. For a circuit
element with a voltage and a current, condition (13) implies that the storage
energy of this element defined as

/tv(r)Tj(r)dr
0

is always nonnegative. Thus, capacitors, resistors anattnds with nonnegative el-
ement values are passive. Furthermore, interconnectiafilnite number of passive
circuit components yields a passive network [1].

It is well known in network theory [1] that the DAE system (3) passive if
and only if its transfer functios(s) = C(SE— A) B+ D is positive reai.e.,G is
analyticinC, andG(s)+G(s)* > 0 for allse C, . Using the Weierstrass canonical
form (5) and (10), the transfer function of (3) can be addithndecomposed as

G(s) = Gsp(S) + My +SM, +... +s“*lM”71,

whereGgp(s) = C; (sl — A;) 1B; is the strictly proper part o8, My = D — Cx,Bs,
andM, = —C«EXB., for k > 1. One can show tha is positive real if and only if
its proper parGp(s) = Gsp(s) + M, is positive realM; = M; > 0 andM, = 0 for
k> 1, see[1].

The following proposition gives sufficient conditions forssem (3), (4) to be
stable and passive.

Proposition 3. If AssumptiongA1)—(A3) are fulfilled and the matriceg and £
are symmetric, then the MNA systé3), (4) is stable and passive.

Proof. The facts that the pendllE — Ain (4) has no finite eigenvalues@, and the
transfer functiorG(s) = C(sE— A) 1B of (3), (4) is positive real have been proved
in [67] and [62], respectively. Analogously, we can showttfsE — A)~! is also
positive real. Hence, the purely imaginary eigenvaluea Bf- A are semi-simple
[1, Theorem 2.7.2]. Thus, the MNA system (3), (4) is stable passivel]
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2.3 Contractivity and bounded realness

An important class of dynamical systems are contractivéegys. System (3) is
calledcontractiveif

Laup -y ar=o (14

for all t > 0 and all admissible such thatu andy are both square integrable. The
integral in (14) expresses the difference between the iapdtoutput energy of the
system. One can show that (3) is contractive if and only ifrassfer functiorG is
bounded reali.e.,G is analytic inC,_ andl —G(s)*G(s) > 0 forallse C, see [1].
For the asymptotically stable system (3), contractivitggsiivalent to the condition
Gllg,, <1thatjustifies the name 'contractive’. Note that the bouhl transfer
function is necessarily proper.

Positive real and bounded real square transfer functiensstated to each other
via aMoebius transformatiodefined as

M (G)(s) = (1-G(9)(1 +G(s)) "

The transfer functio is positive real if and only if the Moebius-transformed fenc
tion G(s) = . (G)(s) is bounded real [1]. For system (3) with nonsingular D,
the functionG(s) can be represented &§s) = C(sE — A) 1B+ D, where

E=E, A=A-B(+D)'c, B=-v2B(I+D)*

C=v2(1+D)'c, D=(-D)(I+D)?

For the MNA matrices as in (4), we have

i [ACCAC oo] | ARG
E= L 0|, A=

—AAT A A
o o0 |, (15
0

2, 2

00

;- [ ] 5o

It has been shown in [63] that under Assumptions (A1)—(A8)pkncilA E —Ain
(15) is ofindex at most two. Itis equal to one if and only ifkdA-, Ag, A, A, | =ny.
This condition means that the circuit does not contain Lsetst

2.4 Reciprocity

Another relevant property of circuit equations is recifpipocWe call a matrix
Sc R™M asignaturef Sis diagonal an& = I,. System (3) iseciprocalwith an ex-
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ternal signatur&,,; € R™™Mif its transfer function satisfieS(s) = S.,(G(S) " Sux for
all se C. The following proposition shows that the symmetry@f. andg gua-
rantees the reciprocity of system (3), (4).

Proposition 4. [62] Let AssumptiongA1)—(A3) be fulfilled and let the matrices,
L and G be symmetric. Then the MNA systé)) (4) is reciprocal with the external
signature g, = diag(ln ,—In,)-

3 Balancing-related model reduction

The aim of model order reduction for circuit equations is pp@ximate the DAE
system (3), (4) with a reduced-order model

EX(t) =
y(t) =

whereE, Ac R, Be RM C e R™, D e R™M and /¢ < n. It is required for
the approximate system (16) to preserve physical progdikie stability, passivity
and reciprocity. Such a system can then be synthesized dsdnaal circuit in an
standard netlist format, e.g., [62, 84] and Cha@®iof this volume, that is often
required in the industrial circuit simulators. It is alsopartant to have a small
approximation erroy =y or G — G, whereG(s) = C(sE — A) 1B+D. In the ideal
case, we would like to have a computable error bound thawalies to approximate
(3) to a given accuracy and makes model reduction fully aat@n

Most of the model reduction methods for linear dynamicakesys are based
on the projection of the system onto lower dimensional sabsg. In this case, the
system matrices of the reduced-order model (16) have the for

(t) +Bu(t),

(t)+Du(t), (16)

AX
Cx

E=W'ET, A=W'AT, B=wW'B, C=cCT, (17)

where the projection matricé¥, T € R™ determine the subspaces of interest. For
example, in modal model reduction the columnsvéfand T span, respectively,
the left and right deflating subspaces of the peadd — A corresponding to the
dominant eigenvalues, e.g., [25, 50]. In the moment matchjpproximation, one
chooses the projection matricdsandT whose columns form the bases of certain
Krylov subspaces associated with (3), e.g., [4, 30].

