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Abstract

In this paper we propose a quasi-inverse matrix. The application of it to solve the
initial value problem for system of ordinary differential equations Az (t) = x(t)+ f(t)
with a singular constant matrix of coefficients is discussed. We give also the notion
of a m-quasi-inverse matrix of A, prove the stability of this matrix to perturbations
in A and describe algorithms. Numerical examples are given.

A necessity for constructing reliable algorithms for integration of systems of ordinary

differential equations

A(t)i(t) = B(t)z(t) + f(t) (1)
with arbitrary coefficient matrices evokes a permanent interest in such problems for several
years [?] - [?]. A recent approach to solving linear-algebraic problems which acquired the
name “guaranteed accuracy” [4] offers a new view of the statements of the problems
connected with degenerate systems of ordinary differential equations.

In the present article, we consider the case of a constant matrix A and B = I. Instead
of the Drazin classical inverse matrix that is usually used for solving such systems of
differential equations [1,2], we introduce a quasi-inverse matrix, using which we derive
solvability conditions in the form of algebraic relations and prove a uniqueness theorem for
a solution. The quasi-inverse matrix is defined as a unique solution to some matrix system
of equations and can be calculated by means of the Schur orthogonal decomposition.

In studying the system of differential equations (1) with a degenerate coefficient ma-
trix A, the problem arises of numeric determination of the dimension (and structure)
of the invariant subspace of A corresponding to the zero eigenvalue. In view of limited
accuracy of calculations, we have to replace the exact spectrum of A with its e-spectrum
constituted by the points \ such that [|[(A — AI)~!|| > 1/¢||A4]| (see, for instance, [5]). In
the articles [5,&], some algorithms were proposed for splitting the spectrum of a matrix
into parts inside and outside the unit circle (circular dichotomy). The numeric character-
istic of remoteness of the points of the spectrum of the matrix from the unit circle was
taken to be the parameter w of circular dichotomy.

These algorithms are applicable to the spectrum dichotomy problem for an arbitrary
circle |\| = p. If the “almost zero” eigenvalues of the matrix A are separated by some
circle of a small radius p from the other part of the spectrum, i.e., if the value of the
parameter w(p) is not too large, then we can calculate the projections to the invariant
subspaces corresponding to these two groups of eigenvalues with guaranteed accuracy.

Thus, we may assume the original matrix to be preliminarily processed by means of
the dichotomy algorithm and to be normalized so that its spectrum lies inside the circle
of radius 1 centered at the origin.



In the present article, we also consider an m-quasi-inverse matrix (whose introduction
and name are evoked by analogy with an r-pseudo-inverse matrix that is used in solving
systems of linear equations [5]) and prove its stability under perturbations of the matrix.
To calculate the m-quasi-inverse matrix, we propose an algorithm for stable determina-
tion of the subspace corresponding to the “almost zero” eigenvalues of the matrix. This
problem has been an objective of the series of articles [7-10]. The proposed algorithm is
essentially a modification of the well-known algorithm by V. N. Kublanovskaya [7]. In the
latter we use the construction of singular vectors of a matrix which is based on exhaustion
of singular values [4]. This provides guaranteed accuracy for results and better estimates.
It is in this aspect that the proposed algorithm differs from its prototype. Also, we present
examples of numeric tests.

On the one hand, the present article may be regarded as devoted to the study of
degenerate systems of ordinary differential equations; on the other hand, it continues
research into spectral problems for asymmetric matrices.

1 A quasi-inverse matrix
A quasi-inverse matrix is defined only for a square matrix.

Definition 1 . A quasi-inverse matriz of a matriz A is defined to be a matriz A% satis-
fying the system of the equations

1. A#AA# = A#

2. (AA#)* = AA#,

3. A#Al+1 — Al, (2)
4. AHL(A#)HL = AA#

where | is the indez of A, i.e. the least nonnegative integer such that rank A = rank
Al

It is easy to prove that equalities (2) are independent, i.e., none of them is derivable from
the others. To this end, it suffices to indicate two matrices that satisfy any three of the
equalities but not the fourth.

Note that for [ = 0 the matrix A is nondegenerate. In this case a quasi-inverse matrix
coincides with the conventional inverse matrix: A% = A1

The correctness of the definition of quasi-inverse matrix is guaranteed by the following
theorem:

Theorem 1 . Every matrix A has a quasi-inverse matriz which is moreover unique.

