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SOLVING PARAMETER-DEPENDENT LYAPUNOV EQUATIONS
USING THE REDUCED BASIS METHOD WITH APPLICATION TO

PARAMETRIC MODEL ORDER REDUCTION∗

NGUYEN THANH SON† AND TATJANA STYKEL‡

Abstract. Our aim is to numerically solve parameter-dependent Lyapunov equations using
the reduced basis method. Such equations arise in parametric model order reduction. We restrict
ourselves to the systems that affinely depend on the parameter, as our main strategy is the min-θ
approach. In those cases, we derive various a posteriori error estimates. Based on these estimates,
a greedy algorithm for constructing reduced bases is formulated. Thanks to the derived results, a
novel so-called parametric balanced truncation model reduction method is developed. Numerical
examples are presented.
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1. Introduction. In this paper, we consider the following parametric algebraic
Lyapunov equation (PALE):

(1) A(µ)X(µ)ET(µ) + E(µ)X(µ)AT(µ) = −B(µ)BT(µ),

where A(µ), E(µ) ∈ RN×N and B(µ) ∈ RN×m with m� N are given. The coefficient
matrices and the right-hand side depend on parameter µ in a compact domain D ⊂ Rd.
For the rest of this paper, we assume that E(µ) is nonsingular, and all eigenvalues of
a pencil λE(µ)−A(µ) have negative real part for all µ ∈ D. With these assumptions,
(1) has a unique symmetric positive semidefinite solution X(µ) for all µ ∈ D; see, e.g.,
[23]. Solving Lyapunov equations is of great importance in many control problems
including stability analysis, stabilization, model reduction by balanced truncation,
and optimal control [2, 10]. The PALE (1) arises naturally in parametric model
reduction [4] or in the design of low gain feedback [41].

Because of their role in control theory, various works have been devoted to the
numerical solution of Lyapunov equations. First, it is worth mentioning the direct
methods by Bartels and Stewart [3] and by Hammarling [16]. To avoid expensive
computations in the direct methods, iterative ones such as the sign function method
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[7], the alternating directions implicit method [25, 39], and Krylov subspace methods
[21, 30] have been developed. Exploiting the fact that the right-hand sides of Lyapunov
equations in most applications have low rank, low-rank versions of the mentioned
iterative methods have been formulated. See [9, 24, 28, 31], just to name a few; see
also [6, 32] for the recent surveys on the state-of-the-art algorithms.

Although a lot of attention has been paid to Lyapunov equations, only very
few publications dedicated to solving the PALEs can be found. To the best of our
knowledge, [22] is the only printed work on this subject. Nevertheless, the purpose
of the method presented there, computing the solutions for many different parameter
values, is not our goal. We would like to compute the solution X(µ) for any µ ∈ D.

For dealing with parameter-dependent problems, the reduced basis method [17,
29] is an effective tool. This method was initially proposed for coercive elliptic partial
differential equations and then extended to noncoercive equations [38], Burgers equa-
tions [37], and Navier–Stokes equations [36]. Applying this method to PALEs in the
present paper is most probably the first time this was ever done, while an extension
to parametric Riccati equations can be found in the very recent paper [15].

To use the reduced basis method, first we have to convert the Lyapunov equation
to a linear system using the Kronecker product. The size of the resulting linear system
is N2, where N is itself already large. This fact results in very expensive computations
as well as a huge storage requirement. The key point to avoid these difficulties is to
keep all computations with matrices and vectors of dimension N . In addition, the
norm for error evaluation must be carefully chosen in order to make all computations
feasible. Similarly to [17, 29], a posteriori error estimates will be constructed, based
on which a greedy algorithm is designed to determine the reduced bases.

To this end, the rest of this paper is organized as follows. In section 2, we repeat
how the Lyapunov equation can be converted to a linear equation by application of the
Kronecker product. We also provide some formulae that allow us to replace N2-sized
operations with N -sized ones. Section 3 introduces the reduced basis method for
parameter-dependent linear systems. Important components of this method are the
greedy algorithm and a posteriori error estimates which will be discussed in sections
3.1 and 3.2, respectively. We also explain how to efficiently compute the residual
norm, which is the main strategy for the error estimate in this section. In section
4, we present an extension of the reduced basis framework to parametric Lyapunov
equations with symmetric coefficient matrices. The nonsymmetric case is treated
in section 5. Based on these results, we develop in section 6 a new approach for
parametric model order reduction. Two numerical examples will be presented in
section 7. Finally, in section 8, we conclude as well as pose some problems for future
work.

Throughout this paper, we will use boldface for matrices and vectors of dimension
N2 and the standard font for that of dimension N . Given a matrix A ∈ RN×N and
a vector v ∈ RN2

, vec(A) will denote the column vector in RN2

generated from A by
stacking all columns of A, and mat(v) is the N×N -matrix such that vec(mat(v)) = v.
The Kronecker product of the matrices A and B is denoted by A ⊗ B. The trace of
the matrix A is denoted by trace(A), ker(A) = {v ∈ RN : Av = 0}, span(A)
is the subspace spanned by columns of A, AT stands for the transpose of A, and
A > 0 (A ≥ 0) means that A is positive definite (semidefinite), i.e., vTAv > 0
(vTAv ≥ 0) for all v 6= 0. The smallest and largest singular values of A are denoted
by σmin(A) and σmax(A), respectively, whereas the smallest and largest eigenvalues of
symmetric A are denoted by λmin(A) and λmax(A), respectively. Similarly, λmin(E,A)
and λmax(E,A) will denote the smallest and largest eigenvalue of the matrix pencil
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λE − A, respectively. We denote by ‖v‖ =
√

(vT v) the Euclidean vector norm of
v ∈ RN , by ‖A‖2 = σmax(A) the spectral norm of A ∈ RN×M , and by cond(A) =
‖A‖2‖A−1‖2 the condition number of the invertible matrix A. Furthermore, the inner
product of two matrices A,B ∈ RN×M is defined as 〈A,B〉 = trace(BTA), and
‖A‖F =

√
〈A,A〉 is the Frobenius matrix norm.

2. Lyapunov equations and linear systems. We begin this section by col-
lecting some useful properties of the Kronecker product, vec- and mat-operators.

Lemma 2.1. Let E,A,X, Y ∈ RN×N , x = vec(X), and y = vec(Y ). Then
1. yTx = 〈X,Y 〉, and
2. vec(AXET + EXAT ) = Lx with L = E ⊗A+A⊗ E.

Proof. While the first equality is straightforward, the second is obtained from [20,
Lemma 4.3.1].

Lemma 2.2. Let V = [v1, . . . ,vk] ∈ RN2×k, Vj = mat(vj) for j = 1, . . . , k,

U = [u1, . . . ,ul] ∈ RN2×l, Uj = mat(uj) for j = 1, . . . , l, and L = E ⊗A+A⊗ E.
1. LV = [ vec(AV1E

T + EV1A
T ), . . . , vec(AVkE

T + EVkA
T ) ].

2. The entries of UTLV∈Rl×k are given by (UTLV)ij=
〈
AVjE

T + EVjA
T , Ui

〉
.

3. Let Ls = Es⊗As+As⊗Es, s = 1, 2. Then the entries of UTLT1 L2V ∈ Rl×k
are given by (UTLT1 L2V)ij = 〈A2VjE

T
2 + E2VjA

T
2 , A1UiE

T
1 + E1UiA

T
1 〉.

Proof. The equalities can be easily verified by calculation.

Let S denote a space of N×N symmetric matrices. Consider a Lyapunov operator
Lµ : S→ S given by

Lµ(X) = −A(µ)XET(µ)− E(µ)XAT(µ).

Then the PALE (1) takes the form Lµ(X(µ)) = B(µ)BT(µ). Using Lemma 2.1, this
equation can also be written as a linear system

(2) L(µ)x(µ) = b(µ),

where x(µ) = vec(X(µ)), b(µ) = vec(B(µ)BT(µ)), and

(3) L(µ) = −E(µ)⊗A(µ)−A(µ)⊗ E(µ)

is the matrix representation of the linear Lyapunov operator Lµ. The following the-
orem establishes some properties of Lµ and L(µ).

Theorem 2.3. Let −A(µ) and E(µ) be symmetric, positive definite for all µ ∈ D.
1. The matrix L(µ) in (3) is symmetric and positive definite for all µ ∈ D and

its smallest and largest eigenvalues are bounded as

λmin(L(µ)) ≥ 2λmin(−A(µ))λmin(E(µ)),(4)

λmax(L(µ)) ≤ 2λmax(−A(µ))λmax(E(µ))(5)

for all µ ∈ D.
2. The Lyapunov operator Lµ is uniformly coercive, i.e., it holds

(6) α(µ) := inf
V ∈RN×N\{0}

〈Lµ(V ), V 〉
‖V ‖2F

> 0

for all µ ∈ D.
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3. The Lyapunov operator Lµ is uniformly continuous, i.e., it holds

(7) γ(µ) := sup
W,V ∈RN×N\{0}

〈Lµ(V ),W 〉
‖W‖F ‖V ‖F

<∞

for all µ ∈ D.

