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Numerical Solution and Perturbation Theory

for Generalized Lyapunov Equations

Tatjana Stykel∗

Abstract

We discuss the numerical solution and perturbation theory for the generalized continuous-
time Lyapunov equation E∗XA+A∗XE = −G with a singular matrix E. If this equation
has a solution, it is not unique. We generalize a Bartels-Stewart method and a Hammarling
method to compute a partial solution of the generalized Lyapunov equation with a special
right-hand side. A spectral condition number is introduced and perturbation bounds for
such an equation are presented. Numerical examples are given.
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1 Introduction

Consider the generalized continuous-time algebraic Lyapunov equation (GCALE)

E∗XA+A∗XE = −G (1.1)

with given matrices E, A, G and unknown matrix X. Such equations play an important role
in stability theory [13, 38], optimal control problems [33, 37] and balanced model reduction
[36]. Equation (1.1) has a unique Hermitian, positive definite solution X for every Hermitian
positive definite matrix G if and only if all eigenvalues of the pencil λE −A are finite and lie
in the open left half-plane [39].

The classical numerical methods for the standard Lyapunov equations (E = I) are the
Bartels-Stewart method [2], the Hammarling method [19] and the Hessenberg-Schur method
[18]. An extension of these methods for the generalized Lyapunov equations with the non-
singular matrix E is given in [9, 14, 15, 18, 39]. These methods are based on the preliminary
reduction of the matrix (matrix pencil) to the (generalized) Schur form [17] or the Hessenberg-
Schur form [18], calculation of the solution of a reduced system and back transformation.

An alternative approach to solve the (generalized) Lyapunov equations is the sign function
method [6, 30, 35]. Comparison of the sign function method to the Bartels-Stewart and
Hammarling methods with respect to accuracy and computational cost can be found in [6].
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The numerical solution of the generalized Lyapunov equations with a singular matrix E
is more complicated. Such equations may not have solutions even if all finite eigenvalues of
the pencil λE − A lie in the open left half-plane. Moreover, even if a solution exists, it is,
in general, not unique. In this paper we consider the projected generalized continuous-time
algebraic Lyapunov equation

E∗XA+A∗XE = −P ∗
rGPr,

X = XPl,
(1.2)

where G is Hermitian, positive (semi)definite, Pl and Pr are the spectral projections onto the
left and right deflating subspaces of the pencil λE−A corresponding to the finite eigenvalues.
Such an equation arises in stability theory and control problems for descriptor systems [4, 43].
The projected GCALE (1.2) has a unique Hermitian solution X that is positive definite on
imPl if and only if the pencil λE − A is c-stable, i.e., it is regular and all finite eigenvalues
of λE − A lie in the open left half-plane, see [43] for details. Generalizations of the Bartels-
Stewart and Hammarling methods to compute the solution of (1.2) are presented in Section 2.

In numerical problems it is very important to study the sensitivity of the solution to
perturbations in the input data and to bound errors in the computed solution. There are
several papers concerned with the perturbation theory and the backward error bounds for
standard continuous-time Lyapunov equations, see [16, 20, 21] and references therein. The
sensitivity analysis for generalized Lyapunov equations has been presented in [32], where only
the case of nonsingular E was considered. In this paper we discuss the perturbation theory for
the projected GCALE (1.2). In Section 3 we review condition numbers and Frobenius norm
based condition estimators for the deflating subspaces of the pencil corresponding to the finite
eigenvalues as well as the Lyapunov equations with nonsingular E. For the projected GCALE
(1.2), we define a spectral norm based condition number which can be efficiently computed by
solving (1.2) with G = I. Using this condition number we derive the perturbation bound for
the solution of the projected GCALE (1.2) under perturbations that preserve the deflating
subspaces of the pencil λE − A corresponding to the infinite eigenvalues. Section 4 contains
some results of numerical experiments.

Throughout the paper F denotes the field of real (F = R) or complex (F = C) numbers,
Fn,m is the space of n × m-matrices over F. The matrix A∗ = AT denotes the transpose
of the real matrix A, A∗ = AH denotes the complex conjugate transpose of complex A and
A−∗ = (A−1)∗. We denote by ‖A‖2 the spectral norm of the matrix A and by ‖A‖F the
Frobenius norm of A. The vector formed by stacking the columns of the matrix A is denoted
by vec(A), Πn2 is the vec-permutation matrix of size n2×n2 such that vec(AT ) = Πn2vec(A)
and A⊗B = [aijB] is the Kronecker product of matrices A and B.

2 Numerical solution of projected generalized Lyapunov
equations

The traditional methods to solve (generalized) Lyapunov equations are (generalized) Bartels-
Stewart and Hammarling methods [2, 9, 14, 15, 19, 39] that are based on the preliminary
reduction of the matrix (matrix pencil) to the (generalized) Schur form [17], calculation of
the solution of a reduced quasi-triangular system and back transformation. In this section we
extend these methods for the projected GCALE (1.2).

2



2.1 Generalizations of Schur and Bartels-Stewart methods

Let E and A be real square matrices (the complex case is similar). Assume that the pencil
λE−A is regular, i.e., det(λE−A) 6= 0 for some λ ∈ C. Then λE−A can be reduced to the
GUPTRI form

E = V

(
Ef Eu

0 E∞

)
UT , A = V

(
Af Au

0 A∞

)
UT , (2.1)

where matrices V and U are orthogonal, the pencil λEf −Af is quasi-triangular and has only
finite eigenvalues, while the pencil λE∞−A∞ is triangular and all its eigenvalues are infinite
[11, 12]. Clearly, in this case the matrices Ef and A∞ are nonsingular and E∞ is nilpotent.

To compute the right and left deflating subspaces of λE − A corresponding to the finite
eigenvalues we need to compute matrices Y and Z such that

(
I −Z
0 I

)(
λEf −Af λEu −Au

0 λE∞ −A∞

)(
I Y
0 I

)
=

(
λEf −Af 0

0 λE∞ −A∞

)
.

This leads to the generalized Sylvester equation

EfY − ZE∞ = −Eu,
AfY − ZA∞ = −Au.

(2.2)

Since the pencils λEf −Af and λE∞ −A∞ have no common eigenvalues, equation (2.2) has
a unique solution (Y,Z), e.g., [40]. Then the matrix pencil λE − A can be reduced by an
equivalence transformation to the Weierstrass canonical form [41], i.e.,

λE −A = V

(
I Z
0 I

)(
λEf −Af 0

0 λE∞ −A∞

)(
I −Y
0 I

)
UT

= W

(
λEf −Af 0

0 λE∞ −A∞

)
T,

where the matrices

W = V

(
I Z
0 I

)
and T =

(
I −Y
0 I

)
UT

are nonsingular. In this case the spectral projections Pr and Pl onto the right and left deflating
subspaces of λE −A corresponding to the finite eigenvalues have the form

Pr = T−1

(
I 0
0 0

)
T = U

(
I −Y
0 0

)
UT , (2.3)

Pl = W

(
I 0
0 0

)
W−1 = V

(
I −Z
0 0

)
V T . (2.4)

Assume that the matrix pencil λE −A is c-stable. Setting

V TXV =

(
X11 X12

X21 X22

)
and UTGU =

(
G11 G12

G21 G22

)
, (2.5)
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we obtain from the GCALE in (1.2) the decoupled system of matrix equations

ET
f X11Af +AT

fX11Ef = −G11, (2.6)

ET
f X12A∞ +AT

fX12E∞ = G11Y − ET
f X11Au −AT

fX11Eu, (2.7)

ET
∞X21Af +AT

∞X21Ef = Y TG11 − ET
uX11Af −AT

uX11Ef , (2.8)

ET
∞X22A∞ +AT

∞X22E∞ = − Y TG11Y − ET
uX11Au −AT

uX11Eu − ET
∞X21Au

−AT
∞X21Eu − ET

uX12A∞ −AT
uX12E∞. (2.9)

Since all eigenvalues of the pencil λEf −Af are finite and lie in the open left half-plane, the
GCALE (2.6) has a unique solution X11 [9]. The pencils λEf − Af and −λE∞ − A∞ have
no eigenvalues in common and, hence, the generalized Sylvester equations (2.7) and (2.8) are
uniquely solvable [9]. To show that the matrix X12 = −X11Z satisfies equation (2.7), we
substitute this matrix in (2.7). Taking into account equations (2.2) and (2.6), we obtain

ET
f X12A∞ +AT

fX12E∞ = − ET
f X11(AfY +Au)−AT

fX11(EfY + Eu)

= − (ET
f X11Af +AT

fX11Ef )Y − ET
f X11Au −AT

fX11Eu

= G11Y − ET
f X11Au −AT

fX11Eu.

