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Abstract—We discuss the numerical solution of projected that are dual to (1) and (2), respectively.
genera“zed LyapUnOV equat|0n5. Such equat|0ns arise In many In the ||terature also other types Of genera“zed Lyapunov

control problems for linear time-invariant descriptor systems o ations have been considered that are useful in stability
including stability analysis, balancing and model order reduc-

tion. We present solvers for projected generalized Lyapunov analysis and optimal regulator problem for descriptor sys-
equations based on matrix equations subroutines that are avai- tems [11], [16], [26], [27]. However, the application of $uc
lable in the Subroutine Library In COntrol Theory (SLICOT). equations is usually limited to index one problems, whereas
| INTRODUCTION the e>§|stence and uniqueness results for prolectgd Lyapuno
i . : ) ) equations can be stated independently of the index of the
Consider the projected generalized continuous-time algﬁ'encil)\E — A, see [21], [23].
braic Lyapunov equation (GCALE) In this paper, we discuss several solvers for projected
ETXA+ ATXE+ PTGP. =0, ) Lyapunov equations that are based on the generalized
X —-PI'Xp =0, Schur-Bartels-Stewart method and the generalized Schur-
and the projected generalized discrete-time algebraic Lyglammarllng metho‘?' presentec_i n [22]'. These solvgrs are im-
- plemented using efficient matrix equations subroutined-ava
punov equation (GDALE) . . :
;. - . . able in the SLICOT Library [4], [28]. In general, SLICOT in-
ATXA-E"XE+ 5., C;:Pr - SQQrTGQr =0, (2) cludes Fortran implementations of numerical algorithms fo
X-P XP—-Q  XQ, =0, solving different system and control problems togethehwit
whereE, A, G € R™" are given matricesX € R"" is an standardized interfaces for MATLAB [17] and Scilab [9], see
unknown matrix,P, and P, are the spectral projectors ontoalso the SLICOT webpaght t p://www. sl i cot . de/.

the left and right deflating subspaces of the regular pendyote that SLICOT routines often provide not only the
A\E — A corresponding to the finite eigenvaluég, = I — p;,  solution of the problem but also condition number estimates

Q. =1—P, ands;, s, are0 or 1 with s? + s2 # 0. Such and forward error bounds that allow the user to evaluate the
equations arise in many control problems for linear timeaccuracy of the computed solution.
invariant descriptor systems
E(Dz(t)) = Ax(t) + Bu(t), 3)
y(t) = Ca(t), In this section, we briefly describe the Schur-Bartels-
whereDz(t) = i(t), t € R, in the continuous-time case andStéwart and Schur-Hammarling methods for projected Lya-
Dx(t) = 2441, t € Z, in the discrete-time case. In parti- PUnov equations, see [21], [22] for details.

1. PROJECTED LYAPUNOV EQUATIONS

cular, the asymptotic stability as well as controllabilapd Let the pencil\E' — A be in generalized real Schur form
observability properties of system (3) can be charactdrize 5. B A A
in terms of solutions of equations (1) and (2), see [3], [23], E=V [ Of E“ } ut, A=V { Of A“ } ur, (e)

[31]. Furthermore, these equations can be used to compute

role in balanced truncation model reduction of descriptofyasi-triangular andi.. is upper triangular nonsingular. In

to solve the projected GCALE

EXAT + AXET + PGPT =0, P=V [I _Z} vi, P.=U [I _Y} ur, (@
X - P.XPT =0 ) 0 0 0 0
and the projected GDALE whereY and Z satisfy the generalized Sylvester equation
AXAT — EXET } SlP]l:,G)?; - sleGQi = 0. (5 EyY - ZEy = —E,, ®)
— i r — @, XQ, =0, AY — ZA = —A,.
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be partitioned in blocks conformally witly and A in (6)

and let

G = G — ZGoy — G122 + ZGop 27,
Gao = YTG11Y + YTGia + Ga1Y + Gao.

