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Stability and Inertia Theorems for

Generalized Lyapunov Equations

Tatjana Stykel∗

Abstract

We study generalized Lyapunov equations and present generalizations of Lyapunov
stability theorems and some matrix inertia theorems for matrix pencils. We discuss appli-
cations of generalized Lyapunov equations with special right-hand sides in stability theory
and control problems for descriptor systems.
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1 Introduction

Generalized continuous-time Lyapunov equations

E∗XA+A∗XE = −G (1.1)

and generalized discrete-time Lyapunov equations

A∗XA− E∗XE = −G (1.2)

with given matrices E, A, G and unknown matrix X arise naturally in control problems
[2, 11], stability theory for the differential and difference equations [12, 13, 24] and problems
of spectral dichotomy [17, 18].

Equations (1.1) and (1.2) with E = I are the standard continuous-time and discrete-time
Lyapunov equations (the latter is also known as the Stein equation). The theoretical analysis
and numerical solution for these equations has been the topic of numerous publications, see
[1, 12, 14, 15] and the references therein. The case of nonsingular E has been considered
in [3, 21]. However, many applications in singular systems or descriptor systems [8] lead to
generalized Lyapunov equations with a singular matrix E, see [2, 18, 24, 25].

The solvability of the generalized Lyapunov equations (1.1) and (1.2) can be described in
terms of the generalized eigenstructure of the matrix pencil λE − A. The pencil λE − A is
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called regular if E and A are square and det(λE−A) 6= 0 for some λ ∈ C. Otherwise, λE−A
is called singular. A complex number λ 6=∞ is said to be generalized finite eigenvalue of the
regular pencil λE − A if det(λE − A) = 0. The pencil λE − A has an infinite eigenvalue if
and only if the matrix E is singular.

A regular matrix pencil λE − A with singular E can be reduced to the Weierstrass
(Kronecker) canonical form [23]. There exist nonsingular matrices W and T such that

E = W

(
Im 0
0 N

)
T and A = W

(
J 0
0 In−m

)
T, (1.3)

where Im is the identity matrix of order m and N is nilpotent. The block J corresponds to the
finite eigenvalues of the pencil λE − A, the block N corresponds to the infinite eigenvalues.
The index of nilpotency of N is called index of the pencil λE−A. The spaces spanned by the
first m columns of W and T−1 are, respectively, the left and right deflating subspaces of λE−A
corresponding to the finite eigenvalues, whereas the spans of the last n −m columns of W
and T−1 form the left and right deflating subspaces corresponding to the infinite eigenvalues,
respectively. For simplicity, the deflating subspaces of λE − A corresponding to the finite
(infinite) eigenvalues we will call the finite (infinite) deflating subspaces. The matrices

Pl = W

(
Im 0
0 0

)
W−1, Pr = T−1

(
Im 0
0 0

)
T (1.4)

are the spectral projections onto the left and right finite deflating subspaces of the pencil
λE −A along the left and right infinite deflating subspaces, respectively.

The classical stability and inertia theorems [4, 6, 7, 9, 16, 20, 26, 27] relay the signatures
of solutions of the standard Lyapunov equations and the numbers of eigenvalues of a matrix
in the left and right open half-planes and on the imaginary axis in the continuous-time case
and inside, outside and on the unit circle in the discrete-time case. A brief survey of matrix
inertia theorems and their applications has been presented in [10]. In this paper we establish
an analogous connection between the signatures of solutions of the generalized continuous-
time Lyapunov equation

E∗XA+A∗XE = −P ∗rGPr, (1.5)

and the generalized discrete-time Lyapunov equation

A∗XA− E∗XE = −P ∗rGPr − (I − Pr)∗G(I − Pr) (1.6)

and the generalized eigenvalues of a matrix pencil λE − A. Under some assumptions on the
finite spectrum of λE − A, equations (1.5) and (1.6) have solutions that are, in general, not
unique. We are interested in the solution X of (1.5) satisfying X = XPl and the solution X
of (1.6) satisfying P ∗l X = XPl. Such solutions are uniquely defined and can be used to study
the distribution of the generalized eigenvalues of a pencil in the complex plane with respect
to the imaginary axis (Section 2) and the unit circle (Section 3).