Proof. 1. Since −A(µ) and E(µ) are both symmetric, the matrix L(µ) in (3)
is also symmetric for all µ ∈ D. Using Weyl’s theorem [19, Theorem 4.3.1] and the
multiplicativity property of eigenvalues of the Kronecker product [20, Theorem 4.2.12],
we have

λmin(L(µ)) ≥ λmin(−E(µ)⊗A(µ)) + λmin(−A(µ)⊗ E(µ))
= 2λmin(−A(µ))λmin(E(µ)) > 0,

whereby the last inequality follows from the positive definiteness of −A(µ) and E(µ).
Thus, the bound (4) holds and L(µ) is positive definite. The bound (5) can be proved
analogously.

2. We obtain from Lemma 2.1 and the Courant–Fischer theorem [19, Theo-
rem 4.2.6] that

α(µ) = inf
V ∈RN×N\{0}

〈Lµ(V ), V 〉
‖V ‖2F

= inf
v∈RN2\{0}

vTL(µ)v

‖v‖2
= λmin(L(µ)) > 0

for all µ ∈ D, and hence, Lµ is uniformly coercive.
3. Using again Lemma 2.1 and the Courant–Fischer theorem, we have

γ(µ) = sup
W,V ∈RN×N\{0}

〈Lµ(V ),W 〉
‖W‖F ‖V ‖F

= sup
w,v∈RN2\{0}

wTL(µ)v

‖w‖‖v‖
= λmax(L(µ)) <∞

for all µ ∈ D. Thus, Lµ is uniformly continuous.

The parameter-dependent quantities α(µ) and γ(µ) are called coercivity constant
and continuity constant of the Lyapunov operator Lµ, respectively. From the proof
of Theorem 2.3 we obtain the important relations

(8) α(µ) = λmin(L(µ)), γ(µ) = λmax(L(µ)),

which together with the estimates (4) and (5) will be very useful in the following.
Note that the coercivity constant α(µ) coincides with the separation

Sep
(
E(µ), A(µ)

)
:= inf
‖X‖F =1

‖A(µ)XET(µ) + E(µ)XAT(µ)‖F ,

which measures the separation of the spectrum of the pencil λE(µ)−A(µ) from that
of λE(µ) + A(µ) and is frequently used in the sensitivity analysis of the Lyapunov
equations [11, 18].

3. Reduced basis method. In this section, we consider the application of the
reduced basis method to the linear system (2) with L(µ) as in (3), where −A(µ) and
E(µ) are assumed to be symmetric and positive definite. This method consists of the
following steps. For selected parameters µ1, . . . , µk ∈ D, we construct first a reduced
basis matrix

(9) Vk = [ x(µ1), . . . , x(µk) ],
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where x(µj) is the solution of (2) at µ = µj for j = 1, . . . , k. Then, for any µ ∈ D,
an approximate solution can be computed by Galerkin projection x(µ) ≈ Vkx̂(µ),
where x̂(µ) solves the reduced linear system

(10) L̂(µ)x̂(µ) = b̂(µ)

with L̂(µ) = VT
k L(µ)Vk and b̂(µ) = VT

k b(µ). This seemingly simple procedure
raises several issues: optimal choice of the parameter sample µ1, . . . , µk, providing
a good reduced basis subspace that guarantees a rapid convergence of the reduced
basis approximation Vkx̂(µ) to x(µ) over the entire parameter domain D, rigorous
error estimates for the approximate solution, and efficient computations.

3.1. Greedy algorithm. The key to the success of the reduced basis method
is the construction of an appropriate basis. It should be done in such a way that
the error of the approximation is smaller than a given tolerance while the dimension
of the reduced basis is kept as small as possible. One way to do this is to employ
a greedy algorithm, e.g., [17, section 3.2.2], which successively determines snapshots
depending on the error magnitude.

Suppose that we have already computed a basis matrix Vk = [ x(µ1), . . . ,x(µk) ].
Then the error and the residual of the approximate solution Vkx̂(µ) are given by

ek(µ) = x(µ)−Vkx̂(µ),
rk(µ) = b(µ)− L(µ)Vkx̂(µ),

respectively. They satisfy the equation

(11) L(µ)ek(µ) = rk(µ),

which immediately implies the error estimate

(12) ‖ek(µ)‖ = ‖L−1(µ)rk(µ)‖ ≤ ‖rk(µ)‖
α(µ)

≤ ‖rk(µ)‖
αLB(µ)

=: ∆k(µ).

Here, αLB(µ) is a positive lower bound for the coercivity constant α(µ), and ∆k(µ) is
the resulting error estimator. To reduce the approximation error, which most probably
implies an enlargement of the basis, we find the next value µk+1 such that ∆k(µk+1) is
the largest in D. Of course, we cannot pursue the search on D, which is a continuous
set. Instead, one usually does it on a discrete subset of D. To ensure that no good
candidates are missed, this training set, denoted by Dtrain, should be rather dense
and, therefore, large. In practice, we choose Dtrain first and pick µ1 arbitrarily in
Dtrain. We also need to specify a tolerance tolrb for the approximation. The greedy
algorithm is then given in the sections that follow.

For the success of this algorithm, an efficient, sharp, and rigorous error estimate
is required. This issue will be addressed in the next subsection.

3.2. Error estimation. First, we impose some further restrictions on the prob-
lems treated in this paper. To wit, we assume that the matrices A(µ), E(µ), and
B(µ) are affine in the parameter µ, i.e.,

(A1) A(µ) =

nA∑
j=1

θAj (µ)Aj , E(µ) =

nE∑
j=1

θEj (µ)Ej , B(µ) =

nB∑
j=1

θBj (µ)Bj ,

where Aj , Ej , and Bj are independent of µ, nA, nE , and nB are very small com-
pared to N , θAj (µ), θEj (µ), and θBj (µ) are continuous in D and their evaluations at
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Algorithm 1 Greedy algorithm for linear systems.

Input: tolerance tolrb, training set Dtrain, initial parameter µ1 ∈ Dtrain.
Output: a basis matrix Vk.

1: Solve L(µ1)x(µ1) = b(µ1).
2: Set ∆max

1 > tolrb, M1 = {µ1}, V1 = x(µ1), and k = 2.
3: while ∆max

k−1 ≥ tolrb do
4: µk = arg max

µ∈Dtrain\Mk−1

∆k−1(µ)

5: ∆max
k = ∆k−1(µk)

6: Mk =Mk−1 ∪ {µk}
7: solve L(µk)x(µk) = b(µk)
8: Vk = [ Vk−1, x(µk) ]
9: k ← k + 1

10: end while

each µ ∈ D are inexpensive. This assumption permits us to decompose the compu-
tation of the solution of the linear system (2) into an offline stage (computationally
expensive), in which the reduced basis matrix Vk is constructed and all parameter-
independent matrices are computed and stored, and an online stage (computationally
inexpensive), in which the reduced system (10) is solved for any µ ∈ D to get the
approximate solution x(µ) ≈ Vkx̂(µ).

Furthermore, we require that the matrices −A(µ) and E(µ) are parametrically
coercive, i.e.,

(A2) Ej = ETj ≥ 0 and θEj (µ) > 0 for all µ ∈ D and j = 1, . . . , nE ,

(A3) −Aj = −ATj ≥ 0 and θAj (µ) > 0 for all µ ∈ D and j = 1, . . . , nA.

The following lemma shows that under assumptions (A1)–(A3) the linear system (2)
maintains the affine dependence and parametric coercivity.

Lemma 3.1. Let A(µ), E(µ), and B(µ) satisfy (A1)–(A3). Then the matrix L(µ)
and the vector b(µ) in the linear system (2) are affine in the parameter µ. Moreover,
L(µ) is parametrically coercive.

Proof. The proof of the affine dependence is straightforward and based on the
properties of the Kronecker product [20]. Nevertheless, since we will need the explicit
form of the affine dependence later on, it is briefly presented here. One can easily
verify that the coefficient matrix and the right-hand side in (2) take the form

(13) L(µ) =

nE∑
i=1

nA∑
j=1

θLij(µ)Lij , b(µ) =

nB∑
i=1

nB∑
j=1

θbij(µ)bij ,

where

(14)
θLij(µ) = θEi (µ)θAj (µ) > 0, Lij = −Ei ⊗Aj −Aj ⊗ Ei,
θbij(µ) = θBi (µ)θBj (µ), bij = vec(BiB

T
j ).

Obviously, Lij is symmetric and positive semidefinite. This fact together with the
positiveness of θLij completes the proof.

Remark 3.2. In general, the parametric coercivity of −A(µ) and E(µ) does not
imply the coercivity of L(µ), i.e., the positivity of α(µ) = λmin(L(µ)). If, however, in
addition to the parametric coercivity, we assume that
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(A4) there exist at least one pair (Aj , Ei) such that −Aj > 0 and Ei > 0,

then the coercivity is satisfied. Assumption (A4) can also be replaced by a condition
that ⋂

j=1,...,nA

ker (Aj) = ∅ and
⋂

j=1,...,nE

ker (Ej) = ∅.