3.1 Balanced truncation model reduction

Balanced truncation also belongs to the projection-basedemreduction tech-
niques. This method consists in transforming the dynansigstem into a balanced
form whose controllability and observability Gramians both equal to a diagonal
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matrix. Then a reduced-order model (16), (17) is obtainegrbjecting (3) onto the
subspaces corresponding to the dominant diagonal elemifethis balanced Grami-
ans. This idea goes back to [54] and has been extended ovgeding in different
directions by many authors, e.g., [15, 17, 26, 35, 39, 5258360, 55, 74, 77].

For standard state space systems \iith |, the balanced truncation model re-
duction method makes use of the dual Lyapunov equations

AG; +G.AT = —BB', ATG,+G,A=-C'C.

If all eigenvalues of the matriA have negative real part, then these equations have
unique symmetric, positive semidefinite soluti@dgsandG, known as theontrol-
lability andobservability Gramiangespectively. One can show that all eigenvalues
of the productG:G, are real and nonnegative. The square roots of these eigenva-
lues, denoted bwj, are called thédankel singular valuesf system (3) withE = 1.
Such a system ibalancedif G = G, = diag(0;,..., 0y). If the system is control-
lable and observable, then the Grami@sand G, are both positive definite. In
this case, there exists a balancing state space transfomsaich that the Grami-
ans of the transformed system become equal and diagonatheitdankel singular
values on the diagonal. Then the reduced-order model isn&otdoy truncating the
states corresponding to the small Hankel singular valussh States are simultane-
ously difficult to reach and to observe, since they have alsmphct on the energy
transfer from input to output, see [35, 53] for detalils.

The balanced truncation model reduction approach can ka@st to system (3)
with E # 1. If E is nonsingular, then the Gramians are defined as unique sgriome
positive semidefinite solutions of the generalized Lyapueguations

AG.ET +EG.A"T = -BB", ATG,E+E'G,A=—-C'C, (18)

provided the pencihE — A is c-stable. However, for singul&, these equations
cannot be used any more to determine the Gramians for the PgtEra (3). As the
following example shows, the generalized Lyapunov equat{@8) with singulaE
may not have solutions evenAfE — A is c-stable. Moreover, if the solutions of (18)
exist, they are always nonunique, see [73] for detailedudisions.

Example 1Consider the simple RL circuit shown in Figure 1. This citcis
described by the DAE system (3) with

L
00 00 0o 0 -1 1
oo oo , | 0-1/% 1 0
w P E=loocol A7l 1 “1 o0 of
R 00 00 -1 0 00

T _ _
Fig.1 A simple RL circuit. B = [07 0,0, _1} =C.

The pencilAE — A has only one finite eigenvalie= —%® /L < 0. However, the
generalized Lyapunov equations (18) are not solvable.
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An extension of the balanced truncation method to DAEs basegrojected
Lyapunov equations has been presented in [52, 74]. Unl&etidndard state space
case, the DAE system (3) has two pairs of the Gramians, onefgrathe slow
subsystem (8) and the other pair for the fast subsystemf(@) is asymptotically
stable, then th@roper controllabilityand observability Gramians g and Gy, of
(3) are defined as unique symmetric, positive semidefinitdisas of theprojected
generalized continuous-time Lyapunov equations

E GpcAT +AGycE" = —RBB'R",  Gpe=PRGpcP', (19)

whereR and PR are the spectral projectors onto the left and right deflasing-
spaces of the pencE — A corresponding to the finite eigenvalues along the left
and right deflating subspaces corresponding to the eigsaalinfinity. Using the
Weierstrass canonical form (5), these projectors can hesepted as

4f1 o I 0] -
Pr:Trl[o O}Tr, P,:T,[O O}Tll.

Furthermore, thémproper controllabilityandobservability Gramians G andG,,
of system (3) are defined as unique symmetric, positive sefimite solutions of the
projected generalized discrete-time Lyapunov equations

AGicAT = QCET =Q BBTQIrv G = QrGicQ-rrv (21)
ATG,A-E'G,E=QIC'CQ, G, =Q'G,Q, (22)
whereQ, =1 - R andQ; = | — R are the complementary projectors. Note that

unlike generalized Lyapunov equations considered in [8278], the existence and
unigueness results for the projected Lyapunov equatio@s-(22) can be stated
independently of the index of the pengiE — A, see [73].