Throughout the paper we will denote by F the field of real (F = R) or complex (F = C)
numbers, Fn,m is the space of n × m-matrices over F. The matrix A∗ = AT denotes the
transpose of a real matrix A, A∗ = AH denotes the complex conjugate transpose of complex
A and A−∗ = (A−1)∗. The matrix A is Hermitian if A = A∗. The matrix A is positive definite
(positive semidefinite) if x∗Ax > 0 (x∗Ax ≥ 0) for all nonzero x ∈ Fn, and A is positive
definite on a subspace X ⊂ Fn if x∗Ax > 0 for all nonzero x ∈ X . We will denote by ‖ · ‖
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the Euclidean vector norm. A pencil λE − A is called c-stable if it is regular and all finite
eigenvalues of λE − A lie in the open left half-plane. A pencil λE − A is called d-stable if it
is regular and all finite eigenvalues of λE −A lie inside the unit circle.

2 Inertia with respect to the imaginary axis

First we recall the definition of the inertia with respect to the imaginary axis for matrices.

Definition 2.1 The inertia of a matrix A with respect to the imaginary axis ( c-inertia ) is
defined by the triplet of integers

Inc(A) = { π−(A), π+(A), π0(A) },

where π−(A), π+(A) and π0(A) denote the numbers of eigenvalues of A with negative, positive
and zero real part, respectively, counting multiplicities.

Taking into account that a matrix pencil may have finite as well as infinite eigenvalues,
the c-inertia for matrices can be generalized for regular pencils as follows.

Definition 2.2 The c-inertia of a regular pencil λE − A is defined by the quadruple of
integers

Inc(E,A) = { π−(E,A), π+(E,A), π0(E,A), π∞(E,A) },

where π−(E,A), π+(E,A) and π0(E,A) denote the numbers of the finite eigenvalues of λE−A
counted with their algebraic multiplicities with negative, positive and zero real part, respec-
tively, and π∞(E,A) denotes the number of infinite eigenvalues of λE −A.

Clearly, π−(E,A) + π+(E,A) + π0(E,A) + π∞(E,A) = n is the size of E. A c-stable
pencil λE − A has the c-inertia Inc(E,A) = {m, 0, 0, n−m }, where m is the number of the
finite eigenvalues of λE−A counting their multiplicities. If the matrix E is nonsingular, then
π∞(E,A) = 0 and

πα(E,A) = πα(AE−1) = πα(E−1A),

where α is −, + and 0. Thus, the classical stability and matrix inertia theorems [4, 6, 7, 12,
16, 20, 27] can be extended to the GCALE (1.1) with nonsingular E. Here we formulate only
a generalization of the Lyapunov stability theorem [12].

Theorem 2.3 Let λE −A be a regular matrix pencil. If all eigenvalues of λE −A are finite
and lie in the open left half-plane, then for every Hermitian, positive (semi)definite matrix G,
the GCALE (1.1) has a unique Hermitian, positive (semi)definite solution X. Conversely, if
there exist Hermitian, positive definite matrices X and G satisfying (1.1), then all eigenvalues
of the pencil λE −A are finite and lie in the open left half-plane.

If the pencil λE − A has an infinite eigenvalue or, equivalently, if E is singular, then the
GCALE (1.1) may have no solutions even if all finite eigenvalues of λE − A have negative
real part.
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Example 2.4 The GCALE (1.1) with

E =
(

1 0
0 0

)
, A = −I2, G = I2

has no solutions.

Consider the GCALE with a special right-hand side

E∗XA+A∗XE = −P ∗rGPr, (2.1)

where Pr is the spectral projection onto the right finite deflating subspace of λE − A. The
following theorem gives a connection between the c-inertia of a pencil λE−A and the c-inertia
of an Hermitian solution X of this equation.

Theorem 2.5 Let Pr and Pl be the spectral projection onto the right and left finite deflating
subspaces of a regular pencil λE − A and let G be an Hermitian, positive definite matrix. If
there exists an Hermitian matrix X which satisfies the GCALE (2.1) together with X = XPl,
then

π−(E,A) = π+(X), π+(E,A) = π−(X),
π0(E,A) = 0, π∞(E,A) = π0(X).

(2.2)

Conversely, if π0(E,A) = 0, then there exists an Hermitian matrix X and an Hermitian,
positive definite matrix G such that the GCALE (2.1) is fulfilled and the c-inertia identities
(2.2) hold.

