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Balanced truncation model reduction for descriptor systems

We present a generalization of a balanced truncation model reduction method for descriptor systems. This method is
closely related to the proper and improper controllability and observability Gramians and Hankel singular values that
can be computed by solving projected generalized Lyapunov equations. We demonstrate the application of balanced
truncation model reduction to the semidiscretized Stokes equation.

1. Introduction

Consider a linear time-invariant continuous-time descriptor system

E ẋ(t) = Ax(t) + B u(t), y(t) = C x(t), (1)

where E, A ∈ IRn,n, B ∈ IRn,m, C ∈ IRp,n, x(t) ∈ IRn is the state vector, u(t) ∈ IRm is the control input,
y(t) ∈ IRq is the output. We will assume that system (1) is asymptotically stable, that is, the pencil λE − A is
regular (det(λE − A) �= 0 for some λ ∈ |C) and all the finite eigenvalues of λE − A lie in the open left half-plane.
Descriptor systems arise naturally in many applications such as electrical circuit simulation and semidiscretization
of partial differential equations. The order n of such systems is typically very large, while the number m of inputs
and the number p of outputs are small compared to n.

The model order reduction problem consists in an approximation of system (1) by a reduced order system

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t), ỹ(t) = C̃ x̃(t), (2)

where Ẽ, Ã ∈ IR�,�, B̃ ∈ IR�,m and C̃ ∈ IRp,�. The order � of this system is much smaller than the order n of (1).
It is desired that the approximate system (2) is also asymptotically stable and the approximation error is small in
some sense. As a measure of the accuracy of the approximation we can use the H∞-norm of an error system given
by ‖G − G̃‖H∞ = supω∈IR ‖G(iω) − G̃(iω)‖, where G(s) = C(sE − A)−1B and G̃(s) = C̃(sẼ − Ã)−1B̃ are the
transfer functions of systems (1) and (2), respectively, and ‖ · ‖ denotes the spectral matrix norm.

There exist various model reduction approaches for standard state space systems (E = I) such as balanced
truncation, Hankel norm approximation and moment matching approximation, e.g., [1, 2]. In this paper, developing
the ideas from [7, 8], we generalize a balanced truncation model reduction method for descriptor systems. Important
properties of this method are that the asymptotic stability is preserved in the reduced order system and there is
a priori bound on the approximation error.

2. Gramians and Hankel singular values

It is well known that balanced truncation model reduction for standard state space systems is closely related to the
controllability and observability Gramians that satisfy standard Lyapunov equations [2]. These Gramians can be
generalized for descriptor systems as follows. The proper controllability Gramian Gpc and the proper observability
Gramian Gpo of the continuous-time descriptor system (1) are defined as unique symmetric, positive semidefinite
solutions of the projected generalized continuous-time Lyapunov equations

EGpcA
T + AGpcE

T = −PlBBT PT
l , Gpc = PrGpcP

T
r , (3)

ETGpoA + ATGpoE = −PT
r CT CPr, Gpo = PT

l GpoPl, (4)

where Pr and Pl denote spectral projections onto the right and left deflating subspaces of λE −A corresponding to
the finite eigenvalues, see [8]. Unlike standard state space systems, the descriptor system (1) has also the improper
controllability Gramian Gic and the improper observability Gramian Gio that are defined as unique symmetric, positive
semidefinite solutions of the projected generalized discrete-time Lyapunov equations

AGicA
T − EGicE

T = (I − Pl)BBT (I − Pl)T , PrGicP
T
r = 0, (5)

ATGioA − ETGioE = (I − Pr)T CT C(I − Pr), PT
l GioPl = 0. (6)
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The matrices GpcE
TGpoE and GicA

TGioA play the same role for descriptor systems as the product of the controllabi-
lity and observability Gramians for standard state space systems [2]. It has been shown in [8] that all the eigenvalues
of GpcE

TGpoE and GicA
TGioA are real and non-negative.

Let nf and n∞ be the dimensions of the deflating subspaces of the pencil λE−A corresponding to the finite and
infinite eigenvalues, respectively. The square roots of the nf largest eigenvalues of the matrix GpcE

TGpoE, denoted
by ςj , are called the proper Hankel singular values of system (1). The square roots of the n∞ largest eigenvalues of
the matrix GicA

TGioA, denoted by θj , are called the improper Hankel singular values of (1).
Since the proper and improper controllability and observability Gramians are symmetric and positive semide-

finite, there exist full rank factorizations Gpc = RpR
T
p , Gpo = LT

p Lp, Gic = RiR
T
i and Gio = LT

i Li, where Rp, Lp,
Ri and Li are full rank Cholesky factors. One can show that the non-zero proper Hankel singular values of the
descriptor system (1) coincide with the non-zero singular values of the matrix LpERp, while the non-zero improper
Hankel singular values of (1) are the non-zero singular values of the matrix LiARi, see [8].

