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Abstract— We discuss the numerical solution of projected
generalized Lyapunov equations. Such equations arise in many
control problems for linear time-invariant descriptor systems
including stability analysis, balancing and model order reduc-
tion. We present solvers for projected generalized Lyapunov
equations based on matrix equations subroutines that are avai-
lable in the Subroutine Library In COntrol Theory (SLICOT).

I. INTRODUCTION

Consider the projected generalized continuous-time alge-
braic Lyapunov equation (GCALE)

ET XA + AT XE + PT
r GPr = 0,

X − PT
l XPl = 0,

(1)

and the projected generalized discrete-time algebraic Lya-
punov equation (GDALE)

AT XA − ET XE + s1P
T
r GPr − s2Q

T
r GQr = 0,

X − PT
l XPl − QT

l XQl = 0,
(2)

whereE, A, G ∈ R
n,n are given matrices,X ∈ R

n,n is an
unknown matrix,Pl andPr are the spectral projectors onto
the left and right deflating subspaces of the regular pencil
λE−A corresponding to the finite eigenvalues,Ql = I−Pl,
Qr = I − Pr and s1, s2 are0 or 1 with s2

1 + s2
2 6= 0. Such

equations arise in many control problems for linear time-
invariant descriptor systems

E(Dx(t)) = Ax(t) + Bu(t),
y(t) = Cx(t),

(3)

whereDx(t) = ẋ(t), t ∈ R, in the continuous-time case and
Dx(t) = xt+1, t ∈ Z, in the discrete-time case. In parti-
cular, the asymptotic stability as well as controllabilityand
observability properties of system (3) can be characterized
in terms of solutions of equations (1) and (2), see [3], [23],
[31]. Furthermore, these equations can be used to compute
the H2, Hilbert-Schmidt and Hankel norms of (3), see [25].
Finally, the projected Lyapunov equations play a fundamental
role in balanced truncation model reduction of descriptor
systems [24]. Note that in this problem it is also required
to solve the projected GCALE

EXAT + AXET + PlGPT
l = 0,

X − PrXPT
r = 0

(4)

and the projected GDALE

AXAT − EXET + s1PlGPT
l − s2QlGQT

l = 0,
X − PrXPT

r − QrXQT
r = 0,

(5)
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that are dual to (1) and (2), respectively.
In the literature also other types of generalized Lyapunov

equations have been considered that are useful in stability
analysis and optimal regulator problem for descriptor sys-
tems [11], [16], [26], [27]. However, the application of such
equations is usually limited to index one problems, whereas
the existence and uniqueness results for projected Lyapunov
equations can be stated independently of the index of the
pencil λE − A, see [21], [23].

In this paper, we discuss several solvers for projected
Lyapunov equations that are based on the generalized
Schur-Bartels-Stewart method and the generalized Schur-
Hammarling method presented in [22]. These solvers are im-
plemented using efficient matrix equations subroutines avail-
able in the SLICOT Library [4], [28]. In general, SLICOT in-
cludes Fortran implementations of numerical algorithms for
solving different system and control problems together with
standardized interfaces for MATLAB [17] and Scilab [9], see
also the SLICOT webpagehttp://www.slicot.de/.
Note that SLICOT routines often provide not only the
solution of the problem but also condition number estimates
and forward error bounds that allow the user to evaluate the
accuracy of the computed solution.

II. PROJECTED LYAPUNOV EQUATIONS

In this section, we briefly describe the Schur-Bartels-
Stewart and Schur-Hammarling methods for projected Lya-
punov equations, see [21], [22] for details.

Let the pencilλE − A be in generalized real Schur form

E = V

[
Ef Eu

0 E∞

]
UT , A = V

[
Af Au

0 A∞

]
UT , (6)

where U and V are orthogonal,Ef is upper triangular
nonsingular,E∞ is upper triangular nilpotent,Af is upper
quasi-triangular andA∞ is upper triangular nonsingular. In
this case the projectorsPl andPr can be represented as

Pl = V

[
I −Z
0 0

]
V T , Pr = U

[
I −Y
0 0

]
UT , (7)

whereY andZ satisfy the generalized Sylvester equation

EfY − ZE∞ = −Eu,
AfY − ZA∞ = −Au.