Proof. Assume that an Hermitian matrix X satisfies the GCALE (2.1) together with X =
XPl. Let the pencil λE − A be in Weierstrass canonical form (1.3) and let the Hermitian
matrices

T−∗GT−1 =
(
G11 G12

G∗12 G22

)
and W ∗XW =

(
X11 X12

X∗12 X22

)
(2.3)

be partitioned conformally to E and A. Then we obtain from (2.1) the system of matrix
equations

X11J + J∗X11 = −G11, (2.4)
X12 + J∗X12N = 0, (2.5)
N∗X22 +X22N = 0. (2.6)

Since N is nilpotent, equation (2.5) has the unique solution X12 = 0, whereas equation (2.6)
is not uniquely solvable. It follows from X = XPl that

X = W−∗
(
X11 0

0 X22

)
W−1 = XPl = W−∗

(
X11 0

0 0

)
W−1,

i.e., X22 = 0.
Consider now equation (2.4), where the matrix G11 is Hermitian and positive definite. By

the Sylvester law of inertia [6] and the main inertia theorem [20, Theorem 1] we obtain that

π−(E,A) = π−(J) = π+(X11) = π+(X),
π+(E,A) = π+(J) = π−(X11) = π−(X),
π0(E,A) = π0(J) = π0(X11) = 0
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and, hence, π0(X) = π0(X11) + π∞(E,A) = π∞(E,A).
Assume now that π0(E,A) = 0. Then π0(J) = 0 and by the main inertia theorem [20,

Theorem 1] there exists an Hermitian matrix X11 such that G11 := −(X11J + J∗X11) is
Hermitian, positive definite and

π−(J) = π+(X11), π+(J) = π−(X11), π0(J) = π0(X11) = 0.

In this case the matrices

X = W−∗
(
X11 0

0 0

)
W−1 and G = T ∗

(
G11 0
0 I

)
T

satisfy the GCALE (2.1). Moreover, G is Hermitian, positive definite, X is Hermitian and
the c-inertia identities (2.2) hold.

The following corollary gives necessary and sufficient conditions for the pencil λE −A to
be c-stable.

Corollary 2.6 Let λE − A be a regular pencil and let Pr and Pl be the spectral projections
onto the right and left finite deflating subspaces of λE −A.

1. If there exist an Hermitian, positive definite matrix G and an Hermitian, positive
semidefinite matrix X satisfying the GCALE (2.1), then the pencil λE −A is c-stable.

2. If the pencil λE −A is c-stable, then the GCALE (2.1) has a solution for every matrix
G. Moreover, if a solution X of (2.1) satisfies X = XPl, then it is unique and given by

X =
1

2π

∫ ∞
−∞

(iξE −A)−∗P ∗rGPr(iξE −A)−1dξ.

If G is Hermitian, then this solution X is Hermitian. If G is positive definite or positive
semidefinite, then X is positive semidefinite.

Proof. Part 1 immediately follows from Theorem 2.5. The proof of part 2 can be found in
[24].

Corollary 2.6 is a generalization of the classical Lyapunov stability theorem [12] for the
GCALE (2.1). We see that if the GCALE (2.1) has an Hermitian, positive semidefinite
solution for some Hermitian, positive definite matrix G, then (2.1) has (nonunique) solution
for every G. Constraining the solution of (2.1) to satisfy X = XPl, we choose the nonunique
part X22 to be zero. A system of matrix equations

E∗XA+A∗XE = −P ∗rGPr,
X = XPl

(2.7)

is called projected generalized continuous-time algebraic Lyapunov equation. From the proof
of Theorem 2.5 it follows that the solution of the projected GCALE (2.7) has the form

X = W−∗
(
X11 0

0 0

)
W−1, (2.8)

where X11 satisfies the standard Lyapunov equation (2.4). Thus, the matrix inertia theorems
can be generalized for regular pencils by using the Weierstrass canonical form (1.3) and
applying these theorems to equation (2.4).
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Theorem 2.7 Let λE − A be a regular pencil and let X be an Hermitian solution of the
projected GCALE (2.7) with an Hermitian, positive semidefinite matrix G.

1. If π0(E,A) = 0, then π−(X) ≤ π+(E,A) and π+(X) ≤ π−(E,A).
2. If π0(X) = π∞(E,A), then π+(E,A) ≤ π−(X), π−(E,A) ≤ π+(X).

Proof. The result immediately follows if we apply the matrix inertia theorems [7, Lemma 1
and Lemma 2] to equation (2.4).

As an immediate consequence of Theorem 2.7 we obtain a generalization of Theorem 2.5
for the case that G is Hermitian, positive semidefinite.

Corollary 2.8 Let λE − A be a regular pencil and let X be an Hermitian solution of the
projected GCALE (2.7) with an Hermitian, positive semidefinite matrix G. If π0(E,A) = 0
and π∞(E,A) = π0(X), then the c-inertia identities (2.2) hold.

Similar to the matrix case [15, 16, 27], the c-inertia identities (2.2) can be also derived
using controllability and observability conditions.