Similarly, it can be verified that the matrix X21 = −ZTX11 is the solution of (2.8).

Consider now equation (2.9). Substitute the matrices X12 = −X11Z and X21 = −ZTX11

in (2.9). Using (2.2) and (2.6) we obtain

ET
∞X22A∞ +AT

∞X22E∞ = Y TET
f X11(ZA∞ −AfY ) + Y TAT

fX11(ZE∞ − EfY )

+ ET
uX11ZA∞ +AT

uX11ZE∞ − Y TG11Y
= (EfY + Eu)

TX11ZA∞ + (AfY +Au)
TX11ZE∞

= ET
∞ZTX11ZA∞ +AT

∞ZTX11ZE∞.

Then

ET
∞(X22 − ZTX11Z)A∞ +AT

∞(X22 − ZTX11Z)E∞ = 0. (2.10)

Clearly, X22 = ZTX11Z is the solution of (2.9). Moreover, we have

X = V

(
X11 −X11Z

−ZTX11 ZTX11Z

)
V T

= V

(
X11 −X11Z

−ZTX11 ZTX11Z

)(
I −Z
0 0

)
V T = XPl.

Thus, the matrix

X = V

(
X11 −X11Z

−ZTX11 ZTX11Z

)
V T (2.11)

is the solution of the projected GCALE (1.2).

In some applications we need the matrix ETXE rather that the solution X itself [42].
Using (2.1), (2.2) and (2.11) we obtain that

ETXE = U

(
ET
f X11Ef −ET

f X11EfY

−Y TET
f X11Ef Y TET

f X11EfY

)
UT .
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Remark 2.1 It follows from (2.10) that the general solution of the GCALE

ETXA+ATXE = −P T
r GPr (2.12)

has the form

X = V

(
X11 −X11Z

−ZTX11 X∞ + ZTX11Z

)
V T ,

where X∞ is the general solution of the homogeneous GCALE

ET
∞X∞A∞ +AT

∞X∞E∞ = 0.

If we require for the solution X of (2.12) to satisfy X = XPl, then we obtain that X∞ = 0.

In summary, we have the following algorithm for computing the solutionX of the projected
GCALE (1.2).

Algorithm 2.1 Generalized Schur-Bartels-Stewart method for the projected GCALE (1.2).

Input: A real regular pencil λE −A and a real symmetric matrix G.

Output: A symmetric solution X of the projected GCALE (1.2).

Step 1. Use the GUPTRI algorithm [11, 12] to compute the orthogonal transformation mat-
rices U and V such that

V TEU =

(
Ef Eu

0 E∞

)
and V TAU =

(
Af Au

0 A∞

)
, (2.13)

where Ef is upper triangular, nonsingular and E∞ is upper triangular with zeros on the
diagonal, Af is upper quasi-triangular and A∞ is upper triangular, nonsingular.

Step 2. Use the generalized Schur method [26, 27] or the recursive blocked algorithm [22] to
solve the generalized Sylvester equation

EfY − ZE∞ = −Eu,
AfY − ZA∞ = −Au.

(2.14)

Step 3. Compute the matrix

UTGU =

(
G11 G12

GT
12 G22

)
. (2.15)

Step 4. Use the generalized Bartels-Stewart method [2, 39] or the recursive blocked algorithm
[23] to solve the GCALE

ET
f X11Af +AT

fX11Ef = −G11. (2.16)

Step 5. Compute the matrix

X = V

(
X11 −X11Z

−ZTX11 ZTX11Z

)
V T . (2.17)
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2.2 Generalizations of Schur and Hammarling methods

In many applications it is necessary to have the Cholesky factor of the solution of the Lyapunov
equation rather than the solution itself, e.g., [36]. An attractive algorithm for computing the
Cholesky factor of the solution of the standard Lyapunov equation with a positive semidefinite
right-hand side is the Hammarling method [19]. In [39] this method has been extended to
the GCALE (1.1) with nonsingular E and positive semidefinite G. We will show that the
Hammarling method can also be used to solve the projected GCALE

ETXA+ATXE = −P T
r C

TCPr,
X = XPl

(2.18)

with E, A ∈ Rn,n, C ∈ Rp,n. We may assume without loss of generality that C has full row
rank, i.e., rank(C) = p ≤ n. If the pencil λE − A is c-stable, then the projected GCALE
(2.18) has a unique symmetric, positive semidefinite solution X [43]. In fact, we can compute
the full rank factorization [34] of the solution X = RT

XRX without constructing X and the
matrix product CTC explicitly.

Let λE−A be in the GUPTRI form (2.1) and let CU = [C1, C2 ] be partitioned in blocks
conformally to E and A. Then the solution of the projected GCALE (2.18) has the form
(2.11), where the symmetric, positive semidefinite matrix X11 satisfies the GCALE

ET
f X11Af +AT

fX11Ef = −CT
1 C1.

Let UX11
be a Cholesky factor of the solution X11 = UT

X11
UX11

. Compute the QR factorization

UX11
= Q

[
RX11

0

]
,

where Q is orthogonal and RX11
has full row rank [17]. Then

X = V

[
UT
X11

−ZTUT
X11

]
[UX11

, −UX11
Z ]V T

= V

[
RT
X11

−ZTRT
X11

]
[RX11

, −RX11
Z ]V T = RT

XRX

is the full rank factorization of X, where RX = [RX11
, −RX11

Z ]V T has full row rank.
Thus, we have the following algorithm for computing the full row rank factor of the

solution of the projected GCALE (2.18).

Algorithm 2.2 Generalized Schur-Hammarling method for the projected GCALE (2.18).
Input: A real regular pencil λE −A and a real matrix C.
Output: A full row rank factor RX of the solution X = RT

XRX of (2.18).
Step 1. Use the GUPTRI algorithm [11, 12] to compute (2.1).
Step 2. Use the generalized Schur method [26, 27] or the recursive blocked algorithm [22] to
compute the solution of the generalized Sylvester equation (2.2).
Step 3. Compute the matrix

CU = [C1, C2 ] . (2.19)

Step 4. Use the generalized Hammarling method [19, 39] to compute the Cholesky factor
UX11

of the solution X11 = UT
X11

UX11
of the GCALE

ET
f X11Af +AT

fX11Ef = −CT
1 C1. (2.20)
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Step 5a. Use Householder or Givens transformations [17] to compute the full row rank
matrix RX11

from the QR-factorization

UX11
= Q

[
RX11

0

]
.

Step 5b. Compute the full row rank factor

RX = [RX11
, −RX11

Z ]V T . (2.21)

2.3 Numerical aspects

We will now discuss numerical aspects and computational cost for the algorithms described
in the previous subsections in detail. We focus on Algorithm 2.1 and give a note about the
differences to Algorithm 2.2.