To derive a posteriori error estimates, we first have to find positive lower bounds
for the coercivity constant α(µ). We will mainly employ the min-θ approach [17,
section 4.3] which strongly relies on the affine decomposition (A1) and the parametric
coercivity (A2) and (A3). To this end, for a fixed value µ̄ ∈ D, we define the following
functions:

θL,µ̄min(µ) = min
i=1,...,nE
j=1,...,nA

θLij(µ)

θLij(µ̄)
, θL,µ̄max(µ) = max

i=1,...,nE
j=1,...,nA

θLij(µ)

θLij(µ̄)
, θL,µ̄(µ) =

θL,µ̄max(µ)

θL,µ̄min(µ)
.

The min-θ approach applied to L(µ) is based on lower bounding λmin(L(µ)) by the
min-θ-function multiplied with λmin(L(µ̄)) computed for a single parameter µ̄ ∈ D.
For convenience, an upper bound for the continuity constant γ(µ) is also included in
the following lemma.

Lemma 3.3. Let E(µ) and A(µ) satisfy (A1)– (A4), and let µ̄, µ̄1, µ̄2 ∈ D.
1. For all µ ∈ D, the coercivity constant α(µ) in (6) is bounded from below as

(15) α(µ) ≥ αLB(µ) := max
(
αL,µ̄

LB (µ), αA,µ̄1;E,µ̄2

LB (µ), αL
LB(µ)

)
> 0,

where

αL,µ̄
LB (µ) = 2 θL,µ̄min(µ)λmin

(
−A(µ̄)

)
λmin

(
E(µ̄)

)
,

αA,µ̄1;E,µ̄2

LB (µ) = 2 θA,µ̄1

min (µ) θE,µ̄2

min (µ)λmin

(
−A(µ̄1)

)
λmin

(
E(µ̄2)

)
,

αL
LB(µ) = 2

nE∑
i=1

nA∑
j=1

θLij(µ)λmin(−Aj)λmin(Ei).

2. For all µ ∈ D, the continuity constant γ(µ) in (7) is bounded from above as

(16) γ(µ) ≤ γUB(µ) := min
(
γL,µ̄UB (µ), γA,µ̄1;E,µ̄2

UB (µ), γLUB(µ)
)
,

where

γL,µ̄UB (µ) = 2 θL,µ̄max(µ)λmax

(
−A(µ̄)

)
λmax

(
E(µ̄)

)
,

γA,µ̄1;E,µ̄2

UB (µ) = 2 θA,µ̄1
max (µ) θE,µ̄2

max (µ)λmax

(
−A(µ̄1)

)
λmax

(
E(µ̄2)

)
,

γLUB(µ) = 2

nE∑
i=1

nA∑
j=1

θLij(µ)λmax(−Aj)λmax(Ei).

Proof. 1. Using the Courant–Fischer theorem and the min-θ approach we obtain
that

λmin

(
L(µ)

)
= min
‖v‖=1

vTL(µ)v = min
‖v‖=1

nE∑
i=1

nA∑
j=1

θLij(µ) vTLijv

= min
‖v‖=1

nE∑
i=1

nA∑
j=1

θLij(µ)

θLij(µ̄)
θLij(µ̄) vTLijv ≥ θL,µ̄min(µ)λmin

(
L(µ̄)

)
.
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Then (4) implies the lower bound

λmin

(
L(µ)

)
≥ 2 θL,µ̄min(µ)λmin

(
−A(µ̄)

)
λmin

(
E(µ̄)

)
.

On the other hand, using (4) again and applying the min-θ approach to the matrices
A(µ) and E(µ), we have

λmin

(
L(µ)

)
≥ 2λmin

(
−A(µ)

)
λmin

(
E(µ)

)
≥ 2 θA,µ̄1

min (µ) θE,µ̄2

min (µ)λmin

(
−A(µ̄1)

)
λmin

(
E(µ̄2)

)
.

Finally, it follows from Weyl’s theorem [19, Theorem 4.3.1] that

λmin

(
L(µ)

)
≥

nE∑
i=1

nA∑
j=1

θLij(µ)λmin(Lij) ≥ 2

nE∑
i=1

nA∑
j=1

θLij(µ)λmin(−Aj)λmin(Ei).

Thus, the bound (15) holds.
2. The bound (16) can be proved similarly using (5).

Remark 3.4. One can observe that if E(µ) ≡ E is constant and µ̄ = µ̄1 = µ̄2, then

αA,µ̄1;E,µ̄2

LB (µ) and γA,µ̄1;E,µ̄2

UB (µ) coincide with αL,µ̄
LB (µ) and γL,µ̄UB (µ), respectively. Note

also that the quantities αL
LB(µ) and γLUB(µ) in (15) and (16), respectively, have no

relation to the min-θ approach. We have presented them in order to possibly tighten
the bounds.

Remark 3.5. A slightly improved version of the min-θ approach, called the multi-
parameter min-θ approach, was presented in [17, section 4.3.2]. Roughly speaking,
it is the same as the former but applied several times with several reference param-
eters µ̄i, i = 1, . . . , l, and the new lower bound is the maximum of the lower bounds
corresponding to µ̄i, i = 1, . . . , l.

3.2.1. Euclidean norm error estimate. The following theorem provides an a
posteriori error estimate for the reduced basis solution Vkx̂(µ).

Theorem 3.6. Let assumptions (A1)– (A4) be fulfilled, and let αLB(µ) and γUB(µ)
be as in (15) and (16), respectively. Then the error ek(µ) = x(µ)−Vkx̂(µ) satisfies
the bounds

(17) ‖ek(µ)‖ ≤ ∆k(µ) ≤ γUB(µ)

αLB(µ)
‖ek(µ)‖,

where the error estimator ∆k(µ) is given by

(18) ∆k(µ) =
‖rk(µ)‖
αLB(µ)

.

Proof. The error estimate ‖ek(µ)‖ ≤ ∆k(µ) immediately follows from (12) and
(15). Furthermore, using (8), (11), and (16), we have

∆k(µ) =
‖rk(µ)‖
αLB(µ)

≤ γUB(µ)

αLB(µ)
‖ek(µ)‖.

This completes the proof.
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The effectivity of the error estimator ∆k(µ) is measured by the quantity

ηk(µ) =
∆k(µ)

‖ek(µ)‖
.

The error estimate is tight if ηk(µ) is very close to 1. It follows from (17) that

(19) 1 ≤ ηk(µ) ≤ γUB(µ)

αLB(µ)
.

Therefore, to sharpen the error estimate, one could choose the parameter µ̄ ∈ D
such that the quotient γUB(µ)/αLB(µ) is as small as possible. The solution to this
optimization problem, however, goes beyond the purpose of this paper.

Recall that in the greedy algorithm, finding the maximizer of the error estimator
∆k(µ) on a large discrete set Dtrain is required. This involves the repeated compu-
tation of the residual norm ‖rk(µ)‖ in the vector space of huge dimension N2 for
all µ ∈ Dtrain. These unfeasibly expensive computations can be avoided thanks to
the choice of the norm, the affine dependence in L(µ) and b(µ), and an appropriate
arrangement of various computation steps.

To simplify the notation, we reindex the expressions for the coefficient matrix and
the right-hand side in (13) by replacing the two-index system by a one-index system,
say

(20) L(µ) =

nAnE∑
p=1

θLp (µ)Lp, b(µ) =

n2
B∑

p=1

θbp (µ)bp,

where

(21)
Lp = Lij , θLp (µ) = θLij(µ) for p = (i− 1)nA + j,

bp = bij , θbp (µ) = θbij(µ) for p = (i− 1)nB + j.

Then the residual norm can be represented as

‖rk(µ)‖2 =
(
b(µ)− L(µ)Vkx̂(µ)

)T (
b(µ)− L(µ)Vkx̂(µ)

)
=

n2
B∑

p,q=1

θbp (µ)θbq (µ)bTp bq − 2

n2
B∑

p=1

nAnE∑
q=1

θbp (µ)θLq (µ)bTp LqVkx̂(µ)(22)

+

nAnE∑
p,q=1

θLp (µ)θLq (µ)x̂T(µ)VT
k LTp LqVkx̂(µ),

where x̂(µ) is the solution of the reduced linear system (10). Note that the parameter-
dependent coefficient matrix and the right-hand side in (10) also admit the affine
decompositions

(23) L̂(µ) =

nAnE∑
p=1

θLp (µ)VT
k LpVk, b̂(µ) =

n2
B∑

p=1

θbp (µ)VT
k bp.

One can easily realize that several matrix-matrix and matrix-vector products in (22)
and (23), namely bTp bq, bTp LqVk, VT

k LTp LqVk, VT
k LpVk, and VT

k bp, are independent
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of µ. They are expensive to compute but not to store. Another worthwhile advantage
is that all of these parameter-independent quantities can be computed and stored
hierarchically with respect to the step k of the greedy algorithm. In other words,
at each greedy step only one entry of the vectors, one row, and one column of the
matrices must be computed and added to their previous versions. Once all parameter-
independent quantities are available, for each µ ∈ Dtrain, one first computes (23), then
solves (10) for x̂(µ) and, finally, computes (22). These three steps are cheap since
their computational complexity depends only on k, nE , nA, and nB , which are very
small. Therefore, the search on Dtrain is quite fast, which makes the greedy algorithm
feasible and efficient even for large-scale problems and the large training set Dtrain.