Proof. Represent the matrix A in Schur block triangular form:

AzU(%?)U* (3)



where U is an orthogonal transformation, C' is a nondegenerate matrix and B is an upper
triangular matrix with each diagonal entry zero. It is easy to verify that the matrix

A#=U<CO_1 8)U (4)

satisfies all equalities in (2). Thereby the existence of a quasi-inverse matrix is proven.
Prove that the matrix A cannot have two different quasi-inverse matrices A% and A% .
Let R = A¥ — A¥. The third equality in (??) yields

RA"™ =0, (5)
and the second and fourth yield (AR)* = AR, RAR = 0. Consequently,
(AR)"AR = ARAR = 0.
Hence, we obtain AR = 0 or, alternatively,
AAT = AAT. (&)

Now, we make use of the first equality in (2). Involving (5), (&), and the fourth equality
in (2), we infer

AF = ATAAY = AT AAY = A A (A =
AT AT (AP = AF AAY = AY

The theorem is proven.

As a consequence of the theorem, we obtain representability of the quasi-inverse ma-
trix A¥ in the form (4).

Note that the quasi-inverse matrix belongs to none of the familiar classes of generalized
inverse matrices (see, for instance, [2]). In particular, the matrix A# is not the Drazin
inverse matrix. Indeed, the Drazin inverse matrix AP of A is defined as the only solution
to the matrix system of the equations

AX = XA, XAX = X, XA = Al (7)

where [ is the index of A [?]. It is easy to verify that A* fails to satisfy the first relation
in (7).

Demonstrate that the quasi-inverse matrix can be defined by means of an orthogonal
projection. To this end, consider the system of the equations

1LAX=P, 2P*=P, 3XP=X, 4XP=PX, 5APX=XAP. (8

Theorem 2 . The system of matriz equations (8) is solvable for P and X. Moreover,
for a fired matriz P, the matriz X s determined uniquely.



Proof. The first and third equalities in (8) yield
P? = AXP =AX =P,

i.e. P is a projection. The second equality in (8) implies that P is an orthogonal projec-
tion. Then there exists an orthogonal matrix V' such that

_ IN1 0 *
p_v(o 0>v,

where N; = rank P, I, is the identity matrix of order N;. Denote

A11 A12) Xll Xl?)

VAV =
<A21 A22 X21 X22

and V*XV = (

Show that X9 = X5 = X9 = 0. To this end, it suffices to use the third and fourth
identities in (8) together with the equalities

* * [ X Xu I 0y (Xu O
VXVVPV_<X21 X22)<0 0>_(X21 0),
V*PVV*XV — < I 0 ) ( Xll X12 ) — ( Xll X12 ) )

0 0 Xo1 Xoo 0 0

It is easy to demonstrate that the first equality in (8) yields X1; = A7)' and Ay = 0.
Indeed,

« « [ A Ap X 0\ [ ApXy 0 (. (I 0
vuwvxv_(&lAﬂ>(o 0>_<&Jh0)_vpv_<00)

Hence A5 X711 = 0 and A1 X1 = I. The last equality implies that the matrices A;; and
Xy, are nondegenerate.
Thus,

_ A A « o Ao . B I 0 .
A—V( 0 A22>V’ X—V( 0 0 vy, P=V V.

It is easy to verify that the so-obtained matrices X and P satisfy the system of equa-
tions (8). Thus, the system is solvable with respect to X and P. Show that, given A and
some fixed orthogonal projection P, the matrix X in (8) is determined uniquely.

Suppose that there are two different matrices X; and X, satisfying (8). The first,
third, and fourth equalities in (8) yield

APX1 = AX1P == P = AXQP = APXQ,

Furthermore, using these equalities together with the fifth equality in (8), we obtain

X1 == XlAPXl = XlAPXQ == APXlXQ == APXQXQ = XQAPXQ = XQ.
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The theorem is proven.