Consider the linear continuous-time descriptor system

Eẋ(t) = Ax(t) +Bu(t), x(t) = x0,
y(t) = Cx(t),

(2.9)

where E, A ∈ Fn,n, B ∈ Fn,q, C ∈ Fp,n, x(t) ∈ Fn is the state, u(t) ∈ Fq is the control
input and y(t) ∈ Fp is the output. For descriptor systems there are various concepts of
controllability and observability [5, 8, 28].

Definition 2.9 System (2.9) and the triplet (E,A,C) are called R-observable if

rank
[
λE −A
C

]
= n for all finite λ ∈ C . (2.10)

System (2.9) and the triplet (E,A,C) are called I-observable if

rank

 E
K∗E∗A
C

 = n, (2.11)

where the columns of KE∗ span the nullspace of E∗.
System (2.9) and the triplet (E,A,C) are called S-observable if (2.10) and (2.11) are satisfied.
System (2.9) and the triplet (E,A,C) are called C-observable if (2.10) holds and

rank
[
E
C

]
= n. (2.12)

Note that condition (2.11) is weaker than (2.12) and, hence, the C-observability implies
the S-observability.

Controllability is a dual property of observability. System (2.9) and the triplet (E,A,B)
are R (I, S, C)-controllable, if the triplet (E∗, A∗, B∗) is R (I, S, C)-observable.

The following corollary shows that in the case of an Hermitian, positive semidefinite
matrix G = C∗C, the conditions π0(X) = π∞(E,A) and π0(E,A) = 0 in Corollary 2.8 may
be replaced by the assumption that the triplet (E,A,C) is R-observable.
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Corollary 2.10 Consider system (2.9) with a regular pencil λE −A. If the triplet (E,A,C)
is R-observable and if there exists an Hermitian matrix X satisfying the projected GCALE

E∗XA+A∗XE = −P ∗r C∗CPr, X = XPl, (2.13)

then the c-inertia identities (2.2) hold.

Proof. Let the pencil λE − A be in Weierstrass canonical form (1.3) and let the matrix
CT−1 = [C1, C2 ] be partitioned in blocks conformally to E and A. Then the Hermitian
solution of the projected GCALE (2.13) has the form (2.8), where X11 satisfies the standard
Lyapunov equation

X11J + J∗X11 = −C∗1C1. (2.14)

From the R-observability condition (2.10) we have that the matrix
[
λI − J
C1

]
has full column

rank for all λ ∈ C, see [8]. In this case the solution X11 of (2.14) is nonsingular and the matrix
J has no eigenvalues on the imaginary axis, e.g., [15, Theorem 13.1.4]. Hence, π0(E,A) = 0
and π0(X) = π∞(E,A). The remaining relations in (2.2) immediately follow from Corollary
2.8.

The following corollary gives connections between c-stability of the pencil λE − A, the
R-observability of the triplet (E,A,C) and the existence of an Hermitian solution of the
projected GCALE (2.13).

Corollary 2.11 Consider the statements:
1. the pencil λE −A is c-stable,
2. the triplet (E,A,C) is R-observable,
3. the projected GCALE (2.13) has a unique solution X which is

Hermitian, positive definite on the subspace imPl.
Any two of these statements together imply the third.

Proof. ’1 and 2⇒ 3’ and ’2 and 3⇒ 1’ can be obtained from Corollaries 2.6 and 2.10.
’1 and 3⇒ 2’. Suppose that (E,A,C) is not R-observable. Then there exists λ0 ∈ C and

a vector z 6= 0 such that [
λ0E −A

C

]
z = 0.

We obtain that z is the eigenvector of the pencil λE−A corresponding to the finite eigenvalue
λ0. Hence <e λ0 > 0 and z ∈ imPr. Moreover, we have Cz = 0. On the other hand, it follows
from the Lyapunov equation in (2.13) that

−‖Cz‖2 = z∗(E∗XA+A∗XE)z = 2(<e λ0)z∗E∗XEz.

and, hence, Cz 6= 0. Thus, the triplet (E,A,C) is R-observable.

Corollary 2.11 generalizes the stability result (see Corollary 2.6) to the case that G = C∗C
is Hermitian, positive semidefinite. We see, that weakening the assumption forG to be positive
semidefinite requires the additional R-observability condition. Moreover, Corollary 2.11 gives
necessary and sufficient conditions for the triplet (E,A,C) to be R-observable.
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It is natural to ask what happens if the triplet (E,A,C) is not R-observable. Consider a
proper observability matrix

Op =


CF0

CF1
...