Step 1. The numerical computation of the generalized Schur form of a matrix pencil has
been intensively studied and various methods have been proposed, see [3, 11, 12, 17, 45] and
the references therein. Comparison of the different algorithms can be found in [11].

To deflate the infinite eigenvalues of the matrix pencil λE − A and to reduce this pencil
to the quasi-triangular form (2.13) we use the GUPTRI algorithm [11, 12]. This algorithm
is based on the computation of the infinity-staircase form [44] of λE − A which exposes the
Jordan structure of the infinite eigenvalues, and the QZ decomposition [17] of a subpencil
which gives quasi-triangular blocks with the finite eigenvalues. The GUPTRI algorithm is
numerically backwards stable and requires O(n3) operations [11].

Step 2. To solve the generalized Sylvester equation (2.14) we can use the generalized
Schur method [26, 27]. Note that the pencils λEf − Af and λE∞ − A∞ are already in
the generalized real Schur form [17], that is, the matrices Ef and E∞ are upper triangular,
whereas the matrices Af and A∞ are upper quasi-triangular. Since the infinite eigenvalues of
λE∞−A∞ correspond to the zero eigenvalues of the reciprocal pencil E∞− µA∞, we obtain
that A∞ is upper triangular. Let Af = [Af

ij ]
k
i,j=1 and A∞ = [A∞

ij ]
l
i,j=1 be partitioned in blocks

with diagonal blocks Af
jj of size 1 × 1 or 2 × 2 and A∞

jj of size 1 × 1. Let Ef = [Ef
ij ]

k
i,j=1,

E∞ = [E∞
ij ]

l
i,j=1, Eu = [Eu

ij ]
k,l
i,j=1, Au = [Au

ij ]
k,l
i,j=1, Y = [Yij ]

k,l
i,j=1 and Z = [Zij ]

k,l
i,j=1 be

partitioned in blocks conformally to Af and A∞. Then equation (2.14) is equivalent to the
kl equations

Ef
ttYtq − ZtqE

∞
qq = −Etq −

k∑

j=t+1

Ef
tjYjq +

q−1∑

j=1

ZtjE
∞
jq =: −Ětq, (2.22)

Af
ttYtq − ZtqA

∞
qq = −Atq −

k∑

j=t+1

Af
tjYjq +

q−1∑

j=1

ZtjA
∞
jq =: −Ǎtq (2.23)

for t = 1, . . . , k and q = 1, . . . , l. The matrices Ytq and Ztq can be computed successively in
a row-wise order beginning with t = k and q = l from these equations. Since E∞

qq = 0, the
1 × 1 or 2 × 1 matrix Ytq can be computed from the linear equation (2.22) of size 1 × 1 or
2× 2 using Gaussian elimination with partial pivoting [17]. Then from (2.23) we obtain

Ztq = (Af
ttYpq + Ǎtq)(A

∞
qq)

−1.
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The algorithm for solving the generalized Sylvester equation (2.14) via the generalized Schur
method is available as the LAPACK subroutine TGSYL [1] and costs 2m2(n−m)+2m(n−m)2

flops [27].
To compute the solution of the quasi-triangular generalized Sylvester equation (2.14) we

can also use the recursive blocked algorithm [22, Algorithm 3]. This algorithm consists in
the recursive splitting equation (2.14) in smaller subproblems that can be solved using the
high-performance kernel solvers. For comparison of the recursive blocked algorithm and the
LAPACK subroutine, see [22].

Step 3 is a matrix multiplication. In fact, in Algorithm 2.1 only the m ×m block G11

in (2.15) is needed. Let U = [U1, U2 ], where the columns of the n ×m-matrix U1 form the
basis of the right finite deflating subspace of λE − A. Exploiting the symmetry of G, the
computation of G11 = UT

1 GU1 requires n2m+ 1/2nm2 flops. In Algorithm 2.2 we only need
the p×m block C1 in (2.19) which can be computed as C1 = CU1 in pmn flops.

Step 4. To solve the GCALE (2.16) with nonsingular Ef we can use the generalized
Bartels-Stewart method [2, 39]. Let the matrices X11 = [X ′

ij ]
k
i,j=1 and G11 = [G′

ij ]
k
i,j=1 be

partitioned in blocks conformally to Ef and Af . Then equation (2.16) is equivalent to k2

equations
(Ef

tt)
TX ′

tqA
f
qq + (Af

tt)
TX ′

tqE
f
qq = −Ǧtq, t, q = 1, . . . k, (2.24)

where

Ǧtq = G′
tq +

t,q∑

i=1,j=1

(i,j)6=(t,q)

(
(Ef

it)
TX ′

ijA
f
jq + (Af

it)
TX ′

ijE
f
jq

)

= G′
tq +

t∑

i=1


(Ef

it)
T




q−1∑

j=1

X ′
ijA

f
jq


+ (Af

it)
T




q−1∑

j=1

X ′
ijE

f
jq






+
t−1∑

i=1

[
(Ef

it)
TX ′

iqA
f
qq + (Af

it)
TX ′

iqE
f
qq

]
.

We compute the blocks X ′
tq in a row-wise order beginning with t = q = 1. Using the column-

wise vector representation of the matricesX ′
tq and Ǧtq we can rewrite the generalized Sylvester

equation (2.24) as a linear system
(
(Af

qq)
T ⊗ (Ef

tt)
T + (Ef

qq)
T ⊗ (Af

tt)
T
)
vec(X ′

tq) = −vec(Ǧtq) (2.25)

of size 2 × 2, 4 × 4 or 8 × 8. The solution vec(X ′
tq) can be computed by solving (2.25) via

Gaussian elimination with partial pivoting [17].
To compute the Cholesky factor of the solution of the GCALE (2.20) in Algorithm 2.2 we

can use the generalized Hammarling method, see [19, 39] for details.
The solution of the GCALE (2.16) using the generalized Bartels-Stewart method requires

O(m3) flops, while computing the Cholesky factor of the solution of the GCALE (2.20) by
the generalized Hammarling method requires O(m3 + pm2 + p2m) flops [39].

The generalized Bartels-Stewart method and the generalized Hammarling method are im-
plemented in LAPACK-style subroutines SG03AD and SG03BD, respectively, that are available
in the SLICOT Library [5].

The quasi-triangular GCALE (2.16) can be also solved using the recursive blocked algo-
rithm [23, Algorithm 3]. Comparison of this algorithm with the SLICOT subroutines can be
found in [23].
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Step 5. The matrix X in (2.17) is computed in O(n3 +m2(n−m) +m(n−m)2) flops.
The computation of the full row rank factor RX in (2.21) requires O(m3 +m(n−m)r+ n2r)
flops with r = rank(X).

Thus, the total computational cost of the generalized Schur-Bartels-Stewart method as
well as the generalized Schur-Hammarling method is estimated as O(n3).

3 Conditioning and condition estimators

In this section we discuss feasible condition numbers and condition estimators for the projected
GCALE (1.2). A condition number for a problem is an important characteristic to measure
the sensitivity of the solution of this problem to perturbations in the original data and to
bound errors in the computed solution. If the condition number is large, then the problem is
ill-conditioned in the sense that small perturbations in the data may lead to large variations
in the solution.

The solution of the projected GCALE (1.2) is determined essentially in two steps that in-
clude first a computation of the deflating subspaces of a pencil corresponding to the finite and
infinite eigenvalues due reduction to the GUPTRI form and solving the generalized Sylvester
equation and then a calculation of the solution of the generalized Lyapunov equation. In such
situation it may happen that although the projected GCALE (1.2) is well-conditioned, one
of intermediate problems may be ill-conditioned. This may lead to large inaccuracy in the
numerical solution of the original problem. In this case we may conclude that either the com-
bined numerical method is unstable or the solution is ill-conditioned, since it is a composition
of two mappings one of which is ill-conditioned. Therefore, along with the conditioning of the
projected GCALE (1.2) we consider the perturbation theory for the deflating subspaces and
the GCALE (1.1) with nonsingular E.