3. Balanced truncation

A descriptor system (1) is called balanced if the Gramians of (1) satisfy

Gpc = Gpo =
[

Σ 0
0 0

]
and Gic = Gio =

[
0 0
0 Θ

]
,

where Σ = diag(ς1, . . . , ςnf
) and Θ = diag(θ1, . . . , θn∞). It is well known that every completely controllable, com-

pletely observable and asymptotically stable descriptor system can be transformed to a balanced form [8]. If the
descriptor system (1) has uncontrollable or/and unobservable states that, in fact, correspond to the zero proper and
improper Hankel singular values, then these states can be truncated without changing the input-output relation in
the system. Note that the number of non-zero improper Hankel singular values of (1) is the same as rank(GicA

TGioA)
which is estimated as rank(GicA

TGioA) ≤ min(νm, νp, n∞), where ν is the index of the pencil λE−A. This estimate
shows that if ν times the number m of inputs or the number p of outputs is much smaller than the dimension n∞
of the deflating subspace of λE −A corresponding to the infinite eigenvalue, then the order of the descriptor system
(1) can be reduced significantly. Moreover, taking into account the input-output energy characterization via the
proper controllability and observability Gramians, see [8], we can conclude that the truncation of the states of the
balanced descriptor system related to the small proper Hankel singular values does not change the system properties
essentially. Note that this does not hold for the improper Hankel singular values. The truncation of the states that
correspond to the small non-zero improper Hankel singular values may lead to an inaccurate approximation.

In summary, we have the following algorithm which is a generalization of the square root balanced truncation
method, e.g., [4] for the descriptor system (1).

A l g o r i t hm . Generalized Square Root Balanced Truncation (GSRBT) method.
I n p u t: [ E, A, B, C ] such that all the finite eigenvalues of λE − A have negative real part.

O u t p u t: A reduced order system [ Ẽ, Ã, B̃, C̃ ].
1. Compute the full rank Cholesky factors Rp and Lp of the proper controllability and observability Gramians

Gpc = RpR
T
p and Gpo = LT

p Lp that satisfy equations (3) and (4), respectively.
2. Compute the full rank Cholesky factors Ri and Li of the improper controllability and observability Gramians

Gic = RiR
T
i and Gio = LT

i Li that satisfy equations (5) and (6), respectively.

3. Compute the ’thin’ singular value decomposition LpERp = [ U1, U2 ]
[

Σ1 0
0 Σ2

]
[ V1, V2 ]T , where

[ U1, U2 ] and [ V1, V2 ] have orthonormal columns, Σ1 = diag(ς1, . . . , ς�f
) and Σ2 = diag(ς�f +1, . . . , ςrp)

with rp = rank(LpERp) and ς1 ≥ . . . ≥ ς�f
> ς�f +1 ≥ . . . ≥ ςrp .

4. Compute the ’thin’ singular value decomposition LiARi = U3Θ3V
T
3 , where U3 and V3 have orthonormal

columns and Θ3 = diag(θ1, . . . , θ�∞) with �∞ = rank(LiARi).
5. Compute the matrices W� = [ LT

p U1Σ
−1/2
1 , LT

i U3Θ
−1/2
3 ] and T� = [ RpV1Σ

−1/2
1 , RiV3Θ

−1/2
3 ].

6. Compute the reduced order system [ Ẽ, Ã, B̃, C̃ ] = [ WT
� ET�, WT

� AT�, WT
� B, CT� ].

The computation of the reduced order descriptor system via balanced truncation can be interpreted as the additive
decomposition of the transfer function as G(s) = Gsp(s) + P(s), where Gsp(s) = Cf (sEf −Af )−1Bf is the strictly
proper part and P(s) = C∞(sE∞ − A∞)−1B∞ is the polynomial part of G(s), and then applying the classical
continuous-time and discrete-time balanced truncation model reduction to the subsystems [ Ef , Af , Bf , Cf ] and
[ A∞, E∞, B∞, C∞ ], respectively, where Ef and A∞ are nonsingular. The reduced order system (2) has the transfer
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function G̃(s) = G̃sp(s) + P̃(s), where G̃sp(s) = C̃f (sẼf − Ãf )−1B̃f and P̃(s) = C̃∞(sẼ∞ − Ã∞)−1B̃∞ = P(s). In
this case the error system G(s)−G̃(s) = Gsp(s)−G̃sp(s) is strictly proper, and we have the following H∞-norm error
bound ‖G− G̃‖H∞ ≤ 2(ς�f+1 + . . . + ςnf

), see [2]. Moreover, we can show that the reduced order system computed
by the GSRBT method is completely controllable, completely observable, asymptotically stable and balanced.