CFn−1

 , (2.15)

where the matrices Fk have the form

Fk = T−1

(
Jk 0
0 0

)
W−1, k = 0, 1, . . . .

Here T , W and J are as in (1.3). If E = I, then Op is an usual observability matrix. The
property of the triplet (E,A,C) to be R-observable is equivalent to the condition rank Op =
n − π∞(E,A), see [2]. The nullspace of Op is the proper unobservable subspace for the
descriptor system (2.9). Using the Weierstrass canonical form (1.3) and the matrix inertia
theorems [16] we obtain the following c-inertia inequalities.

Theorem 2.12 Let λE − A be a regular pencil and let X be an Hermitian solution of the
projected GCALE (2.13). Assume that rank Op < n− π∞(E,A). Then

|π−(E,A)− π+(X)| ≤ n− π∞(E,A)− rank Op,
|π+(E,A)− π−(X)| ≤ n− π∞(E,A)− rank Op.

(2.16)

Other matrix inertia theorems concerning the matrix c-inertia and the rank of the observ-
ability matrix [4, 22] can be generalized for matrix pencils in the same way.

By duality of controllability and observability conditions analogies of Corollaries 2.10, 2.11
and Theorem 2.12 can be proved for the dual projected GCALE

EXA∗ +AXE∗ = −PlBB∗P ∗l , X = PrX.

3 Inertia with respect to the unit circle

We recall that the inertia of a matrix A with respect to the unit circle or d-inertia is defined
by the triplet of integers

Ind(A) = { π<1(A), π>1(A), π1(A) },

where π<1(E,A), π>1(E,A) and π1(E,A) denote the numbers of the eigenvalues of A counted
with their algebraic multiplicities inside, outside and on the unit circle, respectively.

Before extending the d-inertia for matrix pencils, it should be noted that in some problems
it is necessary to distinguish the finite eigenvalues of a matrix pencil of modulus larger that 1
and the infinite eigenvalues although the latter also lie outside the unit circle. For example,
the presence of infinite eigenvalues of λE−A, in contrast to the finite eigenvalues outside the
unit circle, does not affect the behavior at infinity of solutions of the discrete-time singular
system, see [8].
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Definition 3.1 The d-inertia of a regular pencil λE − A is defined by the quadruple of
integers

Ind(E,A) = { π<1(E,A), π>1(E,A), π1(E,A), π∞(E,A) },

where π<1(E,A), π>1(E,A) and π1(E,A) denote the numbers of the finite eigenvalues of
λE − A counted with their algebraic multiplicities inside, outside and on the unit circle,
respectively, and π∞(E,A) denotes the number of infinite eigenvalues of λE −A.

For a d-stable pencil λE−A we have Ind(E,A) = {m, 0, 0, n−m }, where m is the number
of finite eigenvalues of λE −A counting their multiplicities.

It is well known that the standard continuous-time and discrete-time Lyapunov equations
are related via a Cayley transformation defined by C(A) := (A − I)−1(A + I) = A, see, e.g.,
[15]. A generalized Cayley transformation for matrix pencils is given by

C(E,A) = λ(A− E)− (E +A) = λE − A. (3.1)

Under this transformation the finite eigenvalues of λE −A inside and outside the unit circle
are mapped to eigenvalues in the open left and right half-planes, respectively; the finite
eigenvalues on the unit circle except λ = 1 are mapped to eigenvalues on the imaginary axis,
the eigenvalue λ = 1 is mapped to∞; the infinite eigenvalues of λE−A are mapped to λ = 1
in the open right half-plane, see [19] for details. Thus, even if the pencil λE−A with singular
E is d-stable, the Cayley-transformed pencil λE −A is not c-stable. Therefore, in the sequel
the inertia theorems with respect to the unit circle will be established independently.

If one of the matrices E or A is nonsingular, then the GDALE (1.2) is equivalent to the
standard discrete-time Lyapunov equations

(AE−1)∗XAE−1 −X = −E−∗GE−1 (3.2)

or
X − (EA−1)∗XEA−1 = −A−∗GA−1. (3.3)

In this case the classical stability and inertia theorems [4, 15, 26] for (3.2) or (3.3) can be
generalized to equation (1.2). The following stability theorem is a unit circle analogue of
Theorem 2.3.

Theorem 3.2 Let λE −A be a regular pencil. If all eigenvalues of λE −A are finite and lie
inside the unit circle, then for every Hermitian, positive (semi)definite matrix G, the GDALE
(1.2) has a unique Hermitian, positive (semi)definite solution X. Conversely, if there exist
Hermitian, positive definite matrices X and G satisfying (1.2), then all eigenvalues of the
pencil λE −A are finite and lie inside the unit circle.