3.2.2. Energy norm error estimate. Instead of the Euclidean vector norm,
one can also quantify the approximation error in the energy norm, which is frequently
used in the reduced basis method [17, 29]. In our setting, the energy vector norm is
defined by ‖x‖µ =

√
xTL(µ)x. It is easy to verify that√

α(µ)‖x‖ ≤ ‖x‖µ ≤
√
γ(µ)‖x‖,

with α(µ) and γ(µ) as in (6) and (7), respectively. From (11) and (15) we obtain the
energy norm error estimate

(24) ‖ek(µ)‖µ =
√

rTk (µ)L−1(µ)rk(µ) ≤ ‖rk(µ)‖√
αLB(µ)

=: ∆en
k (µ).

Then the corresponding effectivity constant satisfies

1 ≤ ηenk (µ) :=
∆en
k (µ)

‖ek(µ)‖µ
≤

√
γUB(µ)

αLB(µ)
.

We see that the upper bound for ηenk (µ) is smaller than that for ηk(µ) in (19). This
implies that the estimate (24) is sharper than (17).

4. Low-rank reduced basis method for Lyapunov equation. A major
drawback of the reduced basis method described above is that it operates with ma-
trices and vectors of huge dimension N2 and, as a consequence, suffers from high
computational complexity and large storage requirements. Fortunately, thanks to
Lemma 2.2, the reduced basis method can directly be applied to the PALE (1) in
which all operations are still with N ×N -matrices and N -vectors. Moreover, assum-
ing that the solution of the PALE (1) with the low-rank right-hand side B(µ)BT(µ)
is well approximated by a low-rank matrix X(µ) ≈ Z(µ)ZT(µ), we can further reduce
computational cost and memory requirements both in offline and online stages.

4.1. Offline phase. In the offline phase, instead of solving the linear system
(2), we compute the solutions of the PALE (1) for selected parameters µ1, . . . , µk.
Let Zj ∈ RN×nj be the low-rank Cholesky factor of the solution X(µj) ≈ ZjZ

T
j of

(1) at µ = µj , j = 1, . . . , k. These factors can efficiently be computed by the low-
rank alternating directions implicit (LR-ADI) method [6, 24, 28], Krylov subspace
method [9, 31], or the Riemannian method [35]. Then for any µ ∈ D, we determine
an approximate solution of (1) as

X(µ) ≈ mat(Vkx̂(µ)) =: XRB(µ),
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where

(25) Vk =
[

vec(Z1Z
T
1 ), . . . , vec(ZkZ

T
k )
]

and x̂(µ) solves the reduced linear system (10). Note that, for simplicity, we denote
the new reduced basis matrix (25) again by Vk although it differs from that in (9) since
it is constructed from the low-rank approximate solutions X(µj) ≈ ZjZ

T
j instead of

the exact solutions X(µj) = mat
(
x(µj)

)
used in (9). Clearly, this results in a different

reduced basis approximation.
The solution XRB(µ) can also be written as

(26) XRB(µ) =

k∑
j=1

x̂j(µ)ZjZ
T
j = Vk

x̂1(µ)In1

. . .

x̂k(µ)Ink

V Tk ,
where [x̂1(µ), . . . , x̂1(µ)]T = x̂(µ) and

(27) Vk = [Z1, . . . , Zk ] .

Note that we never form the matrix Vk explicitly to construct the reduced linear
system (10). Instead, we exploit the affine decomposition (23) of the coefficient ma-

trix L̂(µ) and the right-hand side b̂(µ) and compute the entries of the parameter-
independent matrices VT

k LpVk for p = (i−1)nA+j with i = 1, . . . , nE , j = 1, . . . , nA,
and the vectors VT

k bp for p = (i− 1)nB + j with i, j = 1, . . . , nB , using Lemmas 2.1
and 2.2 and relations (14) and (21) as follows:

(VT
k LpVk)rl = 〈−EiZlZTl ATj −AjZlZTl ETi , ZrZTr 〉

= −2trace
(
ZTr (EiZl)(AjZl)

TZr
)
,

(VT
k bp)r = 〈BiBTj , ZrZTr 〉 = trace

(
(BTj Zr)(Z

T
r Bi)

)
for r, l = 1, . . . , k. Thus, taking advantage of the structure of Lp, bp, and Vk reduces
the computational cost, for example, of VT

k LpVk from O(N4k) to O(N2n) with
n = n1 + · · ·+ nk. In counting, we did not exploit the sparsity of Ei and Aj .

Remark 4.1. Note that even Ei and Aj are assumed to be symmetric, and we
always write ETi and ATj if the transpose matrices are needed. This will simplify the
extension of the reduced basis method to nonsymmetric problems; see section 5.

For the approximate solution XRB(µ), we obtain from Theorem 3.6 the error
estimate

(28) ‖X(µ)−XRB(µ)‖F = ‖ek(µ)‖ ≤ ∆k(µ)

with ∆k(µ) as in (18). This error estimator can now be utilized in the greedy param-
eter sampling procedure presented in Algorithm 2.

For an efficient computation of the residual norm ‖rk(µ)‖, we again make use of
the affine representation (22), where computing the parameter-independent quantities
demands a more detailed discussion. Consider first bTp bq for p = (i−1)nB+j, q =
(f − 1)nB + g, and i, j, f, g = 1, . . . , nB . Using (14) and (21) we obtain

bTp bq = 〈BfBTg , BiBTj 〉 = trace
(
(BTi Bf )(BTg Bj)

)
.
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Algorithm 2 Greedy algorithm for Lyapunov equations.

Input: tolerance tolrb, training set Dtrain, initial parameter µ1 ∈ Dtrain.
Output: a basis matrix Vk.

1: Solve the PALE (1) at µ = µ1 for X(µ1) ≈ Z1Z
T
1 .

2: Set ∆max
1 > tolrb, M1 = {µ1}, V1 = Z1, and k = 2.

3: while ∆max
k−1 ≥ tolrb do

4: µk = arg max
µ∈Dtrain\Mk−1

∆k−1(µ)

5: ∆max
k = ∆k−1(µk)

6: Mk =Mk−1 ∪ {µk}
7: solve the PALE (1) at µ = µk for X(µk) ≈ ZkZTk
8: Vk = [Vk−1, Zk ]
9: k ← k + 1

10: end while

The components of the vector bTp LqVk for p = (i − 1)nB + j, q = (f − 1)nA + g,
i, j = 1, . . . , nB , f = 1, . . . , nE , and g = 1, . . . , nA can be expressed as

(bTp LqVk)l = 〈−AgZlZTl ETf − EfZlZTl ATg , BiBTj 〉

= −trace
(
BTi (EfZl)(AgZl)

TBj +BTi (AgZl)(EfZl)
TBj

)
, l = 1, . . . , k.

Finally, the matrix VT
k LTp LqVk for p = (i − 1)nA + j, q = (f − 1)nA + g, and

i, f = 1, . . . , nE , j, g = 1, . . . , nA, can be determined elementwise:

(VT
k LTp LqVk)rl = 〈−AgZlZTl ETf − EfZlZTl ATg ,−AjZrZTr ETi − EiZrZTr ATj 〉

= 2 trace
(
(EiZr)

T(EfZl)(AgZl)
T(AjZr) + (EiZr)

T(AgZl)(EfZl)
T(AjZr)

)
for r, l = 1, . . . , k. Here, we used Lemma 2.2 and the relations (14) and (21).

4.2. Online phase. Once the reduced basis matrix Vk is constructed such that
the error estimator does not exceed a given tolerance, the solution of the PALE (1)
at any µ ∈ D can be obtained in the online phase as in (26). Nevertheless, a serious
disadvantage of this approach is that the resulting approximate solution XRB(µ) is
not necessarily positive semidefinite since the solution x̂(µ) of (10) may have negative
entries. This difficulty can be circumvented by computing the approximate solution
in the form X(µ) ≈ VkX̂(µ)V Tk =: X̂RB(µ), where Vk is as in (27) and X̂(µ) solves
the reduced Lyapunov equation

(29) Â(µ)X̂(µ)ÊT(µ) + Ê(µ)X̂(µ)ÂT(µ) = −B̂(µ)B̂T(µ)

with Ê(µ) = V Tk E(µ)Vk, Â(µ) = V Tk A(µ)Vk, and B̂(µ) = V Tk B(µ). Since −A(µ)
and E(µ) are symmetric and positive definite, this equation has a unique symmetric
positive semidefinite solution X̂(µ) = Ẑ(µ)ẐT(µ). Then X̂RB(µ) can be written in
the factorized form X̂RB(µ) = ZRB(µ)ZTRB(µ) with ZRB(µ) = VkẐ(µ).