Remark 1. If we take as P the orthogonal projection to the maximal invariant subspace
corresponding to the nonzero eigenvalues of the matrix A then it is easy to verify that
the matrix A* determined by equality (4) satisfies the system of equations (8). In view
of uniqueness of a solution to (8), we can say that the matrix systems of equations (2)
and (8) are equivalent and can define the quasi-inverse matrix A#* as a unique solution
to the system

AA¥ =P, AP = A% A¥P = PA¥, APA¥ = A*AP. (9)

2 Application of the quasi-inverse matrix

In this section we show that the quasi-inverse matrix can be used for solution of the initial
value problem

{Ax'(t) = z(t) + f(1), (10)

z(a) = o,

where A is a singular (N x N)-matrix, f(t) € C**! (I is the index of A).
Let k be a multiplicity of zero eigenvalue of the matrix A. We present A in the block
triangular Schur form (?77?). Denote

0a =t = | 10 |,

where y; (t) and yo(t) are the vectors of dimensions (N — k) and k, respectively. Then the
equations of system (?7) can be rewritten in the form

{Cy'l(t)wm(t) = ui(t) +0.(0), 1)
Bin(t) = wa(t) + galt).

where U* f(t) = g(t). Let y»(t) be the solution of the second equation of (??). Then the
following identities hold:

Tya(t) = walt) + ga(t),
T?y,(t) = Tys(t) + Ta(t), (12)
Toya(t) = T lya(t) +T° 7 go(t),

where T is the operator whose action on a function ¢(t) is determined by the formula
T(t) = Bp(t) and T° is the sth power of the operator. Taking the sum of equalities (12),

we find B

Tsyz (t) = yz(t) + Z Tlgz(t)

i=0
Since B® =0 for s > [, the solution y»(t) to system (11) satisfies the relation

ya(t) = — i Big (). (13)
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In view of the nondegeneracy of the matrix C' in the first equation of system (11), we can
now calculate the vector y(t).
Denote l
p(t) = (AAF = 1) 3 ATfO(1). (14)
i=0

It is easy to demonstrate that a solution to system (10) satisfies the algebraic equality
(I = AA)z(t) = (2). (15)

To this end, it suffices to make use of representations (3) and (4) and equality (13).
Afterwards, solving the Cauchy problem (10), from (15) we, by necessity, obtain the
following condition on the initial data:

(I — AA%)zo = ¢(a). (1%)

Remark 2. In equality (14) the index [ of the matrix A can be replaced with an ar-
bitrary integer N > s > [, since the index of the matrix is, as a rule, unknown. In this
event, the smoothness requirement on the function f(¢) becomes more stringent.

Remark 3. When equality (1) is satisfied, the solutions y; and ys to system (11)
with the corresponding initial data are determined uniquely. This allows us to formulate
the following theorem.

Theorem 3 . If condition (16) is satisfied then there exists a unique solution to Cauchy
problem (10).

Demonstrate that solving problem (10) can be reduced to solving the system that is
solved with respect to the derivatives,

{ ié?) - ?fm(t) + (I — A*A)p(t) + A* £ (1), (17)

Theorem 4 . If condition (16) is satisfied then a solution to Cauchy problem (17) is
a solution to Cauchy problem (10).

Proof. As a preliminary, we observe the easy equalities

AFA(I — A¥ A) = 0, (18)

(I — AAF)(I — A% A) =T — AA¥, (19)
(I — AA¥)? =T — AA*, (20)

(I — AFA)(I — AA*) =1 — AT A. (21)

Now, show that if condition (1&) is satisfied then a solution to Cauchy problem (17) satis-
fies algebraic equation (15). Indeed, multiplying (17) by the matrix A% A and using (18)
and the first equality in (2), we obtain

A" Ai(t) = A% x(t) + A7 £(1). (22)

s
O



Afterwards, we subtract (22) from (17) and multiply the result by the matrix (I —AA#).
As a result of using (19) and (20), we arrive at the equality

(I — AAF)2(t) = (t).

Denoting u(t) = (I — AA#)z(t) — ¢(t), we obtain u(t) = 0. By condition (1&), we have
u(t) = 0. Consequently, equality (15) is satisfied.
Now, substitute the derivative 4(¢) given by (17) into equation (10):

Ai(t) = AA*z(t) + A(I — AFA)p(t) + AA* £ (D). (23)

Using the third property of the matrix A% in (2) and equalities (14), (20), and (21), we
infer

A(I — A% A)p(t) = —(I — AA¥) Xl: AL O (1) =

=0

(I AAFY(Y AFO ) + AL () f (1)) =

=0

= () + (I - AAF)f(D).
Taking (15) into account, we continue equality (23) as follows:
Az(t) = AAT2(t) + (t) + (I — AAT) f(t) + AAT f(t) = z(t) + f(1).