Using (6)-(10), one can show that the solutions of thée determined directly without forming the prodd¢tC and
projected Lyapunov equations have the following represethe solutionX itself if we apply the generalized Hammarling

tations:

« the projected GCALE (1) has the solution

x-v|

where X, satisfies the GCALE

X1 - X1z VT
fZTXH ZTX11Z ’

Ef X1 Af + A7 X11Ep = =G

« the projected GCALE (4) has the solution

|

X11 0
0 0

where X;; solves the GCALE

x-v|

EfX1Af + Ap X1 Ef = —G.

« the projected GDALE (2) has the solution

x-v|

X1 -XuZ T
77Xy X+ ZTX1Z ’

where X1; and X, satisfy the GDALEs

AT X1 Ay — BT X1, By
AZOXQQAOO - EEOXZQEOO

—s51G11,

52G2a.

« the projected GDALE (5) has the solution

X171 + Y XooVT

X - U X22YT

Y X

ut,
Xa2

where X;; and X5, solve the GDALEs

Ap X11 AT — By Xu ET
Ao X2 AT — B, X0 ET

Thus, to compute the solution of

—51G11,

52Gaa.

(10)

11)

12)

(13)

(14)

(15)

(16)

continuous-time case or moduli less than one in the discrete
time case, and the matrik = C7C is symmetric, positive
semidefinite. The solution of such projected Lyapunov equa-
tions can be computed in the factored fokn= RTR, where
R is a full row rank Cholesky factor o. This factor can

method [10], [18] for computing the Cholesky factaRy;
and Ry, of the solutionsX;; = RT; Ry; and Xos = RL R,
of the corresponding generalized Lyapunov equations. ;Then
for example, the Cholesky factor of the solutidh= R7R
of the projected GDALE (2) is given by

5 Rin —RnuZ|r

R [t )y
The full row rank Cholesky factolR of X = RTR can
then be computed from the QR decompositiin= QR,
where ) has orthonormal columns anB is of full row
rank. The full rank Cholesky factors of the solutions of
the projected Lyapunov equations (1), (4) and (5) can be
determined similarly.

In solving matrix equations it is very important to study the
sensitivity of the problem to perturbations in the inputadat
and to bound errors in the computed solution. The solution
of projected Lyapunov equations is determined esseniially
two steps that include first a computation of the deflating
subspaces of a pencil corresponding to the finite and infinite
eigenvalues via a reduction to the generalized Schur foym (6
and solving the generalized Sylvester equation (8) and then
a calculation of the solution of the corresponding geneealli
Lyapunov equations as in (12)-(16). In this case it may
happen that although the projected Lyapunov equation is
well-conditioned, one of the intermediate problems may be
ill-conditioned. This may lead to large inaccuracy in the
computed solution of the original problem. Therefore, glon
with the conditioning of the projected Lyapunov equation we
should also consider the condition numbers for the deflating
subspaces.

An important quantity that measures the sensitivity of the

the projected Lyapunotight and left deflating subspaces of the pendil— A corre-
equation, we need to reduce the pencil to the generalizégonding to the finite and infinite eigenvalues to pertudvei
Schur form (6) and to solve the generalized Sylvester equir E and A is a separation Di& Dif (Ey, Ay; Eo, Aso) Of

tion (8) as well as the corresponding generalized Lyapundiae pencilsA\E; — Ay and \E, — A, defined by

equations. To compute the generalized Schur form (6) wep;s _ inf H[E Y — ZE- AY — ZA ]H
can use the QZ method [8], [30] or algorithms proposed in Y, Z]|| r=1 f oo 25f colllrp (17)
[2], [6], [7], [29] based on row/column compression. For = omin(5),

solving the generalized Sylvester equation (8) one can ugge [5], [14], [20] for details. Herd| - | denotes the
the generalized Schur method [15] or its recursive blockegqpenius matrix norm. the matrig has the form

modification [12] that is more suitable for large problems.
The solutions of the generalized Lyapunov equations (12),
(13), (15) and (16) can be computed using the generalized

