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We present an extension of the positive real balanced truncation model reduction method for differential-algebraic equations
that arise in circuit simulation. This method is based on balancing the solutions of the projected generalized algebraic Riccati
equations. Important properties of this method are that passivity is preserved in the reduced-order model and that there exists
an approximation error bound. Numerical solution of the projected Riccati equations using the special structure of circuit
equations is also discussed.

1 Introduction

Consider a linear time-invariant system of differential-algebraic equations (DAEs)

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), (1)

where E, A ∈ Rn,n, B ∈ Rn,m, C ∈ Rp,n, D ∈ Rp,m, x(t) ∈ Rn is a state vector, u(t) ∈ Rm is a control input and
y(t) ∈ Rp is an output. Such systems arise frequently in circuit simulation. A modified nodal analysis (MNA) for linear RLC
circuits yields system (1) with
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Here AC , AL , AR , AV and AI are the incidence matrices describing the circuit topology, and R , L and C are the symmetric,
positive definite resistance, inductance and capacitance matrices, respectively. Linear RLC circuits are often used to model
interconnects, transmission lines and pin packages in VLSI networks. The order n of the MNA system (1) is related to the
number of circuit elements and it is usually very large. This makes the analysis and numerical simulation of circuit equations
unacceptably time consuming. Therefore, model order reduction is of great importance.

A general idea of model order reduction is to approximate the large-scale system (1) by a reduced-order model

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t), ỹ(t) = C̃ x̃(t) + D̃ u(t), (3)

where Ẽ, Ã ∈ R�,�, B̃ ∈ R�,m, C̃ ∈ Rp,�, D̃ ∈ Rp,m and � � n. It is required that the approximate model (3) captures
the input-output behavior of the original system (1) to a required accuracy and preserves essential physical properties such as
stability and passivity. These properties are important in circuit simulation and system design. Generally speaking, passivity
means that system does not produce energy via the input-output channel. System (1) is passive if and only if its transfer
function given by G(s) = C(sE −A)−1B is positive real, i.e., G is analytic in C+ = { s ∈ C : Re(s) > 0 } and the matrix
G(s) + G

T (s̄) is positive semidefinite for all s ∈ C+, see [1].

2 Positive real balanced truncation for circuit equations

Balanced truncation model reduction is based on the transformation of the dynamical system into a balanced form whose
controllability and observability Gramians are both equal to a diagonal matrix. Then a reduced-order model is determined
by the truncation of the states corresponding to small diagonal elements of the balanced Gramians. Depending on system
properties, different types of balancing may be defined. In the positive real balanced truncation method, the Gramians are
defined as stabilizing solutions of the projected generalized algebraic Riccati equations

E XÂT + ÂXET + EXCTD̂−1CXET + PlBD̂−1BTPT
l = 0, X = PrXP T

r , (4)

ET Y Â + ÂT Y E + ET Y BD̂−1BTY E + PT
r CTD̂−1CPr = 0, Y = PT

l Y Pl, (5)
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where Â = A − PlBD̂−1CPr, Pr and Pl are the spectral projectors onto the right and left deflating subspaces of the pencil
λE − A corresponding to the finite eigenvalues, D̂ = M0 + MT

0 is assumed to be nonsingular, and M0 is a constant term in
the Laurent series of the transfer function G at infinity G(s) =

∑
∞

j=−∞
Mjs

−j . For the DAE control system (1) that is not
necessarily minimal but that has the proper transfer function G, we have the following algorithm.

Algorithm 1 Positive real balanced truncation method for DAE systems.
Given a passive system G = [E, A, B, C, D] and projectors Pr, Pl, compute a reduced-order system G̃ = [Ẽ, Ã, B̃, C̃, D̃].

1. Compute the matrices M0 = C(I − Pr)(sE − A)−1B + D and D̂ = M0 + MT
0 .

2. Compute the Cholesky factors R and L of the positive real Gramians X = RRT and Y = LLT that are the stabilizing
solutions of the projected generalized Riccati equations (4) and (5), respectively.