The theorem is proven.
Thus, to solve system (?7), with a degenerate matrix a coefficient of the derivatives,
it suffices to know the quasi-inverse matrix.

3 An Algorithm for Reducing a Matrix to Schur Block
Triangular Form

At the first step the calculation of the quasi-inverse matrix involves the algorithm for
reducing the original matrix to block triangular form.

In practice, the matrix A is often given with errors. Therefore, it may occur that the
matrix has no zero eigenvalues but is ill-conditioned. The problem arises of determining
a perturbation matrix FE with possibly least norm and such that

C D .
A—i—E—U(O B>U'

The algorithm for reducing an ill-conditioned matrix to block triangular form by means
of additional perturbations can be represented as follows:

Fix a small nonnegative number ¢*, this number playing the role of “significance level.”
Split the singular spectrum of the matrix A into the subset of “zero” singular values (i.e.,
either exactly equal to zero or positive but small in magnitude) and the subset of the
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remaining singular values. The meaning of ¢* is that the singular values of the matrix
satisfying the condition o; < ¢ are considered as “zero.”

Let mg denote the number of “zero” singular values of A. At the first step, we
calculate the left singular vectors that correspond to the singular values o1 (A), . .., 0y, (A).
Without loss of generality we may assume that they are normalized. Complement this
orthonormal system of vectors to an orthogonal matrix U; = [V}, V3], where the columns
of the (N x mg)-matrix V5 are the calculated left singular vectors.

It is easy to understand that the entries of the last mg rows of the matrix Fy = Uj AU,
have the form

IN-motij = oi(A)ujv;, 1<i<mg, 1<j<N,

where u; is the right singular vector of A corresponding to the singular value o;(A) and
v;j is the jth column of the matrix U;. The elements are small in magnitude, because
they satisfy the inequality

| fR—motiy | <07, 1<i<my, 1<j5<N.

Introduce a perturbation by replacing the elements with zeros. As a result of this, we
obtain a matrix whose block structure can be represented as

Ay D
0_ 1 D
Fl - ( 0 0 > )
where A; is an (N — mg) X (N — mg)-matrix.
At the next step, denote the number of “zero” singular values of the matrix A; by

my; — mg. Given the left singular vectors corresponding to the “zero” singular values
of A, construct an orthogonal transformation U® as above. Define

u® 0
b= (200
Nullify the first N — myq elements of the ith row of F, = U;FU,, where i ranges
from N —m;+1to N —mg. We thus obtain

Ay D

0_ 2 Do

By = ( 0 By > ’

where Ay is an (N —my) x (N —m, )-matrix and Bs is an upper triangular (m; X m;)-matrix

with zero diagonal entries.
Continue the process, each time considering matrices of decreasing orders, until at

some step h we obtain a matrix
A, D
0 _ n Dh
Fr = ( 0 By ) ’

in which the matrix A, has no “zero” singular values. The so-obtained matrix B} is
obviously nilpotent.



The result of the above transformations has the form

<€j§):wm+ma

where C = A, D = Dy, B= By, U =U; -...- Uy, is an orthogonal transformation, and
E' is the matrix of additional perturbations caused by nullifying some elements.

Observe that in the case when the matrix A has the exactly zero eigenvalue the above-
described algorithm presents a constructive proof of Schur’s theorem [11] restated in terms
of singular vectors.

It is easily seen that the matrix V; obtained at the first step of the algorithm is a basis
for the subspace spanned by the left singular vectors of A corresponding to the “nonzero”
singular values. Using the definition of the orthogonal projection to the corresponding
subspace of the matrix A [4], we can write down P(¥) = V,V}*. Straightforward verification
easily yields validity of the following chain of equalities:

(14(1)1 8):[%]A[WIOFU;‘P(“)AP(O)UL

Arguing in a similar way, we can represent the described algorithm in terms of projections
by the formulas

AD = 4,

AGD — pOAO PO 01 h—1, (24)
where

AD =y, U ( 131 8 ) UiUi, ... UYL, (25)

and P® is the orthogonal projection to the linear span of the left singular vectors corre-
sponding to the “nonzero” singular values of A®),

Thus, we have isolated a nilpotent block of the perturbed matrix A+ E. In this event
we say that the matrix A possesses a quasinilpotent block.