4. Semidiscretized Stokes equation

In this section we apply the balanced truncation model reduction to the descriptor system obtained by spatial
discretization of the instationary Stokes equation that describes the flow of an incompressible fluid. Such a system
has the form (1) with

E =
[

In1 0
0 0

]
, A =

[
A11 A12

AT
12 0

]
, B =

[
B1

B2

]
, C = [ C1, C2 ], (7)

where In1 is an identity matrix of order n1, A11 ∈ IRn1,n1 is symmetric, negative definite and A12 ∈ IRn1,n2 has full
column rank, see [9] for details. Using the block structure of the matrices E and A, we obtain that

Pr =
[

Π 0
−(AT

12A12)−1AT
12A11Π 0

]
= Pl, (8)

where Π = I − A12(AT
12A12)−1AT

12 is the orthogonal projection onto KerAT
12 along ImA12.

Substituting (7) and (8) in the projected generalized continuous-time Lyapunov equations (3) and (4), we find
that the proper controllability and observability Gramians of the semidiscretized Stokes equation (1), (7) can be
computed in factored form Gpc = RpR

T
p and Gpo = LT

p Lp, where

RT
p = [ RT

1 , −RT
1 A11A12(AT

12A12)−1 ], Lp = [ L1, −L1A11A12(AT
12A12)−1 ]. (9)

Here R1 and L1 are full rank Cholesky factors of the solutions X11 = R1R
T
1 and Y11 = LT

1 L1 of the projected
continuous-time Lyapunov equations

ΠA11ΠX11 + X11ΠA11Π = −ΠB12B
T
12Π, (10)

ΠA11ΠY11 + Y11ΠA11Π = −ΠCT
12C12Π, (11)

where B12 = B1−A11A12(AT
12A12)−1B2, C12 = C1−C2(AT

12A12)−1AT
12A11. Using (7) and (9), we have LpERp = L1R1.

Thus, the proper Hankel singular values of the semidiscretized Stokes equation (1), (7) can be computed from the
singular value decomposition of the matrix L1R1.

Analogously, we obtain from the projected generalized discrete-time Lyapunov equations (5), (6) that the
improper controllability and observability Gramians of system (1), (7) have the form Gic =RiR

T
i , Gio =LT

i Li, where

Ri =
[

A12(AT
12A12)−1B2 0

(AT
12A12)−1AT

12B12 (AT
12A12)−1B2

]
, Li =

[
C2(AT

12A12)−1AT
12 C12A12(AT

12A12)−1

0 C2(AT
12A12)−1

]
. (12)

It follows from (7) and (12) that

LiARi =
[

C12A12(AT
12A12)−1B2+C2(AT

12A12)−1AT
12B1 C2(AT

12A12)−1B2

C2(AT
12A12)−1B2 0

]
∈ IR2p,2m. (13)

Hence, to determine the improper Hankel singular values of (1), (7) we have to compute the singular value decom-
position of the matrix LiARi as in (13) that has only a few columns and rows if m and p are small.

E x a m p l e . The spatial discretization of the Stokes equation on a square domain [0, 1] × [0, 1] by the finite
volume method on a uniform staggered 22 × 22 grid leads to a problem of dimension n = n1 + n2 = 1540 with
n1 = 1012 and n2 = 528. The dimensions of the deflating subspaces of the pencil λE −A corresponding to the finite
and infinite eigenvalues are nf = 484 and n∞ = 1056, respectively. In our experiments B ∈ IRn,1 and C ∈ IR1,n are
chosen at random. The computations were done on a SUN OS 5.8 workstation with machine precision ε = 2.22×1016

using MATLAB.
Figure 1 shows the 25 largest proper Hankel singular values and eigenvalues of the solutions X11 and Y11 of

equations (10) and (11), respectively, computed by the Hammarling method [3]. One can see that the eigenvalues
decay very fast and, hence, the matrices X11 and Y11 can be well approximated by matrices of low rank. Using the
low rank alternating direction implicit (LRADI) method [5, 6], we have computed the low rank Cholesky factors X,
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Figure 1: Proper Hankel singular values and eigenvalues
of the matrices X11 and Y11.
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Figure 2: Relative error plots.

Y ∈ IR1012,16 of the solutions X11 ≈ XXT and Y11 ≈ Y T Y of equations (10) and (11), respectively. The dominant
proper Hankel singular values have been approximated by the singular values of YX. The non-zero improper Hankel
singular values are θ1 = 133780.8354 and θ2 = 0.4296. We approximate the semidiscretized Stokes equation by two
models of order � = 16 (�f = 14, �∞ = 2) computed by the GSRBT method using the full rank factors Rp and Lp of
the proper Gramians as in (9) and their low rank Cholesky factors given by R̃p = [ XT , −XT A11A12(AT

12A12)−1 ]T

and L̃p = [ Y, −Y A11A12(AT
12A12)−1 ]. The absolute values of the frequency responses of the full order and reduced

order systems are not presented since they were impossible to distinguish. In Figure 2 we display the relative
errors ‖G(iω) − G̃(iω)‖/‖G(iω)‖ of the two different approximations. One can see that the both reduced order
systems approximate the original one quite well. Note that the computational costs and memory requirements for
the GSRBT method based on the LRADI iteration are much smaller than for standard implementations based on the
direct Lyapunov equation solvers, see [5, 6] for details.
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