Using the proper and improper Gramians, we can define theepeoyl improper
Hankel singular values that characterize the importancstait variables in the
slow and fast subsystems (8) and (9), respectivelynl die the dimension of the
deflating subspaces @fE — A corresponding to the finite eigenvalues. Then the
proper Hankel singular valuesj of system (3) are defined as the square roots of the
largestn; eigenvalues of the matrbeCETGpoE, and theamproper Hankel singular
values, are defined as the square roots of the largest n—n; eigenvalues of the

matrix GiCATGiOA. We assume that the proper and improper Hankel singulaesalu
are ordered decreasingly. System (Dasancedf the Gramians satisfy

Gpc - Gpo: d|aqz, 0) W|th Z - diaqo‘l,.u,anf),
G. = G, = diag 0, ®) with ©=diag6,,...,6n,).

States of the balanced system corresponding to the smalépigankel singular
values are less involved in the energy transfer from inputaitputs, and, therefore,
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they can be truncated without changing the system progesigmificantly. Further-
more, we can remove the states of the balanced system comndisg to the zero
improper Hankel singular values. Such states are unctadtieland unobservable
at infinity and do not influence the input-output relation.wéwer, if we truncate
the states that correspond to the non-zero improper Ham@lilar values, even
if they are small, then the approximation may be inaccurBitese states are sub-
ject to constraints, and their elimination may lead to uirdée disturbances in the
approximate system and physically meaningless results.

Example 2 Consider the DAE system (3) with

010 10 0.04
E=[001], A=l B=|01|, C'=]30]. (23)
000 0 1

SinceE is nilpotent, this system has only the improper Hankel disgealues given
by 6, = 3.4, 6, =4.7-10°°, 6, = 0. The truncation of the state corresponding to
the Hankel singular valué, = O results in the reduced-order model

118 118], 100 0 ], 1.84-10°
{—1.18 —1.18} X _{ 0 1@]"“)* [2.25.10—3} Ut
J(t) =[1.84-10°, —2.25-10° 3| X(t).

Figure 2(a) shows the output functions of the original amdréduced-order systems
with the inputu(t) = sin(t). They coincide since both systems have the same trans-
fer function. However, if we truncate one more state cowesing to the second
Hankel singular value, which is relatively small, we obttie standard state space
system

%(t) = 850X(t) + 1567u(t),  Y(t) = 1.84X(t). (25)

This system is unstable, and, as Figure 2(b) demonstrégesjtput has nothing in
common with the output of the original system.

u(t) = sin(t)

< 10° u(t) = sin(t)

y(t) and yit)

0 001 002 0.03

(b)
Fig. 2 (a) The output functions of the original system (3), (23) and thegedtorder system (24);
(b) the output of the reduced-order system (25). In both cases,gheigu(t) = sin(t).
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Algorithm 1. Balanced truncation model reduction for DAEs.
GivenG = (E, A, B,C, D), compute a reduced-order modz}k= (E, A, B,C,D).

1. Compute the Cholesky factd®p andL, of the proper GramianGy. = R,R}, andGpo = LLp
that satisfy the projected Lyapunov equations (19) and (20), cé&sply.

2. Compute the Cholesky factdRsandL; of the improper Gramian§,, = RR" andG,, = L;L
that satisfy the projected Lyapunov equations (21) and (22), cé&sply.

3. Compute the singular value decompositigfER, = [U,, U,]diag %, %,)[V;, V,]T, where
the matrices[U;,U,] and [V,,V,] have orthonormal columnss; = diag(0y,..., 0, ) and

2, =diag(; ;- -1 0n ).

4. Compute the singular value decompositigiAR = U,0V; , whereU, andV, have orthonor-
mal columns an® = diag(6;,...,6,_) is nonsingular.

5. Compute the reduced-order systéi, A, B,C,D) = (WTET, WTAT, WTB,CT, D) with
W = [LpU; 72, LU;@ 2] andT = [RpV, 2, /2, RV,0 Y2,

We summarize the balanced truncation model reduction rdefiio DAES in
Algorithm 1. For this method, we have the following a priania¥ bound

||37_yH[L2 <|G _G”HmHUHLZ < 2(05f+1+---+0nf)”u”]LZ

that allows an adaptive choice of the order of the approematdel. Furthermore,
the resulting reduced-order system (16) is asymptoticatiple and its index does
not exceed the index of (3). f, £ and G in (4) are symmetric, i.e., (3), (4) is
reciprocal with the external signatu,,; as in Proposition 4, then the reduced-
order model computed by Algorithm 1 is also reciprocal whk same signature.
Unfortunately, the Lyapunov-based balanced truncatiothatedoes not, in general,
ensure the preservation of passivity. However, for spee@procal circuits such as
RC and RL networks, Algorithm 1 can be modified for computipgasive reduced-
order model, see [64] for details.

3.2 Positive real balanced truncation

In this section, we describe passivity-preserving modalicéon for general RCL
circuits based on positive real balancing.

Passivity of the DAE system (3) can be characterized vigpthgcted positive
real Lur'e equations

AXET + EXAT = —KKJ, X=PXP' >0,
T T T T (26)
EXCT—PB = —KJJ, My+MJ =J.J]

and
ATYE+ETYA= —KIK,, Y=RTYR >0,

ETYB-R'CT = —K{J, My+M{ =33, 27)
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with unknownsX € R™ K, € R™M J. € R™MandY ¢ R™", K, € R™N, J, ¢ R™M,
respectively. Such equations are known in the literatige a$ Kalman-Yakubovich-
Popov equations [40]. Similarly to [63, Theorem 4.1], ona saow that if the
MNA system (3), (4) is passive, then (26) and (27) are sotvaBbnversely, solva-
bility of the projected Lur'e equations (26) and (27) togstlith the conditions
M; =M/ >0 andM, = 0 fork > 1 implies that (3) is passive.