To study stability of the algorithm, we introduce the following

Definition 2 . Parameters § and « correctly determine a quasinilpotent block of A of
order k if the inequalities

om;(AD) <6 < a <o (AD), i=0,1,...,h (2§)
hold for some collection m = (mg, mq, ..., myp).
Consider the sequence of natural numbers
me<mg <mo<...<mp_1=my=A~k,

with m; standing for the number of the “zero” singular values of the matrix A® with
the first m; ; values being exactly equal to zero. Put

— (@) — mi ()
§= o JRaxX | Om, (A"Y), @ = min Omi+1(A™).



It is easy to see that these parameters correctly determine a quasinilpotent block of A.
Remark 4. For the block A, of the matrix orthogonally similar to A® (see (25)), we
have 01(As) = 0, +1(AM) > . Therefore, while choosing the collection m that governs
the parameters 6 and o when we talk about the correct determination of a quasinilpotent
block, it is natural to require that the block Aj; be not too ill-conditioned.
We prove the following continuity theorem.

Theorem 5 Suppose that parameters ¢ and « correctly determine a quasinilpotent block
of order k of a matriz A. Then for every sufficiently small ¢ there are parameters
d = 0(g) and & = ale) that correctly determine a quasinilpotent block of order k for
an arbitrary matriz A with ||A — A|| < ¢||A]|.

Proof. Take a small positive number e. Suppose that matrices A and A are close so that
A — Al < el|A]l. (27)
Using the continuity estimate
[0i(A) —oi(A) < A - 4]
for the singular values [4] and inequalities (2&), we obtain
Ty (AD) < 07, (AD) + |AD — AD| < 6 4 | AD — AV
Ty 41(AY) > 011 (AD) = [|AD — AD|| > o — || A — AD.
Estimate the norm |[|A® — A®||. It is easy to verify that
AG) A6 — ﬁ(i—l)(j(i—l) _ A(i—l))ﬁ(i—l) + ﬁ(ifl)A(ifl)(ﬁ(ifl) _ p(ifl)) +
+ (]5(1'—1) _ P(i_l))A(i_l)P(i_l).

Using the properties of a norm and the fact that the norm of an orthogonal projection
equals 1, we obtain

1A@] < |1 A],
”A(i) . A(i)” < “A(z’fl) _ A(i—l)H +2||A||||P(i71) _ P(ifl)”_ (28)
By (??) and (?7?) _
1A — A < e[| Al = el Al

Furthermore, applying inequality (28), we obtain
|AN — AD|| < gol|All + 2]| Al PO — PO (29)

For the projections P© and P© to the linear spans of the left singular vectors of the
matrices A® and A© corresponding to the last N — my singular values we now use the
estimate [4]

1P — PO < _codo
- 1- Sod()’
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where dy = || Al|/(Omgs1(A©) = 071ne (A?)) is the “clearance” between the singular values
Omo(A©) and 0,11 (A©®). The estimate holds under the condition

2e0dg < 1, (30)

which prohibits the singular values of A© from “sticking together.”
If we denote d = ||Al|/(a — ) then (28) obviously yields the estimate dy < d. Now,
we rewrite condition (30) as 2god < 1. Continuing inequality (29), we obtain

5 2d
AV — AW < & (1 + Eod) Il = e[| All

where g1 = g¢(1 + 2d/(1 — €9d)). In the general case, for 2¢; 1d < 1 we similarly obtain
IA® — AD|| < 4]

where ; = €;,_1(1 4+ 2d/(1 — €;_1d)).
It is immediate from the condition 2e; 1d < 1 that &; < ;_1(1 + 4d). Consequently,
i < go(1 +4d)" = £(1 + 4d)*. Thus, we arrive at the estimate

| AD — AD|| < e(1 + 4d)"[| A, (31

which holds for 2e(1 + 4d)"'d < 1.
Returning now to the beginning of the proof, we conclude that

Om, (AD) < 6 + (1 + 4d)|| Al Omis1(AD) > o — (1 + 4d)"|| A]|.
Denote
T % _ h—1
5_5+0Sr?§ahx_15(1+4d) IA|l = 6 + (1 + 4d)" 1| A, (32)
a= a—gg%s(1+4d)i||A|| =a—e(1+4d)"||A]|. (33)

In this case, it is obvious that the parameters 5 and & correctly determine a quasinilpotent
block of A; moreover, the condition § < & is guaranteed by the inequality

1
< 2d(1 + 4d)" (1 + 2d)

(34)

that is trivially derived from (32) and (33). The theorem is proven.