Let

(30) R̂k(µ) = A(µ)X̂RB(µ)ET(µ) + E(µ)X̂RB(µ)AT(µ) +B(µ)BT(µ)

be the residual associated with the approximate solution X̂RB(µ). Then the error
X(µ)− X̂RB(µ) can be estimated similarly to the linear system case as

(31) ‖X(µ)− X̂RB(µ)‖F ≤
‖R̂k(µ)‖F
α(µ)

≤ ‖R̂k(µ)‖F
αLB(µ)

=: ∆̂k(µ)
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with αLB(µ) as in (15). Replacing the approximate solution Vkx̂(µ) in (22) by

vec(X̂RB(µ)) = (Vk ⊗ Vk)vec(X̂(µ)),

we obtain the following expression for the residual:

‖R̂k(µ)‖2F = ‖b(µ)− L(µ)(Vk ⊗ Vk)vec(X̂(µ))‖2

=

nB∑
i,j=1

nB∑
f,g=1

θBijfg(µ)trace
(
(BTi Bf )(BTg Bj)

)
+ 2

nB∑
i,j=1

nE∑
f=1

nA∑
g=1

θAEBijfg (µ)trace
(
BTi (EfVk)X̂(µ)(AgVk)TBj

)
+ 2

nB∑
i,j=1

nE∑
f=1

nA∑
g=1

θAEBijfg (µ)trace
(
BTi (AgVk)X̂(µ)(EfVk)TBj

)
+ 2

nE∑
i,f=1

nA∑
j,g=1

θAEijfg(µ)trace
(
(EfVk)T (EiVk)X̂(µ)(AjVk)T (AgVk)X̂(µ)

)
+ 2

nE∑
i,f=1

nA∑
j,g=1

θAEijfg(µ)trace
(
(EfVk)T (AjVk)X̂(µ)(EiVk)T (AgVk)X̂(µ)

)
,

where θBijfg(µ) = θBi (µ)θBj (µ)θBf (µ)θBg (µ), θAEBijfg (µ) = θBi (µ)θBj (µ)θEf (µ)θAg (µ), and

θAEijfg(µ) = θEi (µ)θAj (µ)θEf (µ)θAg (µ). Again, all parameter-independent matrices can

be precomputed and stored in the offline stage. Then the error estimator ∆̂k(µ) can
be calculated in the online stage at low computational cost which is independent of
the large dimension N .

Note that in the greedy algorithm, instead of ∆k(µ) one can also use the estimator
∆̂k(µ). It should, however, be emphasized that the computation of the reduced basis
solution XRB(µ) in (26) is less expensive than that of X̂RB(µ) = VkX̂(µ)V Tk because

solving the linear system (10) with L̂(µ) ∈ Rk×k is cheaper than solving the Lyapunov
equation (29) with Ê(µ), Â(µ) ∈ Rn×n, where n = n1 + · · ·+ nk may be significantly
larger than k. The dimension n depends on m (number of columns of B(µ)), the
convergence rate of the iterative method used for solving the PALE (1), and the
number of greedy steps. To keep the offline computational cost low, we compute the
error estimator based on XRB(µ), whereas in the online phase, where the positive
semidefiniteness of the solution is most essential, we calculate X̂RB(µ). Moreover,
due to the fact that span(Vk) ⊂ span(Vk ⊗ Vk), the approximate solution X̂RB(µ) is
predicted to have a smaller error. In order to retain a low-rank structure of X̂RB(µ)
and, therefore, to reduce the online computational cost, the column compression in Vk
should be performed with a prescribed tolerance tolcc. This can be done by computing
a rank-revealing QR decomposition or a singular value decomposition (SVD) of Vk.

5. Nonsymmetric case. The reduced basis method described above can also
be applied to the PALE (1), where A(µ) is nonsymmetric, with some adjustments in
formulating the error estimates.

Assume that the pencil λE(µ)−A(µ) is strictly dissipative, i.e.,

(32) E(µ) = ET(µ) > 0, A(µ) +AT(µ) < 0

for all µ ∈ D. These conditions guarantee the solvability of the reduced Lyapunov
equation (29) for any projection matrix Vk. They are fulfilled if assumptions (A1),
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(A2), together with

(A3´) Aj +ATj ≤ 0 and θAj (µ) > 0 for all µ ∈ D and j = 1, . . . , nA;

(A4´) there exist at least one pair (Aj , Ei) such that Aj +ATj < 0 and Ei > 0,

hold. Taking (11) and (12) into account, we need only find an upper bound for
‖L(µ)‖2 = σmax

(
L(µ)

)
and a lower bound for ‖L−1(µ)‖−1

2 = σmin

(
L(µ)

)
. For this

purpose, we introduce

S(µ) =
1

2

(
A(µ) +AT(µ)

)
,(33)

LS(µ) =
1

2

(
L(µ) + LT (µ)

)
= −E(µ)⊗ S(µ)− S(µ)⊗ E(µ).

Obviously, these matrices inherit the affine structure. Moreover, S(µ) = ST (µ) < 0
and LS(µ) = LTS (µ) > 0 for all µ ∈ D.

5.1. Frobenius norm error estimates. In this subsection we derive the Frobe-
nius norm error estimates for the approximate solutions XRB(µ) and X̂RB(µ). The
following lemma establishes lower and upper bounds for the smallest and largest sin-
gular values of L(µ), respectively.

Lemma 5.1. Let E(µ) and A(µ) satisfy (A1), (A2), (A3´), and (A4´), and let
µ̄, µ̄1, µ̄2 ∈ D.

1. For all µ ∈ D, the smallest singular value of L(µ) is bounded from below as

(34) σmin

(
L(µ)

)
≥ α̃LB(µ) := max

(
α̃L,µ̄

LB (µ), α̃A,µ̄1;E,µ̄2

LB (µ), α̃L
LB(µ)

)
> 0,

where

α̃L,µ̄
LB (µ) = 2 θL,µ̄min(µ)λmin

(
−S(µ̄)

)
λmin

(
E(µ̄)

)
,

α̃A,µ̄1;E,µ̄2

LB (µ) = 2 θA,µ̄1

min (µ) θE,µ̄2

min (µ)λmin

(
−S(µ̄1)

)
λmin

(
E(µ̄2)

)
,

α̃L
LB(µ) = 2

nE∑
i=1

nA∑
j=1

θLij(µ)λmin(−Sj)λmin(Ei)

with S(µ) as in (33) and Sj = (Aj +ATj )/2.
2. For all µ ∈ D, the largest singular value of L(µ) is bounded from above as

(35) σmax

(
L(µ)

)
≤ γ̃UB(µ) := min

(
γ̃L,µ̄UB (µ), γ̃A,µ̄1;E,µ̄2

UB (µ), γ̃LUB(µ)
)
,

where

γ̃L,µ̄UB (µ) = 2 θL,µ̄max(µ)σmax

(
A(µ̄)

)
λmax

(
E(µ̄)

)
,

γ̃A,µ̄1;E,µ̄2

UB (µ) = 2 θA,µ̄1
max (µ) θE,µ̄2

max (µ)σmax

(
A(µ̄1)

)
λmax

(
E(µ̄2)

)
,

γ̃LUB(µ) = 2

nE∑
i=1

nA∑
j=1

θLij(µ)σmax(Aj)λmax(Ei).

Proof. 1. Based on an important inequality between singular values of a matrix
and eigenvalues of its symmetric part [20, Corollary 3.1.5], we get

σmin

(
L(µ)

)
≥ λmin

(
LS(µ)

)
.
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Then the bound (34) immediately follows from Lemma 3.3, part 1.
2. Using the multiplicativity property of the singular values of the Kronecker

product [20, Theorem 4.2.15], we obtain that

σmax

(
L(µ)

)
≤ 2σmax

(
A(µ)

)
λmax

(
E(µ)

)
.

Then the bound (35) can be proved analogously to Lemma 3.3, part 2.

We use now the bounds (34) and (35) to derive the error estimates for the reduced
basis solutions of the PALE (1).

Theorem 5.2. Let E(µ) and A(µ) satisfy (A1), (A2), (A3´), and (A4´), and
let XRB(µ) and X̂RB(µ) be the reduced basis approximations to the solution of the
PALE (1). Then the errors X(µ)−XRB(µ) and X(µ)− X̂RB(µ) can be estimated as

‖X(µ)−XRB(µ)‖F ≤
‖mat(rk(µ))‖F

α̃LB(µ)
=: ∆ns

k (µ) ≤ γ̃UB(µ)

α̃LB(µ)
‖X(µ)−XRB(µ)‖F ,

‖X(µ)− X̂RB(µ)‖F ≤
‖R̂k(µ)‖F
α̃LB(µ)

=: ∆̂ns
k (µ) ≤ γ̃UB(µ)

α̃LB(µ)
‖X(µ)− X̂RB(µ)‖F ,

where α̃LB(µ) and γ̃UB(µ) are as in (34) and (35), respectively.

Proof. The result follows from (11), (12), and Lemma 5.1.