(8)

Let the matrices

UT GU =

[
G11 G12

G21 G22

]
, V T GV =

[
Ĝ11 Ĝ12

Ĝ21 Ĝ22

]
(9)



be partitioned in blocks conformally withE and A in (6)
and let

G̃11 = Ĝ11 − ZĜ21 − Ĝ12Z
T + ZĜ22Z

T ,

G̃22 = Y T G11Y + Y T G12 + G21Y + G22.
(10)

Using (6)-(10), one can show that the solutions of the
projected Lyapunov equations have the following represen-
tations:

• the projected GCALE (1) has the solution

X = V

[
X11 −X11Z

−ZT X11 ZT X11Z

]
V T , (11)

whereX11 satisfies the GCALE

ET
f X11Af + AT

f X11Ef = −G11. (12)

• the projected GCALE (4) has the solution

X = U

[
X11 0
0 0

]
UT ,

whereX11 solves the GCALE

EfX11A
T
f + AfX11E

T
f = −G̃11. (13)

• the projected GDALE (2) has the solution

X = V

[
X11 −X11Z

−ZT X11 X22 + ZT X11Z

]
V T , (14)

whereX11 andX22 satisfy the GDALEs

AT
f X11 Af − ET

f X11 Ef = −s1G11,

AT
∞X22A∞ − ET

∞X22E∞ = s2G̃22.
(15)

• the projected GDALE (5) has the solution

X = U

[
X11 + Y X22Y

T Y X22

X22Y
T X22

]
UT ,

whereX11 andX22 solve the GDALEs

Af X11 AT
f − Ef X11 ET

f = −s1G̃11,

A∞X22A
T
∞ − E∞X22E

T
∞ = s2Ĝ22.

(16)

Thus, to compute the solution of the projected Lyapunov
equation, we need to reduce the pencil to the generalized
Schur form (6) and to solve the generalized Sylvester equa-
tion (8) as well as the corresponding generalized Lyapunov
equations. To compute the generalized Schur form (6) we
can use the QZ method [8], [30] or algorithms proposed in
[2], [6], [7], [29] based on row/column compression. For
solving the generalized Sylvester equation (8) one can use
the generalized Schur method [15] or its recursive blocked
modification [12] that is more suitable for large problems.
The solutions of the generalized Lyapunov equations (12),
(13), (15) and (16) can be computed using the generalized
Bartels-Stewart method [1], [18].

In some applications, such as model order reduction, it is
required to compute the Cholesky factor of the solution of
stable projected Lyapunov equations rather than the solution
itself. The termstablemeans here that all the finite eigen-
values of the pencilλE − A have negative real part in the

continuous-time case or moduli less than one in the discrete-
time case, and the matrixG = CTC is symmetric, positive
semidefinite. The solution of such projected Lyapunov equa-
tions can be computed in the factored formX = RTR, where
R is a full row rank Cholesky factor ofX. This factor can
be determined directly without forming the productCTC and
the solutionX itself if we apply the generalized Hammarling
method [10], [18] for computing the Cholesky factorsR11

andR22 of the solutionsX11 = RT
11R11 andX22 = RT

22R22

of the corresponding generalized Lyapunov equations. Then,
for example, the Cholesky factor of the solutionX = R̂TR̂
of the projected GDALE (2) is given by

R̂ =

[
R11 −R11Z
0 R22

]
V T .

The full row rank Cholesky factorR of X = RTR can
then be computed from the QR decompositionR̂ = QR,
where Q has orthonormal columns andR is of full row
rank. The full rank Cholesky factors of the solutions of
the projected Lyapunov equations (1), (4) and (5) can be
determined similarly.

In solving matrix equations it is very important to study the
sensitivity of the problem to perturbations in the input data
and to bound errors in the computed solution. The solution
of projected Lyapunov equations is determined essentiallyin
two steps that include first a computation of the deflating
subspaces of a pencil corresponding to the finite and infinite
eigenvalues via a reduction to the generalized Schur form (6)
and solving the generalized Sylvester equation (8) and then
a calculation of the solution of the corresponding generalized
Lyapunov equations as in (12)-(16). In this case it may
happen that although the projected Lyapunov equation is
well-conditioned, one of the intermediate problems may be
ill-conditioned. This may lead to large inaccuracy in the
computed solution of the original problem. Therefore, along
with the conditioning of the projected Lyapunov equation we
should also consider the condition numbers for the deflating
subspaces.