Remark 1Note that for a general DAE system, passivity alone does nataintee
the existence of the solution of the projected Lur'e equestid-or such a system, in
addition, R-minimality conditions

ranKAE—A B]=n, ranKAE' —AT, CT]=n forall A €C
(or other weaker conditions) have to be assumed [23, 29,47, 6

The projected Lur'e equations (26) and (27) have, in genenahy symmet-
ric solutionsX andY that can be ordered with respect to the Loewner ordering
in the set of symmetric matrices. The minimal solutiogs andY,, that satisfy
0 < Xpr < X and 0< Yy, <Y for all symmetric solutionX andY of (26) and (27),
respectively, are called thgositive real controllabilityandobservability Gramians
of (3). System (3) is callegositive real balanced Xpr = Y, = diag(=,0) with
= =diag({y,...,én ). The valuest; ordered decreasingly are called tpesitive
real characteristic valuesf (3). Similarly to Lyapunov-based balanced truncation,
the reduced-order system (16) can be computed by projectitythe subspaces
corresponding to the dominant positive real charactengtiues and non-zero im-
proper Hankel singular values. Note that if system (3) ha®pgy transfer function,
then solving the projected discrete-time Lyapunov equati@1) and (22) can be
avoided. The positive real balanced truncation method dchsa system is sum-
marized in Algorithm 2. It can be shown that the resultinguesti-order system is
passive, and we have the error bound

16~ Glle, < 2[|(Mo+M3) [ 1Go |l [Collss, (& 11+ +&n)  (28)
with G, = G+M{ andG, = G +MJ, see [8, 65]. Note that this error bound requires

the computation of th&l.,-norm of G, which is expensive for large-scale systems.
If Z; is chosen in Algorithm 2 such that

4H(M0+M(-)r)71H Hé0||H°°(EZf+1+- . -+fn,) <1,
then bound (28) can be simplified to

1G —Gllyy, < 4[[(Mo+MG) [ G0l (& 11+ +&n), (29

where only the evaluation of thE.-norm of the reduced-order systefab is re-
quired.
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Given passivés = (E, A, B, C, D), compute a reduced-order systém= (E, A,B,C,D).

1. Compute the matrii, = C(5,E — A)"1Q,B+ D with 5, € (0, ).

2. Compute the Cholesky factdRandL of the positive real Gramian, = RR andYpr = LLT
that are the minimal solutions of the projected positive reald_aquations (26) and (27).

3. Compute the singular value decompositibhER = [U,, U, ]diag =, , Z,)[V;, V,]T, where
the matrices[U,,U,] and [V;,V,] have orthonormal columnss; = diaq:fl,...,:f(f) and

5= diag(E£f+1.,...,Enf).
4. Compute the reduced-order system
E_ {I 0] A_ {WlTATl 0}7 B [WlTB

0 0 oL B, ¢=[cT, G, D=,

whereW, = LU, ="/2, T = R, =/?, andB, andC, are chosen such thBt— M, = C,B,.

If Dy =M+ M{ is nonsingular, then the projected Lur'e equations (26)(@)
can be written as therojected positive real Riccati equations

AXET+EXA + (EXCT-PB)D, (EXC'-RB)T =0, X =RXP", (30)
ATYE+ETYA+(B'YE-CR)'D,*(B"YE-CR)=0, Y=R'YR. (31)

The numerical solution of these equations will be discusee8ection 4.2. The
major difficulty in solving these equations is that the spaqtrojectorsh andR
are required. They can be computed by the matrix chain approam [51]. In the
large-scale setting, however, it would be beneficial to faawvexplicit representation
for B andR as it has been done in [75] for some other structured DAEsaris
in computational fluid dynamics and multibody systems. Saickpresentation in
terms of the incidence matrices is currently under invesig.

3.3 Passivity-preserving model reduction via bounded real
balanced truncation

Another passivity-preserving model reduction approaas@nted first in [65] is
based on the bounded real balanced truncation model reducithod applied to
MNA equations (3), (4), wher& is positive definite and botli and ¢ are sym-
metric and positive definite, it has been shown in [63] thatgtojected bounded
real Lur'e equations

AXET +EXAT + BBBTR" = —KK!, X=BXPT >0, (32)
EXCT—BBM{ = —KJT, 1—-MMJ =337
and ATYE+ETYA4+BTCTCR — —KIK,, Y=BTYR >0, (33)

—ETYB+PRC™M, = —KJIJ,, 1 =MIMy =313,
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Algorithm 3. Passivity-preserving model reduction based on bounded reaided truncation.

Given passivé&s = (E, A, B, C, 0), compute a reduced-order modk (E,A B,C,0).