5.2. Logarithmic norm based error estimates. Alternative error estimates
can be derived using a 2-logarithmic norm of the pencil λE(µ)−A(µ), defined as

`
(
E(µ), A(µ)

)
= λmax

(
E(µ), S(µ)

)
.

If E(µ) ≡ I, then `
(
I, A(µ)

)
= `

(
A(µ)

)
= λmax

(
S(µ)

)
is the 2-logarithmic matrix

norm, which is frequently used in differential equations and numerical analysis [33].
Conditions (32) imply that `

(
E(µ), A(µ)

)
< 0 for all µ ∈ D, so it is not a norm in the

usual sense. Define a weighted matrix norm

‖X‖E(µ) = ‖GT (µ)XG(µ)‖F ,

where G(µ) is a Cholesky factor of E(µ) = G(µ)GT (µ). The following theorem
establishes an error estimate for the reduced basis solution X̂RB(µ) = VkX̂(µ)V Tk .

Theorem 5.3. Let X(µ) and X̂RB(µ) be the exact and approximate solutions of
the PALE (1). Then the error X(µ)− X̂RB(µ) can be estimated as

‖X(µ)−X̂RB(µ)‖E(µ) ≤
‖R̂k(µ)‖F
αE,A,µ̄LB (µ)

=: ∆̂E,A,µ̄
k (µ) ≤

γE,A,µ̄UB (µ)

αE,A,µ̄LB (µ)
‖X(µ)−X̂RB(µ)‖E(µ),

where

αE,A,µ̄LB (µ) = 2
θA,µ̄min(µ)

θE,µ̄(µ)
λmin

(
E(µ̄)

)
λmin

(
E(µ̄),−S(µ̄)

)
,(36)

γE,A,µ̄UB (µ) = 2 θA,µ̄max(µ)σmax

(
A(µ̄)

)√
θE,µ̄(µ)

λmax

(
E(µ̄)

)
λmin

(
E(µ̄)

) ,(37)

and R̂k(µ) is the residual given in (30).
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Proof. Let Ξ(µ) = X(µ)− X̂RB(µ). It follows from

G−1(µ)R̂k(µ)G−T (µ) = −AG(µ)GT (µ)Ξ(µ)G(µ)−GT (µ)Ξ(µ)G(µ)ATG(µ)

with AG(µ) = G−1(µ)A(µ)G−T (µ) that

−GT (µ)Ξ(µ)G(µ) =

∫ ∞
0

eAG(µ)tG−1(µ)R̂k(µ)G−T (µ)eA
T
G(µ)tdt.

The matrix exponential is estimated as

‖eAG(µ)t‖2 ≤ e`
(
G−1(µ)A(µ)G−T (µ)

)
t = e`

(
E(µ),A(µ)

)
t;

see [8, 27]. Therefore,

‖Ξ(µ)‖E(µ) ≤ ‖G−1(µ)R̂k(µ)G−T (µ)‖F
∫ ∞

0

e2`(E(µ),A(µ))tdt ≤ ‖R̂k(µ)‖F ‖E−1(µ)‖2
−2 `

(
E(µ), A(µ)

) .

It remains to find a lower bound for −`
(
E(µ), A(µ)

)
. We again employ the min-θ

approach. For

S(µ) =

nA∑
j=1

θAj (µ)Sj

with Sj = (Aj +ATj )/2, we obtain similarly to the proof of Lemma 3.3 that

−`
(
E(µ), A(µ)

)
= λmin

(
E(µ),−S(µ)

)
= min
v∈Rn\{0}

vT (−S(µ))v

vTE(µ)v

= min
v∈Rn\{0}

∑nA

j=1 θ
A
j (µ)vT (−Sj)v∑nE

j=1 θ
E
j (µ)vTEjv

≥ min
v∈Rn\{0}

θA,µ̄min(µ)vT (−S(µ̄))v

θE,µ̄max(µ)vTE(µ̄)v

=
θA,µ̄min(µ)

θE,µ̄max(µ)
λmin

(
E(µ̄),−S(µ̄)

)
.

Then taking into account that

‖E−1(µ)‖2 =
1

λmin

(
E(µ)

) ≤ 1

θE,µ̄min(µ)λmin

(
E(µ̄)

)
and θE,µ̄(µ) = θE,µ̄max(µ)/θE,µ̄min(µ), we get the error estimate

‖X(µ)− X̂RB(µ)‖E(µ) ≤
‖R̂k(µ)‖F
αE,A,µ̄LB (µ)

=: ∆̂E,A,µ̄
k (µ)

with αE,A,µ̄LB (µ) as in (36). Furthermore, using

‖R̂k(µ)‖F = ‖A(µ)(X̂RB(µ)−X(µ))ET (µ) + E(µ)(X̂RB(µ)−X(µ))AT (µ)‖F
≤ 2 ‖A(µ)‖2

√
‖E(µ)‖2‖E−1(µ)‖2‖X(µ)− X̂RB(µ)‖E(µ)

≤ 2 θA,µ̄max(µ)σmax

(
A(µ̄)

)√
θE,µ̄(µ)

λmax

(
E(µ̄)

)
λmin

(
E(µ̄)

) ‖X(µ)− X̂RB(µ)‖E(µ)

= γE,A,µ̄UB (µ)‖X(µ)− X̂RB(µ)‖E(µ)

with γE,A,µ̄UB (µ) as in (37), the effectivity constant can be estimated as

1 ≤ ηE,A,µ̄k (µ) :=
∆̂E,A,µ̄
k (µ)

‖X(µ)− X̂RB(µ)‖E(µ)

≤
γE,A,µ̄UB (µ)

αE,A,µ̄LB (µ)
.

This completes the proof.
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6. Application to parametric model order reduction. Given a parametric
linear dynamical system

(38)
E(µ)ẋ(t, µ) = A(µ)x(t, µ) +B(µ)u(t, µ),

y(t, µ) = C(µ)x(t, µ),

where A(µ), E(µ), and B(µ) satisfy (A1), and the output matrix C(µ) ∈ Rl×N with
l� N also depends affinely on µ, i.e.,

C(µ) =

nC∑
j=1

θCj (µ)Cj ,

the main goal of model reduction is to approximate system (38) by a reduced-order
model

(39)
Ẽ(µ) ˙̃x(t, µ) = Ã(µ)x̃(t, µ) + B̃(µ)u(t, µ),

ỹ(t, µ) = C̃(µ)x̃(t, µ),

where Ã(µ), Ẽ(µ) ∈ Rr×r, B̃(µ) ∈ Rr×m, and C(µ) ∈ Rl×r with r � N . This
model can be computed by balanced truncation, probably the most effective model
order reduction method for linear control systems. This method is based on the
controllability and observability Gramians X(µ) and Y (µ) defined as the solutions of
the PALE (1) and the dual PALE

(40) AT(µ)Y (µ)E(µ) + ET(µ)Y (µ)A(µ) = −CT(µ)C(µ),

respectively. For brevity, we do not review the balanced truncation method here, but
refer the reader who is not familiar with this method to [2, 34].

Based on the derived results, we develop a so-called parametric balanced trun-
cation method as follows. One can observe that for the parametric system (38), the
balanced truncation method admits the offline-online decomposition. In the offline
phase, we determine the reduced basis matrices VX ∈ RN×nX and VY ∈ RN×nY by
the greedy algorithm applied to the PALEs (1) and (40), respectively. Then in the
online phase, for any µ ∈ D, we first find the approximate Gramians

X(µ) ≈ VXZX(µ)ZTX(µ)V TX , Y (µ) ≈ VY ZY (µ)ZTY (µ)V TY ,

where X̂(µ) = ZX(µ)ZTX(µ) and Y̆ (µ) = ZY (µ)ZTY (µ) solve, respectively, the re-

duced Lyapunov equations (29) with Â(µ) = V TXA(µ)VX , Ê(µ) = V TXE(µ)VX , and

B̂(µ) = V TXB(µ) and

(41) ĂT(µ)Y̆ (µ)Ĕ(µ) + ĔT(µ)Y̆ (µ)Ă(µ) = −C̆T(µ)C̆(µ)

with Ă(µ) = V TY A(µ)VY , Ĕ(µ) = V TY E(µ)VY , and C̆(µ) = C(µ)VY . Computing the
SVD

ZTY (µ)V TY E(µ)VXZX(µ) =

nE∑
j=1

θEj (µ)ZTY (µ)V TY EjVXZX(µ)(42)

= [U1(µ), U2(µ)]

[
Σ1(µ) 0

0 Σ2(µ)

]
[V1(µ), V2(µ)]T
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with Σ1(µ) ∈ Rr×r, we obtain the projection matrices

W (µ) = VY ZY (µ)U1(µ)Σ
−1/2
1 (µ), T (µ) = VXZX(µ)V1(µ)Σ

−1/2
1 (µ).

Then the reduced-order system matrices in (39) take the forms

Ẽ(µ) = WT(µ)E(µ)T (µ), Ã(µ) = WT(µ)A(µ)T (µ),

B̃(µ) = WT(µ)B(µ), C̃(µ) = C(µ)T (µ).