S
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o I®Af

—-EL oI
—AT I |

Bartels-Stewart method [1], [18].

where the symbolr stands for the Kronecker product of

In some applications, such as model order reduction, it isvo matrices, and,;,(S) is the smallest singular value
required to compute the Cholesky factor of the solution off S. The reciprocal of the separation Dif;, As; E, Ao)
stable projected Lyapunov equations rather than the solutican also be used as a condition number of the generalized
itself. The termstable means here that all the finite eigen-Sylvester equation (8) that measures the sensitivity of the
values of the pencihNE — A have negative real part in the solution of this equation to perturbations in the data [13],



[15]. The conditioning of the deflating subspaces\éf — A  that can be used to compute the full rank Cholesky fa&tor
can also be characterized by the spectral norms of tid the solutionX = op(R)?op(R) of the projected GCALE

projectorsP; and P, given by (1) or (4) and the projected GDALE (2) or (5), respectively,
with G = op(C)Top(C). Here ogC) = C for equations (1)
[Pl =/1+ VI3, [Pz =1/1+[Z]3. and (2) and ofC') = C7 for equations (4) and (5).

In our implementations we have used the following
MATLAB functions for solving Sylvester and Lyapunov
equations that are available in SLICOT [19]:

The condition numbergor the projected GCALE (1) and the
projected GDALE (2) are defined by

re(B; A) = 2| Ell2]|All2]| Hell2,

18 sl ges for the generalized Sylvester equation, (8
w8 ) = (1B 1)1 Y G5y forthe GOALEs (2 and 6B
respectively, wheréd, and H, are the solutions of (1) and sl gest for the GDALEs (15) and (16)
(2), respectively, withG = I. These condition numbers sl gsly for the stable GCALEs (12) and (13)
measure the sensitivity of the solutions of the projecteds! gsst for the stable GDALEs (15) and (16)

Lyapunov equations (1) and (2) to perturbationgind and  thege functions call the MEX-filgenl eq based on the

G, see [21], [22]. The condition numbers for the projecteds responding SLICOT Fortran routines for generalized
Lyapunov equations (4) and (5) can be defined similarly. Sylvester and Lyapunov equations.

Ill. SOLVERS IV. NUMERICAL EXAMPLES

The following MATLAB functions have been imple- |, this section we present the results of some numerical
mented _ experiments. Computations were carried out on IBM PC
[X, out] = pgcale(A E G flag, trans), computer using MATLAB 7 (R14) with relative machine
[ X, out] = pgdale(A E G flag, trans,s) precisions ~ 2.22 - 1016,
that can be used for solving the projected GCALE (1) Example 1:Consider the projected GCALE (1) with
or (4) and the projected GDALE (2) or (5), respectively.
The optional input parametdrl ag is the vector with two E:V{IO?’ D(NZ?(]_ 13)} uT, sz[‘é (Is _IJ)D] u?
components characterizing the structure of the pencit- A. 3 3

Specifically, iffl ag(1) < 0, thenAE — A is in general G1y —GuD] .
form; otherwise, A\E' — A is in the generalized Schur form G=U —-DGyy DGi1D v, (19)
(6) andfl ag(1) > 0 is the number of the finite eigen- . .
values of the penci\E — A counting their multiplicities. If where N is the nilpotent Jordan block of order
flag(2) = 0, then solving the Sylvester equation (8) is G1; = diag(2, 4, 6),
required; otherwise, the solutiori and Z of (8) is known. J = diag(—107%, —2, —3 x 10%),
In this case the input matricds and A should have the form D = diag(107*%, 1, 10%),
E; Y Ay Z with £ > 0. The transformation matrice¥” and U are
E= , A=V | . .
0 Fs 0 Ay elementary reflections chosen as
Default value i | ag = [-1,0].The opt|onal input para- V= I — leeT7 e=(1,1,1,1,1, )7,
metert r ans determines the type of the projected Lyapunov 3 (20)

equation. In particulat,r ans = 0 if the projected Lyapunov
equation (1) or (2) has to be solved, andans =1 if the

solution of the projected Lyapunov equation (4) or (5) iSthe exact solution of the generalized Sylvester equatipn (8
required. Default value israns = 0. The input parameter s y — 7 — D and the exact solution of the projected
s in pgdal e is the vector with two components that giveSgCALE (1) is given in (11) withX;; = diag(10%, 1, 10~%).