As was mentioned in the introduction, the considered algorithm for reducing a matrix
to block triangular form by means of the left singular vectors is a modification of the
Kublanovskaya algorithm for constructing an orthogonal basis for the subspace generated
by the zero eigenvalue [7]. We will compare the estimate obtained in [8] for the norm of
the additional perturbation matrix FE needed for calculating a quasinilpotent block of
the original matrix in the Kublanovskaya algorithm with the analogous estimate in our
algorithm. To begin with, we give some necessary definitions and basic inequalities of [8].
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Definition 3 . Suppose that a matriz A is normalized by the condition |A|| = 1. Then
A = 0 s the numerically multiple eigenvalue of A with characteristics mq, ..., my if the
iequalities

O'ml(Az) S£<77S0'mi+1(Ai)’ izla---aha

hold for some & and 7.

The Kublanovskaja algorithm can be represented in terms of orthogonal projections
as follows [8, formula (5.3)]:

A(l) = A’
A = pOAP@ =1 ... h,

where P® is the orthogonal projection to the range of the matrix (4 — E®)*, E®) being
the matrix of the perturbation caused by nullifying the corresponding small elements in
i steps of the algorithm. The matrix E® satisfies estimate (5.13) of [8]:

IE®] < 5(2.12)"  hin~"¢ =,

which holds under the condition hy < 0.1.
We obtain an estimate for the norm of the additional perturbation matrix E in our

algorithm. Denote by EY the perturbation that is caused by nullifying the corresponding
elements at the (i + 1)th step of the algorithm. Then

h—1 _ h—1 .
1E] < SIEY) < S 0m, (AD) < hé. (35)
1=0 1=0

If we put m; = N — A for the matrix A having an exactly zero eigenvalue then we
obtain ||E|| = 0 in both the algorithms. Moreover, we obviously have § = £ = 0, a > 0,
and n > 0. Furthermore, involving the estimate

0;(AY) > 0y (A™) = 2((1 + [[BON) = 14 200, (A7) 0,14 (A,

(see [8, inequality (5.11)]) and recalling that ||E®|| = 0 and o,,, (A?) = 0, we can easily
infer
a>n. (3%)

Now, suppose that A = A + X, where || X|| < e. In this case (see [8], formulas (3.4)
and (3.5)) we have

& = 1.068he, n=mn— 1.08he.

Consequently, to reconstruct the nilpotent block by using the Kublanovskaya algorithm,
we must additionally introduce a perturbation FE in the matrix A with the estimate

1B < 5.3(2.12)"'h1H () — 1.08he) " = B,

In our algorithm, by (32) we have § < 5" 'a~("=1 since & < 1. Applying inequal-
ity (3%), from (35) we now derive

|E|| < 5" Thy~ Ve = B,.
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Below we present the ratios of the estimates for the norm of the perturbation matrix E
in the Kublanovskaya algorithm (f;) and the proposed algorithm (/3;) which are obtained
at various values of h; the calculations were carried out for fixed n = 1:

Table 1.
h 2 3 4 5 o) 7 8 9 10
B1/Ba | 4.494 | 5.717 | 9.9 | 20.55 | 52.29 | 155.20 | 52&.45 | 2008.95 | 8517.97

In [10], there was proposed a more economic algorithm for calculating the nilpotent
block of a degenerate matrix. In the case when the matrix in question has only the
zero eigenvalue and all its eigenvectors are linearly independent, the algorithm has the
complexity of O(N?®) arithmetic operations, whereas the proposed algorithm, O(N?).
The difference becomes essential for higher-order matrices. However, we confine ourselves
to considering matrices with a nilpotent block of small order, since (as is seen from
inequality (34)) we cannot otherwise guarantee accuracy for the result.

