M odel order reduction of electrical circuitswith
nonlinear e ements

Andreas Steinbrecher and Tatjana Stykel

1 Introduction

The efficient and robust numerical simulation of electriciatuits plays a major

role in computer aided design of electronic devices. WHile structural size of

such devices is decreasing, the complexity of the elettciceuits is increasing.

This usually leads to a system of model equations in form fémdintial-algebraic

equations (DAE) with a huge number of unknowns. Simulatibsuzh models is

unacceptably time and storage consuming. Model order tiedupresents a way
out of this dilemma. A general idea of model reduction is folaee a large-scale
system by a much smaller model which approximates the ioptgut relation of the

original system within a required accuracy. While a largeets of model reduction

techniques exists for linear networks, e.g., [1, 3, 4], nadduction of nonlinear

circuits is only in its infancy.

In [2], model reduction of nonlinear circuit with only nongar resistors was consi-
dered. In this paper, we extend these results to more gerienaits that may contain

other nonlinear elements like nonlinear capacitors or étahs.

2 Circuit Equations

A commonly used tool for modeling electrical circuits is tedified Nodal Ana-
lysis (MNA). An electrical circuit can be modeled as a diegtgraph whose nodes
correspond to the nodes of the circuit and whose branchesspamnd to the circuit
elements. Using Kirchhoff’s laws as well as the branch dtuiste relations, the
dynamics of an electrical circuit can be described by a DAgesy of the form

EX)dx = o/ x+ f(x) + AU, y= B, (1a)
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with
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Here,x, u andy are state, input and output, respectivelys the vector of node po-
tentials,i, 1,, andi, are the vectors of currents through inductors, voltagecssur
and current sources, respectively, andu, are the vectors of voltages of voltage
sources and current sources, respectively. We will digtsigbetween linear circuit
elements (denoted by a bar) that are characterized by Imeeaent-voltage rela-
tions and nonlinear circuit components (denoted by a titha) are characterized
by nonlinear current-voltage relations. Without loss ofigrality, we assume that
the circuit elements are ordered such that the incidenceaesidescribing the cir-
cuit topology have the formA. = [Ax A.] € R™ e, A = [Az A ] € R,
A, =[Ag ALl €R™NTR A € R andA; € R™ ™, where the incidence mat-
ricesA, A- andAi correspond to the linear circuit components, #pdA, and
Ay, correspond to the nonlinear circuit components. Furthegprthe conductance
matrix-valued functionC : R" — R""c, the inductance matrix-valued function
L :R": — R"-": and the resistor relatiop: R — R given by

; c 0 L 0 T GALN
characterize the physical properties of the capacitodijdtors and resistors, re-
spectively. Here, € R': is the vector of currents through the nonlinear inductors.
We will assume that the matricés, and[A. A, Ag A, | have full rank, the matri-
cesC (A}n) andZ (1, ) are symmetric, positive definite and the functh{AﬂT{ n)is
monotonically increasing for all admissibieand, . This assumptions imply that
the circuit elements do not generate energy, i.e., theiticcpassive.

3 Model Reduction for Nonlinear Circuits

In this section, we present a model reduction technique dafimear circuits with
a small number of nonlinear elements. This technique iscbasedecoupling of
the linear and nonlinear subcircuits in a suitable way, cédn of the linear part
using the PABTEC method [4] followed by an adequate recogpf the unchanged
nonlinear part and the reduced linear part to obtain a neafireduced-order model.
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3.1 Decoupling of Linear and Nonlinear Subcircuits

Consider the circuit equations (1). Ly = A}% +A§ be decomposed such that
A} €{0,1}™"% andAZ € {-1,0}" " and letG,,G, € R "% be given such that
G, andG, + G, are both symmetric, positive definite at is positive semidefi-
nite. Assume thanf € R andi, € R satisfy the relations

U =ATn and ;= (G, +G,)G, 'g(Ag n) — GoAg 1. 2)

