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Model reduction based optimal control for field-flow fractionation
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We discuss the application of model order reduction to optimal control problems governed by coupled systems of the Stokes-
Brinkman and advection-diffusion equations. Such problems arise in field-flow fractionation processes for the efficient and
fast separation of particles of different size in microfluidic flows. Our approach is based on a combination of interpolatory
projection methods and POD-DEIM techniques for model reduction of the semidiscretized optimality system. Numerical
results demonstrate the properties of this approach.
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1 The optimal control problem
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Field-flow fractionation (FFF) is a family of techniques for the separation of parti-
cles and macromolecules in microfluidic flows. Asymmetric flow-field-flow frac-
tionation (AF4) is the most used variant of the FFF techniques, where the separa-
tion of particles takes place in a thin channel Ω1 with a permeable membrane Ω2

as shown in the left figure. The separation process includes three steps: injection,
focusing and elution. At the first step, the liquid is injected through the two inflow
tubes at the bottom of the channel. There is a crossflow through the membrane
and outflow at the bottom boundary Γbot. When the flow is balanced, the analyte is
injected. The goal of the focusing phase is to concentrate the analyte in a thin band
and move it in a carrier fluid towards the bottom of the channel. The separation of
the particles occurs then in the elution phase, when a parabolic flow profile is cre-
ated within the channel. The smaller particles are transported much more rapidly
along the channel and eluted earlier than the larger ones.

The flow of the incompressible fluid in the channel is described by the Stokes-Brinkman equation

ρ
∂v

∂t
− ν∆v + νχΩ2K

−1v +∇p = 0 in Ω× (0, T ),

∇ · v = 0 in Ω× (0, T ),
v(·, 0) = v0 in Ω,

v = v
(i)
in on Γ

(i)
in × (0, T ), i = 1, 2,

v = 0 on Γlat × (0, T ),
ν∇v · nΓbot − pnΓbot = 0 on Γbot × (0, T ),

(1)

where v is the velocity vector, p is the pressure, v0 is the initial velocity, Γ
(i)
in , i = 1, 2, are the inflow boundaries on the top

of the channel, v(i)
in are the inflow velocities, ρ, ν and K denote the density, the viscosity of the liquid and the permeability of

the membrane, respectively, χΩ2 is the characteristic function of the subdomain Ω2 and Ω = Ω1 ∪ Ω2.
To describe the transport of the analyte in the domain Ω1 we use the advection-diffusion equations

∂cm
∂t
−∇ ·Dm∇cm + (v − vm) · ∇cm = 0 in Ω1 × (0, T ),

cm(·, 0) = cm,0 in Ω1,
Dm∇cm · n∂Ω1

− cmv · n∂Ω1
= 0 on ∂Ω1 × (0, T ),

(2)

where cm is the concentration of the m-th analyte, m = 1, . . . ,M , Dm > 0, vm and cm,0 are the diffusion coefficient, the lift
and the initial concentration, respectively.

During the focusing phase the following optimal control problem arises:

minimize J(z,u) =
1

2
‖c(·, T )− cfoc‖20,Ω1

+
β

2

∫ T

0

‖u‖2dt,

where z = [vT , p, cT ]T with c = [c1, . . . , cM ]T satisfies the coupled system (1) and (2), u contains the control parameters
describing the inflow and cfoc = [cfoc1 , . . . , cfocM ]T is a desired concentration. This optimal control problem was investigated
in [3]. The computation of the optimal solution using, for example, gradient descent techniques requires the numerical solution
of the state equations (1) and (2) and the adjoint systems at every iterative step.
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2 Model reduction techniques
A spatial discretization of the Stokes-Brinkman equation (1) using Taylor-Hood P2/P1 finite element method leads to a linear
time-invariant descriptor system

Eẋ(t) = Ax(t) +Bu(t), y(t) = [ Inv
, 0 ]x(t) = vh(t), (3)

where x = [vT
h ,p

T
h ]T , vh ∈ Rnv and ph ∈ Rnp are the semidiscretized velocity and pressure vectors, the matrix E is

singular, but the pencil λE − A is regular. If we discretize the advection-diffusion equations (2) in space using SUPG finite
elements, we obtain the time-varying systems

Mm(vh)ċm,h(t) = Am(vh)cm,h(t), m = 1, . . . ,M, (4)

where cm,h ∈ Rncm is the semidiscretized concentration vector of the m-th analyte. Our goal is now to approximate systems
(3) and (4) and their adjoints by reduced-order models that nearly have the same behaviour as the original systems. For
model reduction of the semidiscretized Stokes-Brinkman equation (3) and its adjoint, we use the interpolatory projection
method based on the IRKA algorithm adapted for descriptor systems [2]. In order to compute a reduced-order model for the
advection-diffusion (4) and its adjoint, we apply a combination of proper orthogonal decomposition (POD) [4] and discrete
empirical interpolation (DEIM) [1].

Consider the semidiscretized advection-diffusion equation (4). Let V ∈Rncm ,` be a POD projection matrix. Then the redu-
ced-order model has the form V TMm(vh)V ˙̃c=V TAm(vh)V c̃, where an efficient evaluation of the nonlinear matrix-valued
functions V TMm(vh)V and V TAm(vh)V for different vh is required if we want to solve the reduced model numerically.

Given a general parameter-dependent matrix F (ξ) ∈ Rn×n with ξ ∈ Rn, we aim to find an approximation

F (ξ) ≈
∑k

j=1
Ujfj(ξ), where Uj ∈ Rn×n, fj(ξ) ∈ R and k is small. (5)

Then the product V TF (ξ)V is approximated by V TF (ξ)V ≈
∑k

j=1(V TUjV )fj(ξ), where the parameter-independent reduced
matrices V TUjV can be precomputed and stored, and only the evaluation of k components fj(ξ) is required. The approxi-
mation (5) can be obtained using the matrix DEIM approach as follows. For snapshots F1 =F (ξ1), . . . , Fq =F (ξq), we first

construct a symmetric matrix F = [Fij ]
q
i,j=1 with Fij = 〈Fi, Fj〉F =

√
tr(FT

j Fi). Computing the eigenvalue decompo-

sition F = [W,W0]diag(Λ,Λ0)[W,W0]T , we get the POD basis matrices Uj =
∑q

i=1 Fiwij , where wij are the entries of
WΛ−1/2∈Rq×k. The coefficient vector f(ξ)=[f1(ξ), . . . , fk(ξ)]T can then be determined as f(ξ)=(PTU)−1PT vec(F (ξ)),
where vec(F ) is a vector obtained by stacking the columns of F below one another, U = [vec(U1), . . . , vec(Uk)] ∈ Rn2×k,
P =[er1 , . . . , erk ] ∈ Rn2×k is a selector matrix computed from U using Greedy algorithm, and ej denotes the j-th column of
an identity matrix.

We now present some results of numerical experiments. The state and adjoint advection-diffusion equations of order
5305 were approximated by the POD models of order 7 and 8, respectively. We assembled 3 entries of Mm(vh) and 7
entries of Am(vh). The first two figures below show the relative error in the approximate solutions, while the third figure
demonstrates the convergence of the cost functional for the original and the reduced-order models in the gradient method.
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POD: N = 5305, l = 7

POD−DEIM: N = 5305, l = 7, k = 7
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POD: N = 5305, l = 8

POD−DEIM: N = 5305, l = 8, k = 3
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