Compute the Moebius-transformed sysl@r& (E,A,B,C,D) as in (15).

Compute the matriii, D+C(sOE A)~1Q,B for somes, € (0, ).

3. Compute the Cholesky factdRandL of the bounded real Gramiaig, = RR" andY,, = LLT
that are the minimal solutions of the projected bounded real lagieations (32) and (33).

4. Compute the singular value decompositibhER = [U,, U, ]diag(;,1)[V,, V,]T, where

the matrices[U,,U,] and [V,,V,] have orthonormal columnd; = diag(yl,...,y[f) and

I'Z:diag(y/Zerl,...,ynf).
5. Compute the reduced-order system
0] 1 2WIAT, V2WBG,| 5 [ WB er_ [T
00 —V2B,CT, 21-BSC, | Bz/\f T /V2]

whereW, = LU, 7Y/, T, = RV, 7/2, andB, andC, are chosen such that- My = C,B,.

N

E=

are solvable forX € R™, Ko € R™, J. € R™ and Y € R™, K, € R™",

Jo € R™M respectively. HereR andP are the spectral projectors onto the right
and left deflating subspacesE — Acorrespondmg to the finite eigenvalues along
the right and left deflating subspaces corresponding to itienealue at infinity,
andM, = lims_.. C(SE — A) 1B+ D. The minimal solutions(,, andY,, satisfying

0 <X, <XandO0<Y, <Y forall symmetric solutionX andY of (32) and (33),
respectively, are called th®unded real controllabilitandobservability Gramians
of systemG. This system isounded real balanceif Xor = Yy = diag(",0) with
r= diag(yl,...,ynf). The valuesyj ordered decreasingly are called theunded

real characteristic valuesf G. Truncating the states & corresponding to smay
and applying the Moebius transformation to the obtainedrective reduced-order
model, we get a passive reduced-order systehe resulting passivity-preserving
model reduction method for circuit equations is presemedlgorithm 3. For this
method, we have the following a priori error bound

+GlZ, (V14 + W)
—|II +G||Hm(ylf+1+...+ynf)’

IG— Gy, <

provided||| +G|\Hw(y€f+1+ .-+ ¥ ) <1, see [65]. Furthermore, if we choo&e
in Algorithm 3 such that @I +(~3||Hm(y[f+1+...+ ¥, ) < 1, then we obtain the
a posteriori error bound

IG Gl < 211 + Gl (v, 41+ + W) (34)

that is inexpensive to compute.
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It should be noted that for DAE systems with a proper trangfection, Algo-
rithms 2 and 3 are equivalent in the sense that they providiecesl-order models
with the same transfer function.

Using the topological structure of circuit equations, thatnx I\7IO and the pro-
jectorP; can be computed in explicit form

- - 2AT QcHy "QLA, 2AT QcHy "QEA,
Mo = T -10T T -10T ’ (35)
| —2AVQcH, "QeA 1 2A,QcHy "QcAy
[ Hs(HH,—1)  HgHAH; O
B — 0 Hq o, (36)
|—AV(HH,— 1) —AJH,AHg 0
where
Hy = QL (ARG AR +AAT +A,A))Qc + Qkiy_cQriv_c:
Hy = PlrivPeriv + QLrVALS AT Qcrivs
Hy = ARG AR+A AT +AA)+A S Al QerivH; *QERVALS AL,
Hy = AcCAL +QEH,Qc, H, = QcH; QL
Hs = QcrivH; "QCrRVALSAl — 1, He =1 — S AT QerivH; "QCRIVALS

Qcriv is @ projector onto kéfAc, Ag, A, A7), Popy =1 — Qerivs
Qryv_c isaprojector onto keéfAg, A, A, ]TQc),

see [63] for details. Furthermore, the left projector is;afgﬁ‘loyIf’| = Smlﬁrﬂsm, where
Spe=diag(ln, . I ,—In,) andR is ash; with 6, 5 andc replacedby; ', s " and
', respectively. The projectofd., Qcg;y @andQg,,_¢ can easily be computed in
sparse form using graph search algorithms like breadttsiarch [44]. Although
l\7|0 andR look very complex, their computation is inexpensive if tpasity of the
incidence matrices an@-projectors is exploited. Due to the space limitation, we
omit detailed discussions.

If the circuit contains neither CVI-loops except for C-l@opor LVI-cutsets
except for L-cutsets, i.e., if rat®@[A, A/]) = n +n, and Qi[A,A,] =0,
where Qg is a projector onto kéfAg, A.]"), then bothDc = I — MyMg and
Do=1- MgM0 are nonsingular [63], and the projected Lur'e equationg &
(33) can be written as tharojected bounded real Riccati equations

AXET +EXAT4+-2RBB'RT +2(EXCT —RBM{J )D; {EXCT —RBBMJ)T =0,

X =PRXPT, @37
and
ATYE+ETYA+2RTCTCR +2(BTYE-M{CR)TD;4(BTYE-M{CR)=0, (38)

Y=PRTYR.