An important quantity that measures the sensitivity of the
right and left deflating subspaces of the pencilλE−A corre-
sponding to the finite and infinite eigenvalues to perturbations
in E andA is a separation Dif= Dif(Ef , Af ;E∞, A∞) of
the pencilsλEf − Af andλE∞ − A∞ defined by

Dif = inf
‖[Y, Z]‖F =1

∥∥[EfY − ZE∞, AfY − ZA∞]
∥∥

F

= σmin(S),
(17)

see [5], [14], [20] for details. Here‖ · ‖F denotes the
Frobenius matrix norm, the matrixS has the form

S =

[
I ⊗ Ef −ET

∞ ⊗ I
I ⊗ Af −AT

∞ ⊗ I

]
,

where the symbol⊗ stands for the Kronecker product of
two matrices, andσmin(S) is the smallest singular value
of S. The reciprocal of the separation Dif(Ef , Af ;E∞, A∞)
can also be used as a condition number of the generalized
Sylvester equation (8) that measures the sensitivity of the
solution of this equation to perturbations in the data [13],



[15]. The conditioning of the deflating subspaces ofλE−A
can also be characterized by the spectral norms of the
projectorsPl andPr given by

‖Pr‖2 =
√

1 + ‖Y ‖2
2, ‖Pl‖2 =

√
1 + ‖Z‖2

2.

Thecondition numbersfor the projected GCALE (1) and the
projected GDALE (2) are defined by

κc(E,A) = 2‖E‖2‖A‖2‖Hc‖2,

κd(E,A) =
(
‖E‖2

2 + ‖A‖2
2

)
‖Hd‖2,

(18)

respectively, whereHc andHd are the solutions of (1) and
(2), respectively, withG = I. These condition numbers
measure the sensitivity of the solutions of the projected
Lyapunov equations (1) and (2) to perturbations inE, A and
G, see [21], [22]. The condition numbers for the projected
Lyapunov equations (4) and (5) can be defined similarly.

III. SOLVERS

The following MATLAB functions have been imple-
mented
[X, out] = pgcale(A, E, G, flag, trans),
[X, out] = pgdale(A, E, G, flag, trans,s)

that can be used for solving the projected GCALE (1)
or (4) and the projected GDALE (2) or (5), respectively.
The optional input parameterflag is the vector with two
components characterizing the structure of the pencilλE−A.
Specifically, if flag(1) < 0, then λE − A is in general
form; otherwise,λE − A is in the generalized Schur form
(6) andflag(1) ≥ 0 is the number of the finite eigen-
values of the pencilλE −A counting their multiplicities. If
flag(2) = 0, then solving the Sylvester equation (8) is
required; otherwise, the solutionY andZ of (8) is known.
In this case the input matricesE andA should have the form

E =

[
Ef Y
0 E∞

]
, A = V

[
Af Z
0 A∞

]
.

Default value isflag = [-1,0]. The optional input para-
metertrans determines the type of the projected Lyapunov
equation. In particular,trans = 0 if the projected Lyapunov
equation (1) or (2) has to be solved, andtrans=1 if the
solution of the projected Lyapunov equation (4) or (5) is
required. Default value istrans = 0. The input parameter
s in pgdale is the vector with two components that gives
the valuess(1) = s1 and s(2) = s2 for the projected
GDALEs (2) and (5).

The optional output parameter

out = [dif, pl, pr, kappa]

contains the estimate dif on the separation
Dif = Dif(Ef , Af ;E∞, A∞) defined in (17), the spectral
norms pl = ‖Pl‖2 and pr = ‖Pr‖2 and the condition
number kappa which is equal to κc(E,A) in the
continuous-time case andκd(E,A) in the discrete-time case
as defined in (18).

We have also implemented the MATLAB functions

R = pgscle(A, E, C, flag, trans),
R = pgsdle(A, E, C, flag, trans, s)

that can be used to compute the full rank Cholesky factorR
of the solutionX = op(R)T op(R) of the projected GCALE
(1) or (4) and the projected GDALE (2) or (5), respectively,
with G = op(C)T op(C). Here op(C) = C for equations (1)
and (2) and op(C) = CT for equations (4) and (5).

In our implementations we have used the following
MATLAB functions for solving Sylvester and Lyapunov
equations that are available in SLICOT [19]:

slgesg for the generalized Sylvester equation (8),
slgely for the GCALEs (12) and (13),
slgest for the GDALEs (15) and (16),
slgsly for the stable GCALEs (12) and (13),
slgsst for the stable GDALEs (15) and (16).