Unlike the GCALE (1.1), the GDALE (1.2) with singular E and positive definite G has
a unique negative definite solution X if and only if the matrix A is nonsingular and all
eigenvalues of the pencil λE − A lie outside the unit circle or, equivalently, the eigenvalues
of the reciprocal pencil E − µA are finite and lie inside the unit circle. However, if both the
matrices E and A are singular, then the GDALE (1.2) may have no solutions although all
finite eigenvalues of λE −A lie inside the unit circle.
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Example 3.3 The GDALE (1.2) with

E =
(

1 0
0 0

)
, A =

(
0 0
0 1

)
, G =

(
1 1
1 1

)
is not solvable.

Consider the GDALE with a special right-hand side

A∗XA− E∗XE = −P ∗rGPr − (I − Pr)∗G(I − Pr). (3.4)

The following theorem generalizes the matrix inertia theorem [26] and gives a connection
between the d-inertia of the pencil λE −A and the c-inertia of the Hermitian solution of the
GDALE (3.4).

Theorem 3.4 Let Pl and Pr be the spectral projections onto the left and right deflating
subspaces of a regular pencil λE − A and let G be an Hermitian, positive definite matrix. If
there exists an Hermitian matrix X that satisfies the GDALE (3.4) together with P ∗l X = XPl,
then

π<1(E,A) = π+(X),
π>1(E,A) + π∞(E,A) = π−(X),
π1(E,A) = π0(X) = 0.

(3.5)

Conversely, if π1(E,A) = 0, then there exist an Hermitian matrix X and an Hermitian,
positive definite matrix G that satisfy the GDALE (3.4) and the inertia identities (3.5) hold.

Proof. Let the pencil λE − A be in Weierstrass canonical form (1.3) and let Hermitian
matrices G and X be as in (2.3). If X satisfies the GDALE (3.4), then the matrix equations

J∗X11J −X11 = −G11, (3.6)
J∗X12 −X12N = 0, (3.7)
X22 −N∗X22N = −G22 (3.8)

are fulfilled. From P ∗l X = XPl we have that X12 = 0 and it satisfies equation (3.7). Since N
is nilpotent, equation (3.8) has a unique Hermitian solution

X22 = −
ν−1∑
j=0

(N∗)jG22N
j (3.9)

that is negative definite if G22 is positive definite.
Consider now equation (3.6). It follows from the Sylvester law of inertia [6] and the matrix

inertia theorem [26] that

π<1(E,A) = π<1(J) = π+(X11) = π+(X)− π+(X22) = π+(X),
π>1(E,A) = π>1(J) = π−(X11) = π−(X)− π−(X22) = π−(X)− π∞(E,A),
π1(E,A) = π1(J) = π0(X11) = 0.

Moreover, π0(X) = π0(X11) + π0(X22) = 0.
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Suppose that π1(E,A) = 0. Then by the matrix inertia theorem [26] there exists an
Hermitian matrix X11 such that G11 = X11 − J∗X11J is Hermitian, positive definite and

π<1(J) = π+(X11), π>1(J) = π−(X11), π1(J) = π0(X11) = 0.

Furthermore, for every Hermitian positive definite matrix G22, the matrix X22 as in (3.9)
is Hermitian, negative definite and satisfies equation (3.8). Then π∞(E,A) = π−(X22) and
π+(X22) = π0(X22) = 0. Thus, the Hermitian matrices

X = W−∗
(
X11 0

0 X22

)
W−1, G = T ∗

(
G11 0
0 G22

)
T

satisfy the GDALE (3.4), G is positive definite and the inertia identities (3.5) hold.

Remark 3.5 Note that if the GDALE (3.4) is solvable and if A is nonsingular, then the
solution of (3.4) is unique. If both the matrices E and A are singular, then the nonuniqueness
of the solution of (3.4) is resolved by requiring the extra condition for the nonunique part X12

to be zero. In terms of the original data this requirement can be expressed as P ∗l X = XPl.

From Theorem 3.4 we obtain the following necessary and sufficient conditions for the
pencil λE −A to be d-stable.

Corollary 3.6 Let λE −A be a regular pencil and let Pl and Pr be spectral projection as in
(1.4). For every Hermitian, positive definite matrix G, the GDALE (3.4) has an Hermitian
solution X which is positive definite on imPl if and only if the pencil λE − A is d-stable.
Moreover, if E and A are singular and if a solution of (3.4) satisfies P ∗l X = XPl, then it is
unique and given by

X =
1

2π

2π∫
0

(eiϕE −A)−∗
(
P ∗rGPr − (I − Pr)∗G(I − Pr)

)
(eiϕE −A)−1dϕ.