3.1 Conditioning of deflating subspaces and generalized Sylvester
equations

The perturbation analysis for the deflating subspaces of a regular pencil corresponding to the
specified eigenvalues and error bounds are presented in [10, 25, 26, 40, 41]. Here we briefly
review the main results from there.

To compute the right and left deflating subspaces of λE − A corresponding to the finite
eigenvalues we have to solve the generalized Sylvester equation (2.2). We define the Sylvester
operator S : Fm,2(n−m) → Fm,2(n−m) via

S(Y,Z) := (EfY − ZE∞, AfY − ZA∞). (3.1)

Using the column-wise vector representation for the matrices Y and Z we can rewrite (2.2)
as a linear system

S

[
vec(Y )
vec(Z)

]
= −

[
vec(Eu)
vec(Au)

]
, (3.2)

where the 2m(n−m)× 2m(n−m)-matrix

S =

[
In−m ⊗ Ef −ET

∞ ⊗ Im
In−m ⊗Af −AT

∞ ⊗ Im

]
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is the matrix representation of the Sylvester operator S. The norm of S induced by the
Frobenius matrix norm is given by

‖S‖F := sup
‖(Y,Z)‖F =1

‖(EfY − ZE∞, AfY − ZA∞)‖F = ‖S‖2.

We define the separation of two regular matrix pencils λEf −Af and λE∞ −A∞ as

Difu ≡ Difu(Ef , Af ;E∞, A∞) := inf
‖(Y,Z)‖F =1

‖(EfY − ZE∞, AfY − ZA∞)‖F = σmin(S),

where σmin(S) is the smallest singular value of S [40]. Note that Difu(E∞, A∞;Ef , Af ) does
not in general equal Difu(Ef , Af ;E∞, A∞). Therefore, we set

Difl ≡ Difl(Ef , Af ;E∞, A∞) := Difu(E∞, A∞;Ef , Af ).

The values Difu and Difl measure how close the spectra of λEf − Af and λE∞ − A∞ are.
In other words, if there is a small perturbation of λEf − Af and λE∞ − A∞ such that the
perturbed pencils have a common eigenvalue, then either Difu or Difl is small. However, small
separations do not imply that the corresponding deflating subspaces are ill-conditioned [41].

Important quantities that measure the sensitivity of the right and left deflating subspaces
of the pencil λE − A to perturbations in E and A are the norms of the spectral projections
Pr and Pl. If ‖Pr‖2 ( or ‖Pl‖2 ) is large then the right (left) deflating subspace of λE − A
corresponding to the finite eigenvalues is close to the right (left) deflating subspace corres-
ponding to the infinite eigenvalues.

Let the pencil λE −A be in the GUPTRI form (2.1) and let the transformation matrices
U = [U1, U2 ] and V = [V1, V2 ] be partitioned conformally to the blocks with the finite and
infinite eigenvalues. In this case U = span(U1) and V = span(V1) are the right and left finite
deflating subspaces of λE−A, respectively, and they have dimensionm. Consider a perturbed
matrix pencil λẼ − Ã = λ(E + ∆E) − (A + ∆A). Let Ũ and Ṽ be the right and left finite
deflating subspaces of λẼ− Ã, respectively, and suppose that they have the same dimensions
as U and V. A distance between two subspaces U and Ũ is given by

θmax(U , Ũ) = max
u∈U

min
ũ∈Ũ

θ(u, ũ),

where θ(u, ũ) is the acute angle between the vectors u and ũ. Then one has the following
perturbation bounds for the deflating subspaces of the regular pencil λE −A.

Theorem 3.1 [10] Suppose that the right and left finite deflating subspaces of a regular matrix
pencil λE −A and a perturbed pencil λẼ − Ã = λ(E +∆E)− (A+∆A) corresponding to the
finite eigenvalues have the same dimensions. If

‖(∆E,∆A)‖F <
min(Difu,Difl)√

‖Pl‖22 + ‖Pr‖22 +max(‖Pl‖2, ‖Pr‖2)
=: ρ,

then

tan θmax(U , Ũ) ≤ ‖(∆E,∆A)‖F
ρ‖Pr‖2 − ‖(∆E,∆A)‖F

√
‖Pr‖22 − 1

(3.3)

≤ ‖(∆E,∆A)‖F
‖Pr‖22 +

√
‖Pr‖22 − 1

ρ

10



and

tan θmax(V, Ṽ) ≤ ‖(∆E,∆A)‖F
ρ‖Pl‖2 − ‖(∆E,∆A)‖F

√
‖Pl‖22 − 1

(3.4)

≤ ‖(∆E,∆A)‖F
‖Pl‖22 +

√
‖Pl‖22 − 1

ρ
.

Bounds (3.3) and (3.4) imply that for small enough ‖(∆E,∆A)‖F , the right and left
deflating subspaces of the perturbed pencil λẼ − Ã corresponding to the finite eigenvalues
are small perturbations of the corresponding right and left deflating subspaces of λE − A.
Perturbation ‖(∆E,∆A)‖F is bounded by ρ which is small if the separations Difu and Difl
are small or the norms ‖Pl‖2 and ‖Pr‖2 are large.

Thus, the quantities Difu, Difl, ‖Pl‖2 and ‖Pr‖2 can be used to characterize the condi-
tioning of the right and left deflating subspaces of the pencil λE − A corresponding to the
finite eigenvalues.

From representations (2.3) and (2.4) for the spectral projections Pr and Pl we have

‖Pr‖2 =
√

1 + ‖Y ‖22, ‖Pl‖2 =
√

1 + ‖Z‖22, (3.5)

where (Y,Z) is the solution of the generalized Sylvester equation (2.2). We see that the norms
of Y and Z also characterize the sensitivity of the deflating subspaces. It follows from (3.2)
that

‖(Y,Z)‖F ≤ Dif−1
u ‖(Eu, Au)‖F . (3.6)

This estimate gives a connection between the separation Difu and the norm of the solution of
the generalized Sylvester equation (2.2).

The perturbation analysis, condition numbers and error bounds for the generalized Syl-
vester equation are presented in [24, 27]. Consider a perturbed generalized Sylvester equation

(Ef +∆Ef )Ỹ − Z̃(E∞ +∆E∞) = −(Eu +∆Eu),

(Af +∆Af )Ỹ − Z̃(A∞ +∆A∞) = −(Au +∆Eu),
(3.7)

where the perturbations are measured norm-wise by

ε = max

{ ‖(∆Ef ,∆Af )‖F
α

,
‖(∆E∞,∆A∞)‖F

β
,
‖(∆Eu,∆Au)‖F

γ

}
(3.8)

with α = ‖(Ef , Af )‖F , β = ‖(E∞, A∞)‖F and γ = ‖(Eu, Au)‖F . Then one has the following
first order relative perturbation bound for the solution of the generalized Sylvester equation
(2.2).

Theorem 3.2 [24] Let the perturbations in (3.7) satisfy (3.8). Assume that both the gene-
ralized Sylvester equations (2.2) and (3.7) are uniquely solvable. Then

‖(Ỹ , Z̃)− (Y,Z)‖F
‖(Y,Z)‖F

≤
√
3 ε
‖S−1MS‖2
‖(Y,Z)‖F

, (3.9)

where the matrix MS of size 2m(n−m)× 2(n2 − nm+m2) has the form

MS =

[
BS 0
0 BS

]

with BS = [α(Y T ⊗ Im), −β(In−m ⊗ Z), γIm(n−m) ].
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The number

æst =
‖S−1MS‖2
‖(Y,Z)‖F

is called the structured condition number for the generalized Sylvester equation (2.2). Bound
(3.9) shows that the relative error in the solution of the perturbed equation (3.7) is small if
æst is not too large, i.e., if the problem is well-conditioned.