The numerical solution of these equations will be considi@reSection 4.2.
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3.4 Balanced truncation for reciprocal circuit equations

For reciprocal circuits with symmetric, £ andg, we can further exploit the struc-
ture of the system matrices in (4) in order to reduce the cdatiomal complexity
of Algorithms 2 and 3. In the sequel, we consider AlgorithmnB/oThe other one
can be modified analogously.

Consider the reciprocal system (3), (4), whereL andg are symmetric. Then

ET = Snt E Snt7 AT = SntASnt’ BN = SxC Snt

with § = diag(ln, , —In , —In,) @andS,, = diag(ln , —In, ). Therefore, we have

If\)| = Snt If)rT ?rlta . (39)
Yor = Sint Xor Sint = SntRRTSTﬂ =LLT.

SinceLTER = R'S,,ER and (I — M)S., are both symmetric, the characteristic
valuesy; and the matriceB, andC, can be determined from the eigenvalue decom-
positions ofR" S, ,ER and (I — M,)S,,, instead of a more expensive singular value
decomposition. We summarize the resulting PAssivity-maag Balanced Trunca-
tion method for reciprocal Electrical Circuits (PABTEC)Adgorithm 4. Note that
this method also preserves reciprocity in the reducedroraelel, see [63].

Algorithm 4. Passivity-preserving balanced truncation for electrical disqiHABTEC).
Given passivés = (E, A, B, C, 0) with the system matrices as in (4), compute a reduced-order
modelG = (E, A B, C, 0).

1. Compute the Cholesky factéof the bounded real Gramiax, = RR" that is the minimal
solution of the projected Lur'e equation (32), Whér,g&, B andC are as in (15), the projectors
P andR are given in (36) and (39), respectively, avig is as in (35).

2. Compute the eigenvalue decompositiehS,ER = [U,, U, ]|diagA;,A,)[U;, U,]T, where
[U;,U,] is orthogonalA; =diag(A,,. .. =’\zf) andA, = diag()\fﬁl., s An).

3. Compute the eigenvalue decompositidr- My) Sy = Ug/AgUg , whereU, has orthonormal
columns and\, = diaqj\l, .., Am) is nonsingular.

4. Compute the reduced-order system

_[ Ws

i {I 0}’ i 1[ 2Wf AT, szfBéz} é*[—éz/ﬁ}’

E_ _ VAT,  BC ar_ (CcT)’
—V2B,CT; 21-B,C,

00 T2 c V2|
where

W, = S RUIA[7Y2, T, =RUSIA Y2 B, =A0[Y2U] Soe G, = UglAg[Y2,

with
Ayl =diagl|Ayl, s[4, ), S =diag(sign(),), ... sign(A, )),

Aol = diag([Ay|.....[Aml). = diag(sign(A,).....sign(Am)).
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4 Numerical methodsfor matrix equations

In this section, we consider numerical algorithms for thgjgeted Lyapunov equa-
tions (19) and (20) and the projected Riccati equations, (X)) and (37), (38)

developed in [18, 75]. In practice, the numerical rank ofgbkitions of these equa-
tions is often much smaller than the dimension of the problEmen such solutions
can be well approximated by low-rank matrices. Moreovearsénlow-rank approxi-

mations can be determined directly in factored form. Reptathe Cholesky factors
of the Gramians in Algorithms 1-4 by their low-rank factoesluces significantly the
computational complexity and storage requirements in glertzing-related model
reduction methods and makes these methods very suitallbrderscale DAE sys-
tems.

4.1 ADI method for projected Lyapunov equations

First, we focus on solving the projected Lyapunov equation
EXA +AXE'=-RBB'R", X=PRXP, (40)

using thealternating direction implicit(ADI) method The dual equation can be
treated analogously. The ADI method has been first proposedtandard Lya-

punov equations [10, 49, 57, 80] and then extended in [75fagepted Lyapunov

equations. The generalized ADI iteration for the projedtgalpunov equation (40)

is given by

(E+TA)X 4 ,AT +AX 4 (E-TA)T = -RBB'AT,

(E+T AX AT +A><kT71/2(E -TA)T = —RBB'AT “1)
with an initial matrix X, = 0 and shift parameters,,..., 7, € C_. If the pencil
AE — A is c-stable, therX, converges towards the solution of the projected Lya-
punov equation (40). The rate of convergence depends $grongthe choice of
the shift parameters. The optimal shift parameters progithe superlinear conver-
gence satisfy the generalized ADI minimax problem

1-Tt)-...-(1—Tq4t
{15,...,Tq} = argmin max (1-Tyt) (1-7q )|7
{1, Tg}C_ tESR(EA) |(1+14t) ... (1+T1qt)|

where Sp(E,A) denotes the finite spectrum of the pendd — A. Similarly to [57],
the suboptimal ADI parameters can be obtained from a setrgé$a and smal-
lest in modulus approximate finite eigenvalues\& — A computed by an Arnoldi
procedure. Other parameter selection techniques dekfopstandard Lyapunov
equations [13, 69, 81] can also be used for the projecteduryapequation (40).
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A low-rank approximation to the solution of the projectedapyinov equation
(40) can be computed in factored fon~ ZkZII using a low-rank version of the
ADI method (LR-ADI) as presented in Algorithm 5.