A system of matrix equations

A∗XA− E∗XE = −P ∗rGPr − (I − Pr)∗G(I − Pr),
P ∗l X = XPl

(3.10)

is called projected generalized discrete-time algebraic Lyapunov equation.
There are unit circle analogies of Theorem 2.7 and Corollary 2.8 that can be established

in the same way.

Theorem 3.7 Let λE −A be a regular pencil and let X be an Hermitian matrix that satisfy
the projected GDALE (3.10) with an Hermitian, positive semidefinite matrix G.
1. If π1(E,A) = 0, then π−(X) ≤ π>1(E,A) + π∞(E,A), π+(X) ≤ π<1(E,A).
2. If π0(X) = 0, then π−(X) ≥ π>1(E,A) + π∞(E,A), π+(X) ≥ π<1(E,A).

Corollary 3.8 Let λE−A be a regular pencil and let G be an Hermitian, positive semidefinite
matrix. Assume that π1(E,A) = 0. If there exists a nonsingular Hermitian matrix X that
satisfies the projected GDALE (3.10), then the inertia identities (3.5) hold.
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Like the continuous-time case, the inertia identities (3.5) for Hermitian, positive semidefi-
nite G can be obtained from controllability and observability conditions for the linear discrete-
time descriptor system

Exk+1 = Axk +Buk, x0 = x0,
yk = Cxk,

(3.11)

where E, A ∈ Fn,n, B ∈ Fn,q, C ∈ Fp,n, xk ∈ Fn is the state, uk ∈ Fq is the control input and
yk ∈ Fp is the output, see [8].

The discrete-time descriptor system (3.11) is R (I ,S ,C)-controllable if the triplet (E,A,B)
is R (I ,S ,C)-controllable and (3.11) is R (I ,S ,C)-observable if the triplet (E,A,C) is R (I S C)-
observable.

Consider the projected GDALE

A∗XA− E∗XE = −P ∗r C∗CPr − (I − Pr)∗C∗C(I − Pr),
P ∗l X = XPl.

(3.12)

Note that, in contrast with the GCALE in (2.13), the GDALE in (3.12) has two terms in
the right-hand side. This makes possible to characterize not only R-observability but also
S-observability and C-observability properties of the discrete-time descriptor system (3.11).
We will show that the condition for the pencil λE − A to have no eigenvalues of modulus 1
and the condition for the solution of (3.12) to be nonsingular together are equivalent to the
property for (E,A,C) to be C-observable.

Theorem 3.9 Consider system (3.11) with a regular pencil λE−A. Let X be an Hermitian
solution of the projected GDALE (3.12). The triplet (E,A,C) is C-observable if and only if
π1(E,A) = 0 and X is nonsingular.

Proof. Let the pencil λE − A be in Weierstrass canonical form (1.3) and let the matrix
CT−1 = [C1, C2 ] be partitioned conformally to E and A. The solution of the projected
GDALE (3.12) has the form

X = W−∗
(
X11 0

0 X22

)
W−1, (3.13)

where X11 satisfies the Lyapunov equation

J∗X11J −X11 = −C∗1C1, (3.14)

and X22 satisfies the Lyapunov equation

X22 −N∗X22N = −C∗2C2. (3.15)

Since the triplet (E,A,C) is C-observable, conditions (2.10) and (2.12) hold. From (2.10) we
obtain that the solution X11 of (3.14) is nonsingular and J has no eigenvalues on the unit
circle [15, Theorem 13.2.4].

From (1.3) and (2.12) we have that

n = rank
[
E
C

]
= rank

 Im 0
0 N
C1 C2

 = rank
[
N
C2

]
+m.
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and, hence, the matrix
[
λI −N
C2

]
has full column rank for all λ ∈ C. Then the solution X22

of (3.15) is nonsingular, since equation (3.15) is a special case of (3.14). Thus, the solution
X of the projected GDALE (3.12) is nonsingular and π1(E,A) = 0.

Conversely, let z be a right eigenvector of λE − A corresponding to a finite eigenvalue λ
with |λ| 6= 1. We have

−‖Cz‖2 = −z∗C∗Cz = z∗(A∗XA− E∗XE)z = (|λ|2 − 1)z∗E∗XEz.