From (3.9) we obtain an other relative error bound

‖(Ỹ , Z̃)− (Y,Z)‖F
‖(Y,Z)‖F

≤
√
3 εDif−1

u

(α+ β) ‖(Y,Z)‖F + γ

‖(Y,Z)‖F

that, in general, is worse than (3.9), since it does not take account of the special structure of
perturbations in the generalized Sylvester equation [24].

Define the condition number for the generalized Sylvester equation (2.2) induced by the
Frobenius norm as

æF :=
(
‖(Ef , Af )‖2F + ‖(E∞, A∞)‖2F

)1/2
Dif−1

u .

Then applying the standard linear system perturbation analysis [17] to (3.2) we have the
following relative perturbation bounds.

Theorem 3.3 [27] Suppose that the generalized Sylvester equation (2.2) has a unique solution
(Y,Z). Let the perturbations in (3.7) satisfy (3.8). If εæF < 1, then the perturbed generalized
Sylvester equation (3.7) has a unique solution (Ỹ , Z̃) and

‖(Ỹ , Z̃)− (Y,Z)‖F
‖(Y,Z)‖F

≤ ε (æF ‖(Y,Z)‖F + ‖(Eu, Au)‖F )
(1− εæF )‖(Y,Z)‖F

≤ 2 εæF
1− εæF

. (3.10)

Note that both the bounds in (3.10) may overestimate the true relative error in the
solution, since they do not take into account the structured perturbations in the matrix S.
Nevertheless, quantities Dif−1

u and æF are used in practice to characterize the conditioning
of the generalized Sylvester equation (2.2).

The computation of Difu = σmin(S) is expensive even for modest m and n−m, since the
cost of computing the smallest singular value of the matrix S is O(m3(n−m)3) flops. It is more
useful to compute lower bounds for Dif−1

u , see [26, 27] for details. The Frobenius norm based
Dif−1

u -estimator can be computed by solving one generalized Sylvester equation in triangular
form and costs 2m2(n −m) + 2m(n −m)2 flops. The one-norm based estimator is a factor
3 to 10 times more expensive and it does not differ more than a factor

√
2m(n−m) from

Dif−1
u [26]. Computing both the Dif−1

u -estimators is implemented in the LAPACK subroutine
TGSEN [1].

3.2 Condition numbers for the generalized Lyapunov equations

The perturbation theory and some useful condition numbers for the standard Lyapunov equa-
tions were presented in [16, 20, 21], see also the references therein. The case of the generalized
Lyapunov equations with nonsingular E was considered in [31, 32]. In this subsection we re-
view some results from there.
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Consider the GCALE (1.1). Equation (1.1) is called regular if the matrix E is nonsingular
and λi + λj 6= 0 for all eigenvalues λi and λj of the pencil λE − A. Clearly, the regular
GCALE (1.1) has a unique solution X for every G, see [9].

Define the continuous-time Lyapunov operator L : Fn,n → Fn,n via

L(X) := E∗XA+A∗XE. (3.11)

Then the GCALE (1.1) can be rewritten in the operator form L(X) = −G or as a linear
system

Lx = −g, (3.12)

where x = vec(X), g = vec(G) and the n2 × n2-matrix

L = ET ⊗A∗ +AT ⊗ E∗ (3.13)

is the matrix representation of the Lyapunov operator L.
The norm of L induced by the Frobenius matrix norm is computed via

‖L‖F := sup
‖X‖F =1

‖E∗XA+A∗XE‖F = ‖L‖2.

Analogously to the Sylvester equation, an important quantity in the sensitivity analysis for
Lyapunov equations is a separation defined for the GCALE (1.1) by

Sep(E,A) = inf
‖X‖F =1

‖E∗XA+A∗XE‖F = σmin(L),

where σmin(L) is the smallest singular value of L, see [14]. If the GCALE (1.1) is regular,
then the Lyapunov operator L is invertible and the matrix L is nonsingular. The norm of the
inverse L−1 induced by the Frobenius norm can be computed as

‖L−1‖F = ‖L−1‖2 = Sep−1(E,A).

Consider now a perturbed GCALE

(E +∆E)∗X̃(A+∆A) + (A+∆A)∗X̃(E +∆E) = −(G+∆G), (3.14)

where
‖∆E‖F ≤ εF , ‖∆A‖F ≤ εF ,
‖∆G‖F ≤ εF , (∆G)∗ = ∆G.

(3.15)

Using the equivalent formulation (3.12) for the GCALE (1.1) we have the following norm-wise
perturbation estimate for the solution of (1.1) in the real case, see [32] for the complex case.

Theorem 3.4 [32] Let E, A, G ∈ Rn,n and let G be symmetric. Assume that the GCALE
(1.1) is regular. Let the absolute perturbations in the GCALE (3.14) satisfy (3.15). If

εF
(
lE + lA + 2εFSep

−1(E,A)
)
< 1,

then the perturbed GCALE (3.14) is regular and the norm-wise absolute perturbation bound

‖X̃ −X‖F ≤
√
3 εF ‖L−1ML‖2 + 2ε2

FSep
−1(E,A)‖X‖2

1− εF
(
lE + lA + 2εFSep

−1(E,A)
) (3.16)
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holds, where

ML =
[
(In2 +Πn2)

(
In ⊗ (ATX)

)
, (In2 +Πn2)

(
In ⊗ (ETX)

)
, In2

]
,

lE =
∥∥L−1(In2 +Πn2)

(
In ⊗AT

)∥∥
2
,

lA =
∥∥L−1(In2 +Πn2)

(
In ⊗ ET

)∥∥
2
.

The number

κst(E,A) =
‖L−1ML‖2
‖X‖F

is called the structured condition number for the GCALE (1.1). Bound (3.16) shows that
if κst(E,A), Sep

−1(E,A), lE and lA are not too large, then the solution of the perturbed
GCALE (3.14) is a small perturbation of the solution of (1.1). Note that bound (3.16) is
asymptotically sharp.

We define the condition number for the GCALE (1.1) induced by the Frobenius norm as

κF (E,A) := 2‖E‖2‖A‖2Sep−1(E,A). (3.17)

Applying the standard linear system perturbation analysis [17] to the linear system (3.12)
and taking into account that ‖G‖2 ≤ 2‖E‖2‖A‖2‖X‖F , we obtain the following Frobenius
norm based relative perturbation bounds.

Theorem 3.5 Suppose that the GCALE (1.1) is regular. Let the perturbations in (3.14)
satisfy ‖∆E‖2 ≤ ε‖E‖2, ‖∆A‖2 ≤ ε‖A‖2 and ‖∆G‖2 ≤ ε‖G‖2. If ε (2 + ε)κF (E,A) < 1,
then the perturbed GCALE (3.14) is regular and

‖X̃ −X‖F
‖X‖F

≤ (2ε+ ε2)κF (E,A)‖X‖F + ε‖G‖2Sep−1(E,A)

(1− ε(2 + ε)κF (E,A) )‖X‖F

≤ ε(3 + ε)κF (E,A)

1− ε(2 + ε)κF (E,A)
.

(3.18)

It should be noted that bounds (3.18) may overestimate the true relative error, since
they do not take account of the specific structure of perturbations in (3.14). In the case of
symmetric perturbations in G, sharp sensitivity estimates for general Lyapunov operators can
be derived by using so-called Lyapunov singular values instead of standard singular values,
see [31, 32] for details. Note that for the Lyapunov operator L as in (3.11), the Lyapunov
singular values are equal to the standard singular values.