Exploiting the affine structure and the parametric formulations of the Gramians, we
get

(43)

Ẽ(µ) =

nE∑
j=1

θEj (µ)W̃T(µ)V TY EjVX T̃ (µ), B̃(µ) =

nB∑
j=1

θBj (µ)W̃T(µ)V TY Bj ,

Ã(µ) =

nA∑
j=1

θAj (µ)W̃T(µ)V TY AjVX T̃ (µ), C̃(µ) =

nC∑
j=1

θCj (µ)CjVX T̃ (µ)

with W̃ (µ) = ZY (µ)U1(µ)Σ
−1/2
1 (µ) and T̃ (µ) = ZX(µ)V1(µ)Σ

−1/2
1 (µ). All parameter-

independent terms should be computed and stored before running the online stage.
We summarize the parametric balanced truncation model reduction method as follows.
Offline: Given the parametric system (38):

• Compute the reduced basis matrices VX and VY .
• Compute and store all parameter-independent matrices:

V TXEjVX , V TY EjVY , and V TY EjVX for j = 1, . . . , nE ;
V TXAjVX , V TY AjVY , and V TY AjVX for j = 1, . . . , nA;
V TXBj and V TY Bj for j = 1, . . . , nB ; CjVX and CjVY for j = 1, . . . , nC .

Online: Given µ ∈ D:
• Compute Â(µ) = V TXA(µ)VX , Ê(µ) = V TXE(µ)VX , B̂(µ) = V TXB(µ), and

Ă(µ) = V TY A(µ)VY , Ĕ(µ) = V TY E(µ)VY , C̆(µ) = C(µ)VY using precomputed
parameter-independent terms and the affine structure.

• Solve (29) and (41) for the Cholesky factors ZX(µ) and ZY (µ), respectively.
• Compute the SVD (42).
• Compute the reduced-order model (39), (43).

Ignoring the small numbers nA, nE , nB , and nC , one can verify that the computational
complexity of the online stage does not exceed O(n3

X + n3
Y ).

The parametric reduced-order system (39) can also be determined by applying the
reduced basis (RB) method directly to (38); see [14]. Next, we sketch a comparison
between this method and the reduced basis balanced truncation (RBBT) method
presented here. The latter method has a control-theoretic background and gains
all benefits of balanced truncation once accurate approximations to the Gramians are
available. It should, however, be noticed that while the RB method provably preserves
the stability for systems with a strictly dissipative pencil λE(µ)−A(µ), the RBBT
method provides stable reduced-order models under stronger assumptions that E(µ)
and −A(µ) are symmetric, positive definite, and B(µ) = CT(µ). Since in the RBBT
method only (low-rank) approximations to the Gramians are computed, in general,
one can no longer guarantee the stability of the reduced-order models. Though this
issue has been addressed in [12, 40], to the best of our knowledge, there is still no
rigorous analysis on the impact of the inexactness in the Gramians on the preservation
of stability in balanced truncation even for nonparametric systems. Note that in our
experiments, we have never observed instability which can be explained by small errors
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in the approximated Gramians. Furthermore, in contrast to the RB method, the
RBBT method does not rely on the state snapshots, and the projection subspaces are
independent of the training input. Comparing the computational complexity of both
approaches, we conclude that the offline phase in the RBBT method is less expensive
than that in the RB method. Indeed, at the kth greedy step, the computation of
the error estimates requires in our method solving K linear systems of dimension k,
where K is the number of training parameters in Dtrain, whereas in the RB method,
one has to solve K differential equations whose dimension is equal to k or larger than
k if at at least one greedy step the basis is enriched by more than one vector. As
mentioned in [5] and also observed in our numerical experiments, adding more than
one basis vector usually results in a faster convergence of the greedy iteration. On the
other hand, the online phase in the RBBT method is more expensive than that in the
RB method, since for every new parameter, we additionally have to solve two reduced
Lyapunov equations, compute the SVD, and then construct the reduced-order model
by projection. Finally, the RBBT method provides an a priori error bound which can
be computed by summing up the truncated Hankel singular values, whereas the RB
method comes with a posteriori error estimates based on residual computations.

7. Numerical examples. In this section, we present some results of numerical
experiments to demonstrate the properties of the RB method applied to the PALEs as
well as the parametric balanced truncation model reduction. For solving the Lyapunov
equations for fixed parameter values, we use the LR-ADI method as described in [6].
All computations are performed with MATLAB R2014a on a laptop using 64-bit OS
Windows 8.1, equipped with 2.40 GHz 8 GB Intel Core i7-4500U CPU.

7.1. A heat equation. The first model is taken from [22]. Consider the heat
equation

∂ϑ

∂t
−∇(σ(ξ)∇ϑ) = f in Ω× (0, T ),

ϑ = 0 on ∂Ω× (0, T ),
(44)

with the heat conductivity coefficient

(45) σ(ξ) =

{
1 + µi for ξ ∈ Di, i = 1, . . . , 4,
1 for ξ ∈ Ω\(∪4

i=1Di),

where Di ⊂ Ω = (0, 4)2, i = 1, . . . , 4, are four discs of radius 0.5 centered at (1, 1),
(3, 1), (1, 3), and (3, 3), respectively, and the parameter µ = [µ1, µ2, µ3, µ4]T varies
in D = [0.1, 10]4. Equation (44) with the source term f ≡ 1 is discretized using the
finite element method with piecewise linear basis functions resulting in a system (38)
of dimension N = 1580 with the symmetric positive definite mass matrix E(µ) ≡ E
and the stiffness matrix

(46) A(µ) = µ1A1 + µ2A2 + µ3A3 + µ4A4 +A5,

where Ai, i = 1, . . . , 4, are symmetric negative semidefinite, and A5 is symmetric
negative definite. The input matrix B(µ) ≡ B ∈ RN originates from the source
function f , and the output matrix C(µ) ≡ C = 1/N [1, . . . , 1] ∈ R1×N . The data
were thankfully provided by the authors of [22] and can be downloaded from http:
//anchp.epfl.ch/htucker.

For solving the controllability and observability PALEs (1) and (40), we employ
the RB method with the same setting for both equations. The training set Dtrain,

http://anchp.epfl.ch/htucker
http://anchp.epfl.ch/htucker
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which consists of 10000 random parameters, is obtained successively, starting with
the random number generator “twister” and the seed 0. The reference parameter µ̄
required in the min-θ approach is simply chosen to be the 5000th point in the training
set. The tolerance for stopping the greedy algorithm and the maximal number of
greedy iterations are given by tolrb = 10−4 and kmax = 40, respectively. The test
set Dtest containing 50 random parameters is obtained with the generator “twister”
and the seed 1 on which the online phase is tested. Finally, the tolerance for column
compression in the online phase is taken as tolcc = 10−6. For simulation in the time
domain [0, 10], we use the implicit Euler method with 200 equidistant time steps.

In Figure 1(a), we plot the coercivity constant α(µ) and its lower bounds as in
Lemma 3.3 on the test parameter set Dtest. The horizontal axis shows the index of the
parameters from Dtest. Note that for the heat model, we have αL,µ̄

LB (µ) = αA,µ̄;E,µ̄
LB (µ).

For computing α(µ) = λmin

(
L(µ)

)
, we use the Lanczos method applied to L−1(µ),

where the matrix-vector products L−1(µ)v are determined by solving the Lyapunov
equations

−A(µ)XET(µ)− E(µ)XAT(µ) = mat(v).

It is worth mentioning that the right-hand side in these equations is not necessarily
of low rank, which leads to high computational effort.

In Figure 1(b), we present the convergence history of the maximal error estimate
∆max
k in the greedy algorithm for both PALEs. One can observe that the convergence

of the greedy algorithm is not very satisfactory: the iteration indeed stops before the
tolerance is reached. The true errors are, however, acceptable, and the computed
reduced bases provide reasonably good approximations to the solutions of the PALEs
on the test set Dtest. Figure 2 shows the relative errors

‖X(µ)−XRB(µ)‖F
‖XRB(µ)‖F

and
‖X(µ)− X̂RB(µ)‖F
‖X̂RB(µ)‖F

,

the relative error estimates ∆40(µ)/‖XRB(µ)‖F and ∆̂40(µ)/‖X̂RB(µ)‖F , and the er-
ror efficiencies

γUB(µ)

αLB(µ)

‖X(µ)−XRB(µ)‖F
‖XRB(µ)‖F

and
γUB(µ)

αLB(µ)

‖X(µ)− X̂RB(µ)‖F
‖X̂RB(µ)‖F

for the controllability PALE (1) on the test set Dtest. One can see that the corre-
sponding errors and error estimates are different from each other by a multiplicative
factor of about 103. Moreover, the error for X̂RB(µ) is smaller than that for XRB(µ),
which supports our observation in section 4.2 and encourages the use of the method
by the fact that the error in the online phase is even smaller than that in the offline
phase.