Algorithm 5. The generalized LR-ADI for the projected Lyapunov equation.
GivenE, Ac R™", B R™™, projectorR and shift parameters...., 7 € C_, compute a low-rank
approximatiorX = Z,Z] to the solution of the projected Lyapunov equation (40).

1. zW=,/-2Re1)) (E+1,A)'RB,  Z,=20;
2. FOR k=23,...

z¥ = Relr) (- T +TE+TA A ZEY, 7z =(7,, ZV;
Re(t,_,)

END FOR

In order to guarantee for the factafs to be real in case of complex shift pa-
rameters, we take these parameters in complex conjugate{pgir, , ; = T, }. At
each iteration we havg, = [2Y,...,Z0] ¢ R"™ To keep the low-rank structure
in Z, for largemk we can compress the columnsyfusing the rank-revealing QR
factorization [21] as described in [14].

Finally, note that the matrice& + 1, A)~* in Algorithm 5 do not have to be
computed explicitly. Instead, we solve linear systems efftrm (E + 1, A)x=Rb
either by computing (sparse) LU factorizations and forilzaidkward substitutions
or by using iterative Krylov subspace methods [68].

4.2 Newton-Kleinman method for projected Riccati equations

In this section, we consider the numerical solution of thegquted Riccati equation
Z(X) = EXFT+ FXET+EXHTHXE" + MQQ' M =0, X=X, (42)
where
F=A-BRBMy,+MJ)"'CR, H=JICR, Q=BJT,
MO"_M(-)I—:JCJ;:I—’ I_I|:P|, e =rR
in the positive real case and
F =A—BC-2RBM] (I —MM§) *Ch,
RIh=1-MMy, I =1-MM, m=P, M =P

(43)
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in the bounded real case. The minimal solutip,, of (42) is at leastsemi-
stabilizingin the sense that all the finite eigenvalues\& — F —EX . HTH are
in the closed left half-plane. Such a solution can be contputa the Newton-
Kleinman method18] as presented in Algorithm 6.

Algorithm 6. The generalized Newton-Kleinman method for the projected Riecaation.
Given E, Fe R™, H € R™", Q e R™™, projectors[T;, 1, and a stabilizing initial guess X
compute an approximate solution of the projected Riccaia¢iqn (42).
FOR j=1,2,...,
1. Compute K= EXj_lHT and F =F +K;H.
2. Solve the projected Lyapunov equation
EX Fl +FXET = -MQQ" —KKHA", X, =X/ .
END FOR

Similarly to the standard state space case [6, 78], one camttat if AE — F is
c-stable, then foK, =0, all AE — F; are also c-stable and li, = X;,. The con-

] —oo

vergence is quadratic if the pendiE — F —E X, \H"H is c-stable. Some difficulties
may occur if the pencil E — F has eigenvalues on the imaginary axis. For circuit
equations, these eigenvalues are uncontrollable and enatide [63]. In that case,
similarly to [9], one could choose a special stabilizingialiguessx, that ensures
the convergence of the Newton-Kleinman iteration. Howgtleg computation of
such a guess for large-scale problems remains an open proble

A low-rank approximation to the minimal solution of the pFofed Riccati equa-
tion (42) can be computed in factored fod,, ~ RR" with R € R™¥, k < nusing
the same approach as in [15]. Starting With= EX,HT andF, = F + K H, in each
Newton iteration we solve two projected Lyapunov equations

EX FjT +FXy ET = —m,QQ" T, X j=RX P, (45)
EXZJ. FjT +FjX27j ET — LS KjT”|T, Xz,j = nlxzyj an, (46)

for the low-rank approximationX; ; ~ R, jRI jandX,; ~ R, jR; j» respectively,
and then comput;,; = E(Ry Rl — Ry ;RIj)HT and Fj ; = F +Kj H. If
the convergence is observed aftgfax iterations, then an approximate solution
Xin ~ RR" of the projected Riccati equation (42) can be computed itofad
form by solving the projected Lyapunov equation

EXFT+FXE" = —MQQoM, X = Xm! (47)

with Qy = [Q, E(Xy; - XZ,jmax)HT] providedA E —F is c-stable. For computing
low-rank factors of the solutions of the projected Lyapumagpuations (45)—(47),
we can use the generalized LR-ADI method. Note that in thihotewe need to
compute the productéE + er)‘lw with T € C_ andw € R". For example, in

the bounded real case we haket 1F; = E + 1(A—BC) — rKjH with the low-
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rank matricesd € R™" andK; = vV2RBM] J; T —K; € R™™. Then one can use the
Sherman-Morrison-Woodbury formula [36, Section 2.1.3kctmmpute these pro-
ducts as

(E+TF,) 'w=w, + M, ((lm— HMKJ)—lel),

wherew, = (E + 7(A—BC)) 'wandM, = 7(E +1(A—BC)) *K; can be deter-
]

mined by solving linear systems with the sparse méfix (A — BC) either by
computing sparse LU factorization or by using Krylov sulzspmethods [68].