Let X̂ be an approximate solution of the GCALE (1.1) and let

R := E∗X̂A+A∗X̂E +G (3.19)

be a residual of (1.1) corresponding to X̂. Then from Theorem 3.5 we obtain the following
forward error bound

‖X̂ −X‖F
‖X‖F

≤ κF (E,A)
‖R‖F

2‖E‖2‖A‖2‖X‖F
=: EstF . (3.20)

This bound shows that for well-conditioned problems, the small relative residual implies a
small error in the approximate solution X̂. However, if the condition number κF (E,A) is
large, then X̂ may be inaccurate even for the small residual.
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It follows from bounds (3.18) and (3.20) that κF (E,A) and Sep(E,A) = σmin(L) can
be used as a measure of the sensitivity of the solution of the regular GCALE (1.1). Since
computing the smallest singular value of the n2 × n2-matrix L is not acceptable for modest
n, it is more useful to compute estimates for Sep−1(E,A). A Sep−1-estimator based on
the one-norm differs from Sep−1(E,A) at most by a factor n. Computing this estimator is
implemented in the LAPACK subroutine LACON [1] and costs O(n3) flops.

Unfortunately, if the matrix E is singular, then Sep(E,A) = 0 and κF (E,A) =∞. In this
case we can not use (3.17) as the condition number for the projected GCALE (1.2).

In [16, 20] condition numbers based on the spectral norm have been used as a measure of
sensitivity of the standard Lyapunov equations. In the following subsections we extend this
idea to the projected GCALE (1.2).

3.3 Conditioning of the projected generalized Lyapunov equations

Assume that the pencil λE − A is c-stable. Let H be an Hermitian, positive semidefinite
solution of the projected GCALE

E∗HA+A∗HE = −P ∗
r Pr,

H = HPl.
(3.21)

The matrix H has the form

H =
1

2π

∫ ∞

−∞
(iξE −A)−∗P ∗

r Pr(iξE −A)−1dξ.

Consider a linear operator L− : Fn,n → Fn,n defined as follows: for a matrix G, the image
X = −L−(G) is the unique solution of the projected GCALE (1.2). Note that the operator
L− is a (2)-pseudoinverse [8] of the Lyapunov operator L since it satisfies L−LL− = L−.

Lemma 3.6 Let λE −A be c-stable. Then ‖L−‖2 = ‖H‖2.

Proof. Let u and v be the left and right singular vectors of unit length corresponding to
the largest singular value of the solution X of the projected GCALE (1.2) with some matrix
G. Then

‖L−(G)‖2 = ‖X‖2 = u∗Xv =
1

2π

∫ ∞

−∞
u∗(iξE −A)−∗P ∗

rGPr(iξE −A)−1v dξ

≤ 1

2π
‖G‖2

∫ ∞

−∞

∥∥Pr(iξE −A)−1u
∥∥

2

∥∥Pr(iξE −A)−1v
∥∥

2
dξ.

Using the Cauchy-Schwarz inequality [28] we obtain

‖L−(G)‖2 ≤ 1

2π
‖G‖2




∞∫

−∞

∥∥Pr(iξE −A)−1u
∥∥2

2
dξ




1
2



∞∫

−∞

∥∥Pr(iξE −A)−1v
∥∥2

2
dξ




1
2

≤ ‖G‖2
∥∥∥∥
1

2π

∫ ∞

−∞
(iξE −A)−∗P ∗

r Pr(iξE −A)−1 dξ

∥∥∥∥
2

= ‖G‖2‖H‖2.

Hence, ‖L−‖2 ≤ ‖H‖2.

15



On the other hand, we have

‖L−‖2 = sup
‖G‖2=1

‖L−(−G)‖2 ≥ ‖L−(−I)‖2 = ‖H‖2.

Thus, ‖L−‖2 = ‖H‖2. 2

Note that if E is nonsingular, then L− = L−1 is the inverse of the Lyapunov operator L
and ‖L−1‖2 = ‖H‖2.

We define the spectral condition number for the projected GCALE (1.2) as

κ2(E,A) := 2‖E‖2‖A‖2‖H‖2. (3.22)

We have

1 ≤ ‖Pr‖22 = ‖P ∗
r Pr‖2 = ‖E∗HA+A∗HE‖2 ≤ 2‖E‖2‖A‖2‖H‖2 = κ2(E,A).

The matrixH and the parameter κ2(E,A) are closely related to the analysis of the asymptotic
behavior of solutions of the differential-algebraic equation

Eẋ(t) = Ax(t). (3.23)

It has been shown in [42] that

‖E∗HE‖2 = max
‖Prx0‖=1

∫ ∞

0
‖x(t)‖2dt,

i.e., the norm of the matrix E∗HE is the square of the maximum L2-norm of the solution
x(t) of equation (3.23) with the initial condition x(0) = Prx0. Moreover, for this solution the
pointwise estimate

‖x(t)‖ ≤
√
κ2(E,A)‖E‖2‖(EPr +A(I − Pr))−1‖2 e−t‖A‖2/(‖E‖2κ2(E,A))‖Prx0‖

holds. These results are an extension of the known connection between the solution of the
standard Lyapunov equation (E = I) and the asymptotic behavior of the dynamical system
ẋ(t) = Ax(t), see [16, 20].

Consider a perturbed pencil λẼ− Ã = λ(E+∆E)− (A+∆A) with ‖∆E‖2 ≤ ε‖E‖2 and
‖∆A‖2 ≤ ε‖A‖2. Assume that the right and left deflating subspaces of λE−A corresponding
to the infinite eigenvalues are not changed under perturbations, i.e.,

kerPr = ker P̃r, kerPl = ker P̃l, (3.24)

where P̃r and P̃l are the spectral projections onto the right and left finite deflating subspaces
of the pencil λẼ−Ã. In this case λE−A and λẼ−Ã have the right and left deflating subspaces
corresponding to the finite eigenvalues of the same dimension. Such a restriction is motivated
by applications, e.g., in the stability analysis for descriptor systems [7]. Moreover, we will
assume for such allowable perturbations that we have an error bound ‖P̃r − Pr‖2 ≤ εK with
some constantK (for such estimate for the pencil λE−A of index one, see [42]). This estimate
implies that the right deflating subspace of the perturbed pencil λẼ− Ã corresponding to the
finite eigenvalues is close to the corresponding right deflating subspace of λE −A.

Consider now the perturbed projected GCALE

Ẽ∗X̃Ã+ Ã∗X̃Ẽ = −P̃ ∗
r G̃P̃r, X̃ = X̃P̃l. (3.25)

The following theorem gives a relative error bound for the solution of (1.2).
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Theorem 3.7 Let λE−A be c-stable and let X be a solution of the projected GCALE (1.2).
Consider a perturbed pencil λẼ − Ã = λ(E + ∆E) − (A + ∆A) with ‖∆E‖2 ≤ ε‖E‖2 and
‖∆A‖2 ≤ ε‖A‖2. Assume that for the spectral projections P̃r and P̃l onto the right and
left deflating subspaces corresponding to the finite eigenvalues of λẼ − Ã, relations (3.24)
are satisfied and a bound ‖P̃r − Pr‖2 ≤ εK < 1 holds with some constant K. Let G̃ be a
perturbation of G such that ‖∆G‖2 ≤ ε‖G‖2. If ε(2 + ε)κ2(E,A) < 1, then the perturbed
projected GCALE (3.25) has a unique solution X̃ and

‖X̃ −X‖2
‖X‖2

≤
ε

(
(εK + ‖Pr‖2)(K + ‖Pr‖2)‖G‖2 + 3‖E‖2‖A‖2‖X‖2

)
κ2(E,A)

‖E‖2‖A‖2‖X‖2(1− ε(2 + ε)κ2(E,A))
. (3.26)

Proof. It follows from (3.24) that

P̃rPr = P̃r, PrP̃r = Pr, P̃lPl = P̃l, PlP̃l = Pl. (3.27)

The perturbed GCALE in (3.25) can be rewritten as

E∗X̃A+A∗X̃E = −
(
P̃ ∗
r G̃P̃r +K(X̃)

)
,

where K(X̃) = (∆E)∗X̃Ã + E∗X̃∆A + (∆A)∗X̃E + Ã∗X̃∆E. Using (2.1) and (2.2) we can
verify that PlE = PlEPr = EPr and PlA = PlAPr = APr. Analogous relations hold for the
perturbed pencil λẼ − Ã. Then by (3.27) we obtain that X̃ = X̃Pl = X̃PlP̃l = X̃P̃l and

X̃E = X̃PlE = X̃EPr = X̃PlEPrP̃r = X̃EP̃r,

X̃Ẽ = X̃P̃lẼ = X̃ẼP̃r = X̃P̃lẼP̃rPr = X̃ẼPr.