Then system (1) together with the relations
n:= (G +G) (G(lT_G(ZT)rI—lz)v (3a)
L =C(0) S0 Gk -G (3b)

for the additional unknowng, € R andi. € R, is equivalent to the system
L(1)§1- =An, (4)
coupled with the linear system
Edx, = AX, +Bu,, y, =BTx,. (5a)
Here, the system matrices are in the MNA form
ACAL 0 0 —ARGAR —AL —A -A 0
E= 0 L 0f, A= Al 0 0 |, B= 0 | (5b)
0 00 Al 0 0

with incidence and element matrices

o[3] w545 A 3]

AM=lo

2 _ G 0 O
A-[3%%] c-c -z G:[oel o], 9

00 G,
andx] =[n" n7 [ iF] 1) iF ] uf=[1g T|’~T|u ul ]yl =(vi valyslva vi .

With (2) equivalency here means that n,J ] solves (1) and (3) if and only if
[x[ - T1T solves (5) and (4). More details and the proof can be foun8]in [

3.2 Model-Order Reduction of the Linear Subsystem

We now apply the PABTEC method [4] to the linear system (Shwitransfer func-
tion G(s) = BT (SE—A)~B. The assumptions above on the nonlinear system (1)
guarantee that the following projected Lur'e equations

EX(A—BBT)T+ (A~ BBT)XET + 2RBB'R = —2K K], ©)
EXB-RBMJ = —KJ, 37 =1-MM{, X =PRXR!
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and
ETY(A-BB")+(A-BB")TYE+2P"BB'R = —2K[K,,
T T T T T T (7)
—E'YB+R'BM; = —K; Jo, Jo Jo =1 —My Mg, Y=R'YR

are solvable foiX, K¢, Jc andY, Ko, Jo, respectively, Her® andR, are the spec-
tral projectors onto the right and left deflating subspades®— (A— BBT) cor-
responding to the finite eigenvalues avig = | — 2lims .., BT (SE — A+ BBT)"!B.
The minimal solutions<,,, andY, ;. of (6) and (7) that satisfy & X, < X and
0 <Y, <Y for all symmetric solutionX andY of (6) and (7), are called the con-
trollability and observability Gramians of system (5). kigithe block structure of
the system matrices (5b), we can show tRat § R S, andY,,;, = S XninSnt
with §,; = diag(l, -1, —1).
Model reduction consists in approximating the large-sE#l& system (5) of order
N, =N+ +n-+n,, +n by a reduced-order model

E4%, =A%, +Bu, y=Cx,, (8)

wherex; € R" andr < n,. It is required that the approximate system (8) captures
the input-output behavior of (5) to a required accuracy aredgrves passivity.

The PABTEC model reduction method is based on transformystem (5) into

a balanced form whose controllability and observabilitya@rans are equal and
diagonal. Then a reduced-order model is computed by triorc#te states corre-
sponding to the small diagonal elements of the balanced @rsmWe summarize
the PABTEC method in Algorithm 1.

Algorithm 1. Passivity-preserving balanced truncation for electrical disqtfABTEC).

1. Compute the Cholesky factBrof the minimal solutionX;, = RR" of (6).

2. Compute the eigenvalue decompositioRSS,ER = [U; U,]diagiA;,A,)V, V,]T and
(I = M) Sexe = Up/\Ug » where[U, U], [V; V] andU, are orthogonal, = diag(Ay, ..., Ar, ),

Ay =diagA, 1., Aq) andAg = diagAy, ..., Am).
3. Compute the reduced-order system (8) with
é:[l o} A:}[ 2WTAT \/EWTBCOO} B:{ WTB } CT:{ 7B }
0 0] 2|-V2B.B'T 21 —B.Cs]’ —Ba/V2|’ cl/v2)
where Bu, = $[Ag|Y2Ug Soxs Coo = Ug|Ag| Y2, Soye = diag(l, —1),
W = §,RU;|A; |22, §; = diag(sign(Ay), .. Sign(Am)). [Ag| = diag(|A,], .., [Am),
T =RU;S|A |72, S = diagsign(A,),...,Sign(Ar, ), [A;| = diag([Ay,..., [ Ar,|).

One can show that the reduced model computed by the PABTERbheteserves
passivity and we have the error bouf@— G||; < 2|/l + G||3_ (/\rf+1 +...+Aq),

provided 21 +G|lg,, (A, 1+ +Aq) <1, see [4] for detalils.