4  An m-__uasi-Inverse Matrix

The calculation of a quasi-inverse matrix might encounter difficulties due to the extreme
sensitivity of the eigenvalues of a matrix to perturbations of its entries and the fact that
the nondegenerate block in the Schur orthogonal decomposition could be ill-conditioned.
The latter means that not all “almost zero” eigenvalues are eliminated. To overcome the
difficulties, we introduce the definition of an m-quasi-inverse matrix A%. To this end,
we use the concept of a pseudo-inverse matrix A* (see, for instance, [12]). It is worth
noting that A¥ is defined if a collection m = (my,...,my_1,my) correctly determines
a quasinilpotent block of A, i.e., if inequality (2&) holds for some ¢ and « and Remark 4
(§3) is valid.

Definition 4 . Given an arbitrary matriz A, the m-quasi-inverse matrixz is defined to be
the matriz
A# = (AT, (37)
It is easy to see that A¥ is a quasi-inverse matrix of A+ E and is determined uniquely
for the given collection m.
We obtain an estimate for the continuous dependence of the m-quasi-inverse matrix
on perturbations of the matrix A. Suppose that ||A — A|| < ¢||A||. Inequalities (31) yield

|A® — AW < £(1 + 4d)"| A]|.

Using an error estimate for the pseudoinverse matrix [12], we obtain (for e(144d)"||A|||| A% || <

1)
2¢(1 + 4d)" || All[| AZII”

1 —e(1 + dd)"[| Al AZ]

Hence, we can conclude that the m-quasi-inverse matrix A% is stably determined if the
quantity d = ||A]|/(a — §) is not too large.

| A% — A%|| <
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We turn to describing the algorithm for calculating the m-quasi-inverse matrix.
Step 1. Reduction of the matrix A to Schur block triangular form. As a result of it,

we obtain some matrix
P C D
~\ 0 B

and an orthogonal transformation U.

Step 2. Calculation of the inverse matrix of C'. Observe that this procedure is always
realizable if in reducing the matrix to block triangular form the value of the parameter
o* (see §3) is taken to be the least level of the minimal singular value above which the
inverse matrix of C' can be calculated with admissible accuracy.

Step 3. Inverse transformations. Without counting the round-off errors, we obtain

c-' o
# _ *
Am_U< 0 0>U.

The above algorithms for reducing a matrix to block triangular form and calculating
the m-quasi-inverse matrix admit thorough stability analysis of round-off errors. Unfor-
tunately, the analysis requires quite laborious arguments which cannot be exhibited.

5 Numeric Examples

We expose some numeric tests of reducing a matrix to block triangular form. All tests
were carried out on an IBM PC AT with double precision.
Example 1. Consider the following matrix of sixth order:

n O oo oo

where ¢ is a small parameter. The following table represents the values of the basic
parameters d, «, and d, the Euclidean norm of the additional perturbation matrix ||E||g,
and the number A of steps of the algorithm at various values of ¢ (the calculations were
carried out with o* = 1077):

Table 2.
£ 0 107 [108] 5-107% [10°7
§ |711-10%® 1010 [108| 5-10°8 0
a 100 100 | 100 100 1077
d 1 1 1 1 10°
|E|lz | 46&- 1071 | 10719 | 1078 [ 3.91-1078 | 0
h & & & & 0
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From the table we can see the influence of the value of the parameter d on the quality of
the numeric results.
Example 2. Consider the bidiagonal matrix

“dy by -
do b3 @)
A= L :
0 dy-1 by
I dy |
where N = 20,
dj =< 0.06+0.07(j — &), 7<j<15, bj =< 0.055, 8<j <1,
0.92+0.02(5 — 1&), 1& < j < 20, 0.5, 17 < 5 < 20.

Since the matrix is upper triangular, its eigenvalues are the diagonal elements. We
isolate a quasinilpotent block of A of fourth order and obtain the following values of the
parameters:

§=8453-10%  a=18§-10"*%  d=808K.7, |E||z = 8.455- 105,

In conclusion, the author expresses her gratitude to V. I. Kostin for help and sound
advice, to S. K. Godunov for the observation that resulted in the structure of §1 of the
present article and led to appearance of the systems of equations (2), (9), and to the
referee who drew the author’s attention to the interesting articles [9, 10].
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