These relationships remain valid if we replace E by A and Ẽ by Ã. In this case we obtain

P̃ ∗
r G̃P̃r +K(X̃) = P ∗

r

(
P̃ ∗
r G̃P̃r +K(X̃)

)
Pr = P̃ ∗

r

(
P̃ ∗
r G̃P̃r +K(X̃)

)
P̃r. (3.28)

Then the perturbed projected GCALE (3.25) is equivalent to the projected GCALE

E∗X̃A+A∗X̃E = −P ∗
r

(
P̃ ∗
r G̃P̃r +K(X̃)

)
Pr, X̃ = X̃Pl.

Since the pencil λE −A is c-stable, this equation has a unique solution given by

X̃ =
1

2π

∫ ∞

−∞
(iξE −A)−∗P ∗

r

(
P̃ ∗
r G̃P̃r +K(X̃)

)
Pr(iξE −A)−1dξ. (3.29)

Thus, we have an integral equation X̃ = I(X̃) for the unknown matrix X̃, where

I(X̃) =
1

2π

∫ ∞

−∞
(iξE −A)−∗P ∗

r

(
P̃ ∗
r G̃P̃r +K(X̃)

)
Pr(iξE −A)−1dξ.

From

‖K(X̃)‖2 ≤ 2(‖∆E‖2‖Ã‖2 + ‖∆A‖2‖E‖2)‖X̃‖2 ≤ 2ε(2 + ε)‖E‖2‖A‖2‖X̃‖2
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we obtain for any matrices X1 and X2, that

‖I(X1)− I(X2)‖2 =

∥∥∥∥
1

2π

∫ ∞

−∞
(iξE −A)−∗P ∗

rK(X1 −X2)Pr(iξE −A)−1 dξ

∥∥∥∥
2

≤ ‖K(X1 −X2)‖2‖H‖2 ≤ ε(2 + ε)κ2(E,A)‖X1 −X2‖2.

Since ε(2+ε)κ2(E,A) < 1, the operator I(Z̃) is contractive. Then by the fixed point theorem
[28] the equation X̃ = I(X̃) has a unique solution X̃ and we can estimate the error

‖X̃ −X‖2 =

∥∥∥∥∥∥
1

2π

∞∫

−∞

(iξE −A)−∗P ∗
r

(
P̃ ∗
r G̃P̃r +K(X̃)− P ∗

rGPr

)
Pr(iξE −A)−1 dξ

∥∥∥∥∥∥
2

≤
(
‖P̃ ∗

r G̃P̃r − P ∗
rGPr‖2 + ‖K(X̃)‖2

)
‖H‖2.

Taking into account that

‖P̃ ∗
r G̃P̃r − P ∗

rGPr‖2 ≤ ‖P̃r − Pr‖2(‖G̃‖2‖P̃r‖2 + ‖Pr‖2‖G‖2) + ‖Pr‖2‖G̃−G‖2‖P̃r‖2
≤ ε ((εK + ‖Pr‖2)((1 + ε)K + ‖Pr‖2) + εK‖Pr‖2) ‖G‖2
≤ 2ε (εK + ‖Pr‖2 ) (K + ‖Pr‖2) ‖G‖2

and ‖K(X̃)‖2 ≤ 2ε(2 + ε)‖E‖2‖A‖2(‖X‖2 + ‖X̃ −X‖2) we obtain the relative perturbation
bound (3.26). 2

Bound (3.26) shows that if κ2(E,A), K and ‖Pr‖2 are not too large, then the solution of
the perturbed projected GCALE (3.25) is a small perturbation of the solution of the projected
GCALE (1.2).

From Theorem 3.7 we can obtain some useful consequences.

Corollary 3.8 Under the assumptions of Theorem 3.7 we have that if G is Hermitian, posi-
tive definite and if

2ε
(
2(1 + 2ε)(εK + ‖Pr‖2)2 + 1

)
κ2(E,A)‖G‖2 < λmin(G), (3.30)

where λmin(G) is the smallest eigenvalue of the matrix G, then the perturbed pencil λẼ − Ã
is c-stable and the following relative perturbation bound

|κ2(Ẽ, Ã)− κ2(E,A)|
κ2(E,A)

≤ 3ε (K(K + 2‖Pr‖2) + κ2(E,A) + 1)

1− ε(2 + ε)κ2(E,A)
(3.31)

holds.

Proof. First we will show that the matrix P̃ ∗
r G̃P̃r+K(X̃) is positive definite on the subspace

imPr. For all nonzero z ∈ imPr, we have

( (P̃ ∗
r G̃P̃r +K(X̃))z, z ) = ( (P̃ ∗

r (G+∆G)P̃r + P̃ ∗
rK(X̃)P̃r)z, z )

≥
(
λmin(G)− ‖K(X̃)‖2 − ‖∆G‖2

)
‖P̃rz‖2.

(3.32)

Suppose now that P̃rz = 0. Then we obtain from (3.27) that z ∈ kerPr, but z ∈ imPr and
z 6= 0. Hence, P̃rz 6= 0. From (3.29) it follows that

‖X̃‖2 ≤
‖P̃r‖22‖G̃‖2‖H‖2

1− ε(2 + ε)κ2(E,A)
≤ (1 + ε)(εK + ‖Pr‖2)2‖G‖2‖H‖2

1− ε(2 + ε)κ2(E,A)
. (3.33)
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Then taking into account estimate (3.30) we get

‖K(X̃)‖2 + ‖∆G‖2 ≤
ε
(
2(1 + 2ε)(εK + ‖Pr‖2)2 + 1

)
κ2(E,A)‖G‖2

1− ε(2 + ε)κ2(E,A)
< λmin(G).

Thus, ( (P̃ ∗
r G̃P̃r + K(X̃))z, z ) > 0 for all nonzero z ∈ imPr, i.e., the matrix P̃ ∗

r G̃P̃r + K(X̃)
is positive definite on the subspace imPr. Consequently, the matrix X̃ is positive definite on
imPl and positive semidefinite. Moreover, it follows from (3.30) that the matrix G̃ is positive
definite. We have that the positive semidefinite matrix X̃ satisfies the projected GCALE
(3.25) with positive definite G̃. In this case the pencil λẼ − Ã is c-stable, see [43].