If Dc = I —MgM{ is nonsingular, the®, = | —M{ M, is also nonsingular and the
projected Lur'e equation (6) is equivalent to the projed®éctati equation
RHRT +FXFT + EXET + EXQXE' =0, X =P.XP" (9)

with F = A—BB" —2RBD,*M{B"R;, H = 2BD, BT andQ = 2BD !B'. Such an
equation can be solved via Newton’s method [4]. Note thattlgrix M, and the
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projectorsh andP; required in (9) can be constructed in explicit form explugtihe
topological structure of the circuit equations (5), see Fr large-scale problems,
the numerical solution of projected Lur’e equations is eatly under investigation.

3.3 Recoupling of the Reduced Linear Subsystem and the
Nonlinear Subsystem

LetB=[B, B, B, B, B;] andC" = [C] €] €] €] CI] in (8) be partitioned in
blocks according tai, andy,, respectively. Since the vectgy = é>‘<€ is an approxi-
mation to the output vectagy, of system (5), we have

—A2)'n-n~Cx%, -Aln~Cg, -1.~C&,. (10)
Then equations (4) and (3b) are approximated by
L(iy)§i; = —ésf(zv 5(05)%05 - _ésf(e’ (11)

respectively, wheré andu. are approximations tg andu., respectively. Further-
more, fori, defined in (2) 7, defined in (3a) andﬁ = Aj{n € R, we have

Iz=(G;+ Gz)Gflg(ug{) - 62%7
—(A2)Tn —n.=—ALn+GHa(ALN) = Uy + G 1a(u; ) (12)
Then the first equation in (10) together with (12) imply thiatien
0=-G,C% — GGy +9(0; ), (13)

whereu}i approximateslﬁ. Combining (8), (11) and (13) and addingxpalso the
approximations., U, andu:K as state variables, we get the reduced-order nonlinear
DAE system

ER) IR = R+ f(R) + Ay, y=%%
with
E O 0O A+B,(G,+G,)C, B; B B,G,
5o |0L(I) 0 0 - —C, 00 O
‘=19 0 c@)o| 77 -& 00 0 |
0 0 0O -G,C, 00 -G,
0 8, 8, eIk
co | O - 00 r |00 S S N A
f(X)— 0 bl %_ O 0 ) Cr— 0 0 I X= 05 I Y— |:94
() 00 00 Oy

that approximates the original nonlinear system (1). Teduced model can now
be used instead of (1) in the analysis of the dynamical beha¥ithe circuit.
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4 Numerical Experiments

Consider an electrical circuit
constructed by 1000 repeti
tions of subcircuits contain-
ing one inductor, two cat
pacitors, and two resistors

T

as shown in the figure op Q40 W 10/ an
the right. In the 1st, 101st, Yy © = sin’ (100rt)
201st, etc., subcircuits, a linear resistor is replaced dipde. Furthermore, in the

100th, 200th, 300th, etc., subcircuits, the linear induiteeplaced by a nonlinear
inductor. For more details, we refer to [5].

=
O

original system: 1 voltage source, 1990
ear resistors, 10 diodes, 991 linear ind
tors, 10 nonlinear inductors, 2000 linear{¢ta 15
pacitors

dimension of the original systefh 4003 sl
simulation time for the origingl 4557s fN
system{p)

tolerance for model reduction || 1e-05 y
time for model reduction 822s x10
dimension of the reduced systegm 203
simulation time for the reduc¢ld 67s 3 ol /
system{;)
absolute error in the output 4.4e-0§ o4 A

0 0.01 0.02 003 004 0.05
speeduptf/t;) 68.5 t

Fig. 1 (Left) numerical results; (right) simulation results for the origiaad the reduced systems.
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The numerical simulation is done foe [0,0.05] seconds using the BDF method of
order 2 with fixed stepsize of lengthB0~°. The numerical results for the prescribed
tolerance is given in Figures 1. In the upper plot, the ouygtit= —lq/(t) of the

original system and the outpy(t] = —Tq/ (t) of the reduced system are presented.
In the lower plot, the errad1,, (t) = [y(t) — y(t)| is shown.
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