Finally, we compare the presented RBBT method with the interpolation based
balanced truncation approach [4] and the RB method from [14]. For the first compa-
rison, we use both multivariate Lagrange polynomial interpolation and linear inter-
polation in the frequency domain on the uniformly spaced parameter grid with 256
nodes. Due to the local properties of linear interpolation, the resulting reduced-order
models have dimension about 125 which is much smaller than that in the Lagrange
interpolation, but still larger than the average reduced dimension by about 7 in our
method (the reduced dimensions may vary for different parameters). In Figure 3(a),
we plot the approximate H∞-norm of the absolute errors in the frequency response
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Fig. 1. Heat equation: (a) the coercivity constant α(µ) and its lower bounds for µ ∈ Dtest; (b)
the maximal error estimate during the greedy iteration.
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Fig. 2. Heat equation: relative errors, error estimates, and error efficiencies measured in two
ways for the controllability PALE (1).

defined as

(47)

‖H(·, µ)− H̃(·, µ)‖H∞ = sup
ω∈R
‖H(iω, µ)− H̃(iω, µ)‖2

≈ sup
ωj∈[ωmin,ωmax]

‖H(iωj , µ)− H̃(iωj , µ)‖2,

where H(s, µ) = C
(
sE − A(µ)

)−1
B and H̃(s, µ) = C̃

(
sẼ − Ã(µ)

)−1
B̃ are the trans-

fer functions of the original and the reduced-order systems and µ ∈ Dtest. It shows
that our method delivers much smaller errors than the others. We also compare
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Fig. 3. Heat equation: a comparison of the parametric balanced truncation with (a) the inter-
polation based balanced truncation and (b) the RB method in the time domain.

the computation time. As anticipated, the offline phase of our method takes longer,
315 sec, while the interpolation based methods require 171 sec. In the online phase,
counting from the moment a new parameter value µ is given until the correspond-
ing reduced-order model is constructed and the frequency response is computed, our
method takes 0.06 sec, the linear interpolation based balanced truncation method runs
0.08 sec, while the Lagrange polynomial interpolation based method takes 0.11 sec.

In the RB method, we construct the projection matrix V from the solution snap-
shots of system (38) with the initial condition x(0) = 0 and the impulsive input
u(t) = δ(t). For this purpose, we employ the POD-Greedy approach as described in
[13], with only the difference that at every greedy step, we enrich the basis matrix
by one up to three columns depending on the magnitude of the singular values in
the POD computations. To verify the dependence of the approximation quality on
the training input in the RB method, we simulate the reduced-order models with the
input utest(t) = 3 − 100 cos(t) on the test parameter set Dtest. Taking into account
that all eigenvalues of λE −A(µ) have negative real part, the output error in the RB
method can be estimated as ‖y(·, µ)− ỹ(·, µ)‖L2 ≤ ‖∆y(·, µ)‖L2 , where

(48) ∆y(t, µ) = ‖C‖2
∫ t

0

‖EV ˙̃x(τ, µ)−A(µ)V x̃(τ, µ)−Butest(τ)‖dτ ;

see [14] for details. Note that since for the RBBT method in the time-domain-only
error bound in L2-norm is available, we use this norm also in the RB method to make
the reduction results comparable. Besides, the error estimate (48) is only based on
the primal problem. Using other norms and other error estimation techniques relying
on both primal and dual problems, e.g., [14, 17, 29], may improve the performance of
the RB method.

Figure 3(b) shows the absolute errors ‖y(·, µ)− ỹ(·, µ)‖L2 for the RB and RBBT
methods. In the latter method, the output error is estimated as

‖y(·, µ)− ỹ(·, µ)‖L2 ≤ 2 trace
(
Σ2(µ)

)
‖utest‖L2 ,

where Σ2(µ) contains truncated Hankel singular values [2]. Both error estimates are
also presented in Figure 3(b). One can see that the errors in the RBBT method are
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smaller than those in the RB method, although the average reduced dimension is 7
compared to 63 in the RB method. Note that for the training input u(t) ≡ 1, we get
the errors of about same order of magnitude in both reduction methods. The offline
phase in the RBBT and RB methods takes 315 sec and 3811 sec, respectively, while
in the online phase the average time in the RBBT method (0.055 sec) is higher than
in the RB method (0.014 sec).

7.2. An anemometer model. We consider now an anemometer model describ-
ing a thermal based flow sensor; see [26] and references therein. Simulation of this
device requires solving a convection-diffusion partial differential equation of the form

(49) ρc
∂ϑ

∂t
= ∇(κ∇ϑ)− ρcv∇ϑ+ q̇,

where ρ denotes the mass density, c ∈ [0, 1] is the specific heat, κ ∈ [1, 2] is the thermal
conductivity, v ∈ [0.1, 2] is the fluid velocity, ϑ is the temperature, and q̇ is the heat
flow into the system caused by the heater. The considered model is restricted to the
case ρ = 1. The finite element discretization of (49) leads to system (38) of order
N = 29008 with the mass matrix E(µ) = E1 + cE2, where E1 = E2 are symmetric
positive definite matrices and the stiffness matrix A(µ) = A1 +kA2 + cvA3, where A1

is symmetric negative definite, A2 is nonsymmetric but negative semidefinite, A3 is
symmetric negative semidefinite, and µ = [c, k, v]T . The input matrix B ∈ RN and the
output matrix C ∈ R1×N are parameter-independent. The data can be downloaded
from [1].

In this example, we want to test the error for nonsymmetric systems and the
reliability of the method when applied to really large systems. The time interval is
[0, 2]; the number of time steps and the sets Dtrain, Dref , Dtest are chosen with the same
settings as in the previous example. Note, however, that each set in this example is
different from its counterpart due to the difference in the dimension of the parameter
domain. We run the greedy algorithm for 20 steps. The convergence histories of the
greedy iteration for both (1) and (40) are shown in Figure 4(a). The relative errors
and the nonsymmetric error estimates as in Theorems 5.2 and 5.3 are presented in
Figure 5. The situation is quite similar to the previous example, except for the fact
that the error in the reduced basis solutions of the observability PALE (40), which is
not presented here, is rather large compared to that of the controllability PALE (1).
The reason is most probably that the corresponding greedy iteration stagnates after
the first five steps; see Figure 4(a). Together with the numerical results in section 7.1,
we believe that the reduced basis approximation is better when the maximal error in
the greedy search (almost) monotonously decreases. Nevertheless, the resulting errors
in the frequency response as defined in (47), as shown in Figure 4(b), are small.

Now we turn our attention to computation time shown in Figure 6(a). One
can see that most of the time (73%) used in the offline phase is spent on solving
the Lyapunov equation at twenty different points sought by the greedy algorithm.
Thanks to suitable arrangement of parameter-dependent and parameter-independent
terms, the computation time of the seemingly expensive search on the training set
can be almost ignored (7%). The time for computing the parameter independent
terms is quite remarkable (18%). Note, however, that these terms will be stored and
used in the online phase, which helps to reduce the cost. To wit, in the online phase,
for the true error, we have to solve the original Lyapunov equation and the reduced
Lyapunov equation at 50 points. The first task takes 849.9 sec, while the second takes
only 8.48 sec, which accelerates the computation by a factor of 100.
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Fig. 4. Anemometer model: (a) the maximal error estimate during the greedy iteration; (b)
the absolute error in the frequency response for parametric model order reduction.
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Fig. 5. Anemometer model: relative errors and error estimates measured in three ways for the
controllability PALE (1).

Finally, in Figure 6(b), we compare the errors and the error estimates of the
RBBT method and the RB method with the training input u(t) ≡ 1. The test input
is again utest(t) = 3−100 cos(t) for both methods. A situation similar to the previous
example can be observed. The offline phase takes 1506 sec in the RBBT method and
2065 sec in the RB method. The order of the reduced systems obtained by the RBBT
method and the RB method is about 46 and 56, respectively, and the duration of the
online phase is 0.37 sec for the RBBT method and 0.02 sec for the RB method. The
overestimation in the RB method could be explained by using the primal problem
based output bounds, whereas the RBBT error estimates are based on both primal
and adjoint problems.
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Fig. 6. Anemometer model: (a) time spent for different tasks and (b) a comparison of the
parametric balanced truncation with the reduced basis in the time domain.

By considering two examples, we observed that practically the proposed RB
method works well for both symmetric and nonsymmetric large-scale PALEs. The
combination of this method with balanced truncation provides a competitive alterna-
tive to other parametric model reduction approaches such as the direct use of the RB
method for dynamical systems and the interpolation based balanced truncation.

8. Conclusion. In this paper, we presented the RB method for solving large-
scale PALEs. For deriving the error estimates for approximate solutions to PALEs
with symmetric and nonsymmetric matrix coefficients depending affinely on param-
eters, we used the min-θ approach. The RB method was then used to extend the
standard balanced truncation model reduction approach to the parametric systems
which, unlike [4], does not require interpolation. Numerical examples show that, on
the one hand, the proposed method worked well for large problems, but on the other
hand, the error estimate can be poor, especially in the nonsymmetric case. Tight-
ening the error estimates by using other matrix norms and/or other techniques such
as the natural norm approach, the successive constraint method or their combination
remains for the future work.
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