From the proof of Theorem 3.7 with G̃ = G = I we have that

‖H̃ −H‖2 ≤
ε (K(εK + 2‖Pr‖2) + (2 + ε)κ2(E,A)) ‖H‖2

1− ε(2 + ε)κ2(E,A)
,

where H̃ is the solution of the perturbed projected GCALE (3.25) with G̃ = I. Then

|κ2(Ẽ, Ã) − κ2(E,A)| = 2
∣∣∣ ‖Ẽ‖2‖Ã‖2‖H̃‖2 − ‖E‖2‖A‖2‖H‖2

∣∣∣

≤ 2
(
‖Ẽ‖2‖Ã‖2‖H̃ −H‖2 + ‖Ẽ − E‖‖Ã‖2‖H‖2 + ‖E‖2‖Ã−A‖2‖H‖2

)

≤ 3εκ2(E,A) (K(K + 2‖Pr‖2) + κ2(E,A) + 1)

1− ε(2 + ε)κ2(E,A)
.

2

Furthermore, from the proof of Theorem 3.7 for P̃r = Pr = I we obtain the following
perturbation bound for the solution of the regular GCALE (1.1).

Corollary 3.9 Let G be Hermitian and positive definite. Assume that the GCALE (1.1) is
regular. Let ∆E, ∆A be perturbations of λE−A such that ‖∆E‖2 ≤ ε‖E‖2, ‖∆A‖2 ≤ ε‖A‖2
and let ∆G be a perturbation of G with ‖∆G‖2 ≤ ε‖G‖2. If ε (2 + ε)κ2(E,A) < 1, then the
perturbed GCALE (3.14) is regular and the relative error bound

‖X̃ −X‖2
‖X‖2

≤ ε(3 + ε)κ2(E,A)

1− ε(2 + ε)κ2(E,A)
(3.34)

holds.

Note that bound (3.34) can be also obtained directly by applying the linear operator
perturbation theory [29] to the regular GCALE (1.1) in the operator form L(X) = −G.

If X̂ is an approximate solution of the GCALE (1.1) and if R is a residual given by (3.19),
then from Corollary 3.9 with ∆E = 0, ∆A = 0 and ∆G = R we obtain the following forward
error bound

‖X̂ −X‖2
‖X‖2

≤ κ2(E,A)
‖R‖2

2‖E‖2‖A‖2‖X‖2
=: Est2. (3.35)

Bounds (3.34) and (3.35) show that κ2(E,A) just as κF (E,A) may also be used to measure
the sensitivity of the solution of the regular GCALE (1.1). From the relationship

1√
n
‖L−1‖2 ≤ ‖L−1‖F ≤

√
n‖L−1‖2
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we obtain that the Frobenius norm based condition number κF (E,A) does not differ more than
a factor

√
n from the spectral condition number κ2(E,A). Thus, κ2(E,A) may be used as an

estimator of κF (E,A). Note that to compute one-norm or Frobenius norm based estimators of
κF (E,A) we need to solve around five generalized Lyapunov equations E∗XA+A∗XE = −G
and EXA∗ +AXE∗ = −G, see [1, 21], whereas the computation of κ2(E,A) requires solving
only one additional generalized Lyapunov equation E∗XA+A∗XE = −I.

4 Numerical experiments

In this section we present the results of several numerical experiments. Computations were
carried out on IBM RS 6000 44P Modell 270 with relative machine precision EPS ≈ 2.22·10−16.

Example 4.1 [39] The matrices E and A are defined as

E = In + 2−tUn,
A = (2−t − 1)In + diag(1, 2, . . . , n) + UT

n ,

where Un is the n× n matrix with unit entries below the diagonal and all other entries zero.
Note that E is nonsingular. The matrix G is defined so that a true solution X of (1.1) is the
matrix of all ones.

In Figure 1(a) we compare the spectral condition number κ2(E,A) and the Frobenius
norm based condition number κF (E,A). We see that κ2(E,A) is a factor 2-8 smaller than
κF (E,A) and the problem becomes ill-conditioned as the parameter t increases. Figure 1(b)
shows the relative errors in the spectral and Frobenius norms

RERR2 =
‖X̂ −X‖2
‖X‖2

, RERRF =
‖X̂ −X‖F
‖X‖F

,

where X̂ is an approximate solution of (1.1) computed by the generalized Bartels-Stewart
method. As expected from the perturbation theory, the accuracy of X̂ may get worse as the
condition numbers are large, while the relative residuals

RRES2 =
‖E∗X̂A+A∗X̂E +G‖2

2‖E‖2‖A‖2‖X‖2
and RRESF =

‖E∗X̂A+A∗X̂E +G‖F
2‖E‖2‖A‖2‖X‖F

,

shown in Figure 2(a), remain small.

Figure 2(b) shows the ratios RERR2/Est2 and RERRF/EstF between the relative errors and
the computed residual based error estimates given by (3.20) and (3.35). One can see that the
estimate in the spectral norm is sharper than the estimate in the Frobenius norm.

Example 4.2 Consider a family of projected GCALEs with

E = V

(
I3 D(N3 − I3)
0 N3

)
UT , A = V

(
J (I3 − J)D
0 I3

)
UT ,

G = U

(
G11 −G11D

−DG11 DG11D

)
UT ,
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Figure 1: Spectral norm and Frobenius norm condition numbers (a) and the relative errors
in the solution (b)
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Figure 2: Relative residuals (a) and ratios between the relative errors and the error estimates
in the spectral and Frobenius norms (b)

21



0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3
0

2

4

6

8

10

12

ks

lo
g1

0(
D

if u−
1 )

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3
−0.5

0

0.5

1

1.5

2

2.5

3

ks

lo
g1

0(
||H

11
|| 2) 

=
 lo

g1
0(

S
ep

−
1 )

(a) (b)

Figure 3: Conditioning of the generalized Sylvester equation (a) and the regular generalized
Lyapunov equation (b)

where N3 is the nilpotent Jordan block of order 3,

J = diag(−10−k, −2, −3× 10k), k ≥ 0,
D = diag(10−s, 1, 10s), s ≥ 0,

G11 = diag(2, 4, 6).

The transformation matrices V and U are elementary reflections chosen as

V = I6 −
1

3
eeT , e = (1, 1, 1, 1, 1, 1)T ,

U = I6 −
1

3
ffT , f = (1,−1, 1,−1, 1,−1)T .

The exact solution of the projected GCALE (1.1) is given by

X = V

(
X11 −X11D

−DX11 DX11D

)
V T

with X11 = diag(10k, 1, 10−k). The problem becomes ill-conditioned when k and s increase.

In Figure 3 we show the values of Dif−1
u and ‖H11‖2 as functions of k and s. Here H11

is the solution of the regular GCALE ET
f H11Af + AT

fH11Ef = −Inf
. Note that in this

example ‖H11‖2 = Sep−1(Ef , Af ). We see that the condition numbers of the generalized
Sylvester equation (2.14) and the regular GCALE (2.16) are independent of s and increase
for magnifying k.

In Figure 4 we show the values of ‖H‖2 and the condition number κ2(E,A) of the projected
GCALE (1.1) for the same values of k and s. When k and s are increased then the condition
number κ2(E,A) increases more quickly than ‖H‖2. Finally, Figure 5(a) shows the relative
error RERR = ‖X̂ −X‖2/‖X‖2, where X̂ is the computed solution, and Figure 5(b) shows the
relative residual

RRES =
‖ET X̂A+AT X̂E + P̂ T

r GP̂r‖2
2‖E‖2‖A‖2‖X‖2

,
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Figure 4: Conditioning of the projected generalized Lyapunov equation
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Figure 5: Relative error (a) and relative residual (a).

where P̂r is the computed projection onto the right deflating subspace of the pencil λE − A
corresponding to the finite eigenvalues. We see that the relative residual is small even for the
ill-conditioned problem. However, this does not imply that the relative error in the computed
solution remains close to zero when the condition number κ2(E,A) is large. The relative error
in X̂ increases as κ2(E,A) grows. Moreover, the computed solution may be inaccurate, if one
of intermediate problems is ill-conditioned.
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