These functions call the MEX-filegenleq based on the
corresponding SLICOT Fortran routines for generalized
Sylvester and Lyapunov equations.

IV. NUMERICAL EXAMPLES

In this section we present the results of some numerical
experiments. Computations were carried out on IBM PC
computer using MATLAB 7 (R14) with relative machine
precisionε ≈ 2.22 · 10−16.

Example 1:Consider the projected GCALE (1) with

E =V

[
I3 D(N3 − I3)
0 N3

]
UT , A=V

[
J (I3 − J)D
0 I3

]
UT,

G = U

[
G11 −G11D

−DG11 DG11D

]
UT , (19)

whereN3 is the nilpotent Jordan block of order3,

G11 = diag(2, 4, 6),
J = diag(−10−k, −2, −3 × 10k),
D = diag(10−k, 1, 10k),

with k ≥ 0. The transformation matricesV and U are
elementary reflections chosen as

V = I6 −
1

3
eeT , e = (1, 1, 1, 1, 1, 1)T ,

U = I6 −
1

3
ffT , f = (1,−1, 1,−1, 1,−1)T .

(20)

The exact solution of the generalized Sylvester equation (8)
is Y = Z = D and the exact solution of the projected
GCALE (1) is given in (11) withX11 = diag(10k, 1, 10−k).

Figure 1 shows the values of1/Dif and κc(E,A) as
functions of k. One can see that the condition numbers
of the generalized Sylvester equation (8) and the projected
GCALE (1) increase ask grows, i.e., the problem tends to be
ill-conditioned for increasingk. Figure 2 presents the relative
error RERR = ‖X̂ − X‖2/‖X‖2 (top plot) and the relative
residual (bottom plot)

RRESC =
‖ET X̂A + AT X̂E + P̂T

r GP̂r‖2

2‖E‖2‖A‖2‖X‖2
,

where X̂ is the computed solution of (1) and̂Pr is the
computed projector onto the right deflating subspace of the
pencil λE − A corresponding to the finite eigenvalues. We
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Fig. 1. Reciprocal of the separationdif = Dif (top) and the condition
numberkappa = κc(E, A) (bottom) for the projected continuous-time
Lyapunov equation.
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Fig. 2. Relative errors (top) and relative residuals (bottom) for the projected
continuous-time Lyapunov equation.

see that the relative residuals are small even for the ill-
conditioned problems. However, this does not imply that the
relative error in the computed solution remains close to zero
when the condition numberκc(E,A) is large. The relative
error in X̂ increases asκc(E,A) grows.

Example 2:Consider the projected GDALE (2) with

E =V

[
I3 D(N3−I3)
0 N3

]
UT, A=V

[
J1 (J2−J1)D
0 J2

]
UT,

whereU , V are given in (20) and

J1 = diag(1 − 10−k, 1/2, 0),

J2 = diag(10k, 1, 10−k),

D = diag(10−3k/2, 1, 103k/2)

with k ≥ 0. The matrixG is as in (19) with

G11 = diag(2 − 10−k, 3/4, 10−k)
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Fig. 3. Reciprocal of the separationdif = Dif (top) and the condition
number kappa = κd(E, A) (bottom) for the projected discrete-time
Lyapunov equation.
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Fig. 4. Relative errors (top) and relative residuals (bottom) for the projected
discrete-time Lyapunov equation.

and s1 = s2 = 1. The exact solution of the generalized
Sylvester equation (8) isY =Z =D. The exact solution of
the projected GDALE (2) has the form (14) withX22 = 0
andX11 = diag(10k, 1, 10−k).

Figure 3 shows the values of1/Dif and κd(E,A) as
functions ofk. One can see that the generalized Sylvester
equation (8) is well-conditioned for allk ∈ [0, 2], while the
condition number of the projected GDALE (2) grows withk.
The relative errorRERR = ‖X̂ −X‖2/‖X‖2 and the relative
residual

RRESD =
‖AT X̂A − ET X̂E + P̂T

r GP̂r − Q̂T
r GQ̂r‖2

(‖E‖2
2 + ‖A‖2

2)‖X‖2

are shown in Figure 4. We see that even though the relative
residual remains small, the accuracy in̂X is getting worse
for the large condition numberκd(E,A).
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