Since X is nonsingular, Ez 6= 0 and π1(E,A) = 0, then Cz 6= 0, i.e., (E,A,C) satisfies (2.10).
For z ∈ kerE, we obtain that ‖Cz‖2 = z∗C∗Cz = −z∗A∗XAz 6= 0 and, hence, (2.12)

holds. Thus, the triplet (E,A,C) is C-observable.

Remark 3.10 It follows from Theorem 3.9 that if π1(E,A) = 0 and an Hermitian solution X
of (3.12) is nonsingular, then the triplet (E,A,C) is S-observable. However, S-observability
of (E,A,C) does not imply that the solution of (3.12) is nonsingular.

Example 3.11 The projected GDALE (3.12) with

E =
(

1 0
0 0

)
, A =

(
2 0
0 1

)
, C = (1, 0)

has the unique solution

X =
(
−1/3 0

0 0

)

which is singular although rank
[
λE −A
C

]
= 2 and rank

 E
K∗E∗A
C

 = 2.

As immediate consequence of Corollary 3.8 and Theorem 3.9 we obtain the following
result.

Corollary 3.12 Consider system (3.11) with a regular pencil λE−A. Let the triplet (E,A,C)
be C-observable. If an Hermitian matrix X satisfies the projected GDALE (3.12), then the
inertia identities (3.5) hold.

Furthermore, from Theorem 3.9 and Corollary 3.12 we have the following connection
between d-stability of the pencil λE −A, the C-observability of the triplet (E,A,C) and the
existence of an Hermitian solution of the projected GDALE (3.12).

Corollary 3.13 Consider the statements:
1. the pencil λE −A is d-stable,
2. the triplet (E,A,C) is C-observable,
3. the projected GDALE (3.12) has a unique solution X which is

Hermitian, positive definite on imPl and negative definite on kerPl.
Any two of these statements together imply the third.

Remark 3.14 Note that Corollary 3.13 still holds if we replace the C-observability condition
by the weaker condition for (E,A,C) to be R-observable and if we require for the solution of
(3.12) only to be positive definite on imPl.
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If the triple (E,A,C) is not C-observable, then we can derive the inertia inequalities
similar to (2.16). Consider a proper observability matrix Op as in (2.15) and an improper
observability matrix

Oi =


CF−1

CF−2
...

CF−ν

 ,
where ν is the index of the pencil λE −A and the matrices F−k have the form

F−k = T−1

(
0 0
0 Nk−1

)
W−1, k = 1, 2, . . . .

Here T , W and N are as in (1.3). Clearly, F−k = 0 for k > ν. The triplet (E,A,C) is
C-observable if and only if rank Op = n − π∞(E,A) and rank Oi = π∞(E,A), see [2]. The
nullspaces of Op and Oi are the proper and improper unobservable subspaces, respectively, for
the descriptor system (3.11). Using the Weierstrass canonical form (1.3) and representation
(3.13) for the solution X of the projected GDALE (3.12) we obtain the following inertia
inequalities.

Theorem 3.15 Let λE − A be a regular pencil and let X be an Hermitian solution of the
projected GDALE (3.12). Then

|π<1(E,A)− π+(X)| ≤ n− π∞(E,A)− rank Op,
|π>1(E,A)− π−(X) + rank Oi| ≤ n− π∞(E,A)− rank Op.

Remark 3.16 All results of this section can be reformulated for the projected GDALE

A∗XA− E∗XE = −P ∗rGPr + s(I − Pr)∗G(I − Pr),
P ∗l X = XPl,

where s is 0 or 1. For these equations we must consider instead of (3.5) the inertia identities

π<1(E,A) = π+(X), π>1(E,A) = π−(X),
π1(E,A) = 0, π∞(E,A) = π0(X)

for the case s = 0, and

π<1(E,A) + π∞(E,A) = π+(X), π>1(E,A) = π−(X),
π1(E,A) = π0(X) = 0

for the case s = 1.

By duality of controllability and observability conditions analogies of Theorems 3.9, 3.15
and Corollaries 3.12, 3.13 can be obtained for the dual projected GDALE

AXA∗ − EXE∗ = −PlBB∗P ∗l + s(I − Pl)BB∗(I − Pl)∗,
PrX = XP ∗r .
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4 Conclusions

We have studied generalized continuous-time and discrete-time Lyapunov equations and pre-
sented generalizations of Lyapunov stability theorems and matrix inertia theorems for matrix
pencils. We also have shown that the stability, controllability and observability properties
of descriptor systems can be characterized in terms of solutions of generalized Lyapunov
equations with special right-hand sides.

Acknowledgement: The author would like to thank V. Mehrmann for interesting dis-
cussions and helpful suggestions and also referees for valuable comments.
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