3. Compute the singular value decomposition LT ER = [ U1, U2 ]diag(Π1, Π2)[ V1, V2 ]T , where [ U1, U2 ], [ V1, V2 ] have
orthonormal columns, Π1 = diag(π1, . . . , π�), Π2 = diag(π�+1, . . . , πr) with π1 ≥ . . . ≥ π� > π�+1 ≥ . . . ≥ πr > 0.

4. Compute [ Ẽ, Ã, B̃, C̃, D̃ ] = [ WTET, WTAT, WTB, CT, M0 ] with W = LU1Π
−1/2

1 and T = RV1Π
−1/2

1 .
Similarly to Lyapunov-based balanced truncation [2], this method can also be extended to systems with the improper

transfer function G. In this case we have, in addition, to compute the improper controllability and observability Gramians by
solving the projected generalized discrete-time Lyapunov equations.

Analogously to the standard state space case [3], one can show that the reduced-order model (3) computed by Algorithm 1
is passive, and we have the following H∞-norm error bound

‖G̃ − G‖H∞
≤ 2‖D̂−1‖‖G + MT

0 ‖H∞
‖G̃ + MT

0 ‖H∞
(π�+1 + . . . + πr),

where ‖G‖H∞
= supω∈R

‖G(iω)‖ denotes the H∞-norm of G and G̃(s) = C̃(sẼ − Ã)−1B̃ + D̃.
Since the MNA matrices in (2) satisfy ET = SES, AT = SAS and BT = S1CS, where S = diag(I,−I,−I) = ST

and S1 = diag(I,−I) = ST
1 are partitioned in accordance with A and C, respectively, we obtain that Pl = SP T

r S and
X = SY ST = SLLTST = RRT with R = SL. Then the matrix LTER = LTESL is symmetric. Thus, for circuit
equations it is enough to solve only one Riccati equation, the solution of the second one is given for free. Furthermore, instead
of the singular value decomposition (SVD) we can compute the eigenvalue decomposition LTESL = UΛUT that is less
expensive than the computation of the SVD.

To compute the solution of the projected Riccati equation (5) we can use a method based on the construction of a basis of
deflating subspaces of an extended Hamiltonian pencil

λM−N = λ

⎡
⎣ E 0 0

0 ET 0
0 0 0

⎤
⎦ −

⎡
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l D̂
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⎦ .

Note that if λ is an eigenvalue of λM−N , then −λ is also an eigenvalue of this pencil. This property is known as Hamiltonian
symmetry of the pencil. One can show that if the columns of a matrix Z = [ZT

1 , ZT
2 , ZT

3 ]T partitioned in blocks in accordance
with N , span a right deflating subspace of the pencil λM−N corresponding to the eigenvalues with negative real part, i.e.,
MZΛ− = NZ , then the stabilizing solution of the projected Riccati equation (5) is given by Y = −Z2(EZ1)

−, provided
Z1 is of full column rank. Here (EZ1)

− is a pseudoinverse of EZ1 satisfying (EZ1)
−(EZ1) = I . The deflating subspaces

of λM−N can be computed using Krylov subspace methods like Lanczos or Arnoldi procedure.
The projected Riccati equation (5) can also be solved using Newton’s method [4]. In each step of this method, the projected

generalized Lyapunov equation of the form ET ZF + FT ZE + PT
r QTQPr = 0, Z = PT

l ZPl has to be solved for Z . For this
propose we can use the generalized alternating direction implicit method [5].

Note that the solution of the large projected Riccati equation has often a low numerical rank. Such a solution can be well
approximated by a matrix of low rank. Moreover, this low-rank approximation can be constructed directly in factored form
Y ≈ L̂L̂T with L̂ ∈ Rn,k that significantly reduces the memory requirements when k � n. In this case we have to compute
the eigenvalue decomposition of the k × k matrix L̂TESL̂ only.

A major difficulty in the numerical solution of the projected Lyapunov and Riccati equations with large matrix coefficients
is that the spectral projectors Pl and Pr are required. Fortunately, the matrix coefficients (2) in the MNA circuit equations
have some special block structure. We can exploit this structure to construct the required projectors in explicit form using
a matrix chain approach presented in [6].
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