the valuess(1) = s, ands(2) = s, for the projected  Figyre 1 shows the values df/Dif and «.(E, A) as

1
U=1Is— gffT7 f=@0,-1,1,-1,1,-1)7T.

GDALEs (2) and (3). functions of k. One can see that the condition numbers
The optional output parameter of the generalized Sylvester equation (8) and the projected
out = [dif, pl, pr, kappa] GCALE (1) increase ak grows, i.e., the problem tends to be

Dif = Dif(Ey, Af; Exo, As) defined in (17), the spectral ©ITOr RERR = [LX' — X{|5/|X]|, (top plot) and the relative

normspl = |P|, andpr = ||P,||> and the condition residual (bottom plot)
num_ber kappa which is equa_l to nc_(E,A) _in the IETXA+ ATXE + PTGE,||
continuous-time case ang;(E, A) in the discrete-time case RRESC = AELIAIX] )
as defined in (18). 2zl
We have also implemented the MATLAB functions where X is the computed solution of (1) an#, is the
R = pgscle(A E, C, flag, trans), computed projector onto the right deflating subspace of the

R = pgsdle(A, E, C, flag, trans, s) pencil \E' — A corresponding to the finite eigenvalues. We



1/dif
1/dif

kappa
kappa

Fig. 1. Reciprocal of the separatiah f = Dif (top) and the condition Fig. 3. Reciprocal of the separati@h f = Dif (top) and the condition
numberkappa = k.(E, A) (bottom) for the projected continuous-time number kappa = kq4(F,A) (bottom) for the projected discrete-time

Lyapunov equation. Lyapunov equation.
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Fig. 2. Relative errors (top) and relative residuals (bojtéor the projected iy 4 Relative errors (top) and relative residuals (bojtéor the projected
continuous-time Lyapunov equation. discrete-time Lyapunov eguation.

see that the relative residuals are small even for the ill- . .
conditioned problems. However, this does not imply that th n(I:J 51 = 52 = L The. exact solutlohn of the gpingrahz(fad
relative error in the computed solution remains close to zerhy vestgr eqduatlon ®) g{?ZZhD'fT e exact i%utlcin 0
when the condition number.(E, A) is large. The relative ¢ ProJecte: GD’Q‘LE ( )7kas the form (14) witki>, = 0
error in X increases as.(E, A) grows. and Xi; = diag(10%, 1, 107%).

Example 2:Consider the projected GDALE (2) with Figure 3 shows the values df/Dif and ”d_(E’A) as
functions of k. One can see that the generalized Sylvester

Is D(N3—1I3) J1 (Jo—J1)D UT equation (8) is well-conditioned for alt € [0, 2], while the

0 N3 0 Jo ’ condition number of the projected GDALE (2) grows with

E:V{
The relative erroRERR = || X — X||5/|| X || and the relative

v a=v]|

whereU, V are given in (20) and

residual
Ji = diag(1 —107%, 1/2, 0), o o e s
Jy = diag(10%, 1, 10~), aresp — WA XA = BTXE + BIGP, — @y GQr |2
D = diag(10*3’“/2 1 103k/2) (”E”% + ”A”%)HXHQ
with k& > 0. The matrixG is as in (19) with are shown in Figure 4. We see that even though the relative

residual remains small, the accuracyhis getting worse
G, =diag2 — 107%, 3/4, 107%) for the large condition numbet,(F, A).
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