5 Numerical examples

In this section, we present some results of numerical exygaris to demonstrate the
efficiency of the passivity-preserving balancing-relateddel reduction methods
for circuit equations described in Section 3.

Example 3The first example is a three-port RC circuit provided by NEGad-a
ratories Europe. The passive reciprocal system of ardeR007 was approximated
by two models of orde¥ = 42 computed by the positive real balanced trunca-
tion (PRBT) method and the bounded real balanced truncé@®BT-M) method
applied to the Moebius-transformed system. The minimaltsmis of the pro-
jected Rlccatl equations (30) and (37) were approxmatetlhb)tow rank matrices
Xpr & Ry RE, with Ry € R™M23 and X ~ R R, with R, € R™'%5, respectively.
Figure 3(a) shows the normalized residupls;) = [ 2(X;) | /||I'I|QQTI7T||F,
where|| - ||z denotes the Frobenius matrix norij, = Ry ; RT —R, ;R ;, M, and
Qare given in (43) and (44) for (30) and (37), respectlvelguFe 3(b) dlsplays the
number of ADI iterations required for solving the projectg@punov equations at
each Newton iteration.

10 T T T T T T T 70

- + = positive real I bounded real
-0 bounded real 60 [ positive real

’

.
On
’

=

o
IS

’

/

N
O‘
’
[ ]
Number of ADI iterations

H
O‘
’
®

10

107

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Newton iteration Newton iteration j

(@) (b)

Fig. 3 RC circuit: (a) the convergence history of the low-rank Newtoniitean-ADI method;
(b) the number of ADI iterations required for solving the projectgepunov equations at each
Newton iteration.
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Fig. 4 RC circuit: (a) the frequency responses of the original and the eztlader systems;
(b) the absolute errors and error bounds.

The spectral norms of the frequency respong@€ w)|| and||G(iw)|| for a fre-
quency rangeo € [1, 10'%] are presented in Figure 4(a). In Figure 4(b), we display
the absolute errorgG(iw) — G(iw)|| for both reduced-order systems and also the
error bounds (29) and (34). As expected, due to the propeifés, the PRBT and
BRBT-M methods are equivalent and provide similar results.

Example 4The second example is a transmission line model [5] thatistnef
20000 RLC ladders. We approximate the DAE system of order 60000 by
a model of order = 32 computed by the PABTEC method (Algorithm 4). The
bounded real GramiaX,, was approximated by a low-rank mati, ~ RR" with

R € R"2%9, Figure 5(a) presents the bounded real characteristicesati the
Moebius-transformed system computed as the absolutesvaluthe eigenvalues
of ﬁTSmEIﬁ. One can see that the characteristic values decay rapahyescan
expect a good approximation by a reduced-order model. Tegréncy responses
of the full-order and the reduced-order models are not ptesg since they were
impossible to distinguish. Figure 5(b) shows the absoluteréG(iw) — G(iw)||
for w € [1,10°% and the error bound (34).

6 Conclusions and open problems

In this paper, we have discussed balancing-related modektien methods for
linear DAEs arising in circuit simulation. The importanpperty of these methods is
the existence of computable error bounds that essentialiypguishes the balanced
truncation technique from other model reduction approscMoreover, positive
real balanced truncation and bounded real balanced tionagiplied to a Moebius-
transformed system quarantee the preservation of pasisidtreduced-order model
that makes these methods very suitable for circuit equstion
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Bounded real characteristic values 5 Absolute error and error bound
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Fig. 5 Transmission line: (a) the bounded real characteristic valuesthélmbsolute error and the
error bound (34).

Balancing-related model reduction methods for DAEs inea@welving projected
Lyapunov, Lur'e and Riccati matrix equations. We have pnée=e the efficient nu-
merical algorithms for large-scale projected Lyapunov Rimtati equations based
on the LR-ADI iteration and the Newton-Kleinman method pegively. We have
also shown that exploiting the topological structure ofgit equations reduces sub-
stantially the numerical complexity of balanced truncatio

Although considerable progress has recently been achievéelieloping of ba-
lanced truncation methods for large-scale DAEs, some pnadlistill remain open.
For example, iM, + Mg (orl— l\7|0l\7lg) is singular, then to compute the positive real
(bounded real) Gramians we have to solve the projected lagtgtions. Similarly
to the standard state space case [82], for small to medinedt&AE systems, these
equations can be transformed to projected Riccati equatibsmaller dimension.
This approach becomes, however, prohibitive for largéespeoblems due to the
explicit use of state space transformations. Another groabklready mentioned in
Section 4.2, is the computation of an appropriate stabgiZnitial matrix in the
Newton-Kleinman iteration in case when the pencil has pmaginary eigenva-
lues. This problem could probably be solved for circuit gtures by exploiting their
special structure.

Finally, in some numerical experiments we observed a very sbnvergence of
the LR-ADI iteration caused by a poor choice of the shift paegers. The combi-
nation of the LR-ADI iteration with the Galerkin projecti@s proposed in [11, 43]
for standard state space systems may improve the perfoentdiice ADI method.
Also, a generalization of an extended Krylov subspace nieffhd)] to the projected
Lyapunov equations remains for future work.
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