Model Reduction of Periodic Descriptor Systems
Using Balanced Truncation

Peter Benner, Mohammad-Sahadet Hossain and Tatjana Stykel

Abstract Linear periodic descriptor systems represent a broad ofasse evo-
lutionary processes in micro-electronics and circuit $atian. In this paper, we
consider discrete-time linear periodic descriptor systamd study the concepts of
periodic reachability and observability Gramians. We als&xuss a lifted repre-
sentation of periodic descriptor systems and propose atadbtruncation model
reduction method for such systems. The behaviour of theesigd model reduction
technique is illustrated using a numerical example.

Keywords: Periodic descriptor systems, lifted state space repratent peri-
odic projected Lyapunov equations, balanced realizatimdel reduction.

1 Introduction

Linear discrete-time periodic descriptor systems haveived a lot of attention
over the last twenty years. They are suitable models forrabwatural as well as
man-made phenomena, and have applications in modelingiotiietime-varying
filters and networks [16, 21], multirate sampled-data systfl6, 18], circuit simu-
lation [3, 8, 10, 18], micro-electronics [19, 20], aerospaealm [34, 35], control of
industrial processes and communication systems [1, 20].

A linear discrete-time periodic descriptor system withahvarying dimensions
has the form

EiXir1 = A+ Bk, Yk = CiX, keZ, 1)
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whereEy € RH+1<%+1 A € RH+1%k B, € RM+1*Mk G € RP<*k are periodic
with a periodK > 1 andy K~ i = T3 ng = n. The matricesy are allowed to be
singular for allk. For system (1), a reduced-order model of dimensiarould be

a system of the form

Exfir1 = A+ Buu, Yk = Gk, keZ, (2)

whereEy € R&17Tks1, A € R¥+1XTk | B € R G e RP'k areK-periodic
matrices,yK 3 = Sk o Tk = andr < n. Apart from having a much smaller
state-space dimension, it is also important that the rettocder model preserves
physical properties of the original system such as regylatability and passivity,
and that the approximation error is small.

The dynamics of the discrete-time periodic descriptor esys(1) are often
addressed by the regularity and the eigenstructure of thiedie matrix pairs
{Ek,Ak}E;ol- If all Ex are nonsingular, the eigenvalues (also called charatiteris
multipliers) of system (1) are given by the eigenvalues efttiatrix product

Ex 1A 1E A2 By A (3)

associated with the periodic matrix pai{Ek,Ak}Ez’Ol. This product only yields
a well-defined matrix if allEx are nonsingular. Even if they are, the formulation
of that matrix should be avoided for reasons of numericdliktya Note that even
for someEy being singular, we use (3) in a formal way to denote a gerzatadin
of matrix pencils to this periodic case (see [2] for detaflthés formal matrix prod-
uct calculus). We compute the eigenvalues of (3) via the igdized periodic Schur
decomposition [11, 32].

There exist unitary matriceg € CHr1*H1 andQy € C™ ™, with Q. k = Qk
such that the transformed matrices

Nk = P; Eka+l7 Mk = P;Akaa k= 07 ey K— 1)

are all upper triangular, where for the ease of notation vasvatomplex arithmetic
(in practice, however, computations can be performed ihagdmetic leading to
quasi-triangular structure of one of thg).

Then the formal matrix product

Nt Mic-1Ng HoMk 2+~ Ng ™Mo

has the same eigenvalues as (3). The blocks on the diagdnis transformed
matricesMy andNg are used to define the eigenvalues of the periodic matrix pair
{Ex, Ao A finite eigenvalués given by

K-1 K
my
A=
Mo

ny
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providednflk) #0fork=0,...,K-1. Herem1(|k) e N(My) andnﬁk) € A(Ng), where
A denotes the eigenspectrum of the corresponding matrix.igenealue is called
infinite if [1<-& (¢ = 0, butK-2m 0.

In this paper, we briefly review some basic concepts of diseiene periodic
descriptor systems (Section 2). In Section 3, we study thieglie reachability and
observability Gramians from [6] using a lifted represeiotatA balanced truncation
model reduction method for periodic descriptor systemgésgnted in Section 4.
Section 5 contains a numerical example that illustrategtoeerties of the sug-
gested model reduction technique.

2 Periodic Descriptor Systems

Lifted representations of discrete-time periodic syst@hay an important role in
extending many theoretical results and numerical algastfor time-invariant sys-
tems to the periodic setting [4, 7, 33]. We consider here jtuticlifted represen-
tation which was introduced first for standard periodic ey in [17]. Thecyclic
lifted representatiomf the periodic descriptor system (1) is given by

E X1 = A I+ BU, =T 2k, 4)

where
&= diaQEo7 Eq,..., EK,l)7 B = diaQBo, By,..., BK,]_),

0 0 A 0 e 0 G

Ay 0 C 0 5)
o = _ |, &= _ .

0 A1 O 0 Ck_1 O

The descriptor vector, system input and output of (4) aratedl to those of (1)
via

T T

T]Ta %k:[ugau-{v"'au-lgfl] ) %:[ygay].—v"'ay-lléfl] )

2k = [X-{a"'vx-lgflvxo
respectively.

A set of periodic matrix pair$Ek,Ak}E;01 is calledregular if the pencilz&” — </
is regular, i.e., déz& — o) # 0. In this case, we can define a transfer function of
the lifted system (4) as#’(2) = € (28 — /)1 5.

The regular set of periodic matrix pail{Ek,Ak}E;Ol can be transformed into
a periodic Kronecker canonical form [6, 32]. Foe=0,1,...,K — 1, there exist
nonsingular matricedj € RH«+1*H1 andz, € R™*™ such that

WEZi1 =

| f 0 f 0
$3 Eb], WAZ = [/;k ] ©)

I 00
k Ny
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whereZx = Zy, A&+K71A&+K72---A& = Jk is an nli X nli matrix corresponding to

the finite eigenvalue€PEP, -+~ EP, «_; = N¢ is ann? x nf’ nilpotent matrix corre-

sponding to an eigenvalue at infinity, = ni +ny and e, = niﬂ +ny. The in-

dexv of the periodic descriptor system (1) is defined/as max(vp, vi,...,Vk-1),

wherevy is the nilpotency index dfl;. Note that the finite eigenvalues{ﬁk,Ak}Egol

coincide with the finite eigenvalues of the lifted persdl — 7.
Fork=0,1,...,K—1, the matrices

RO=Z| % °lzh RKg—wt | Ofw

= k = k+1

r k 0 0 k > k 0 0 )

are thespectral projectorsonto thek-th right and left deflating subspaces of the
periodic matrix pairs{Ek,Ak}Egol corresponding to the finite eigenvalues, and
Qr(k) =1 —PR (k) andQ (k) =1 — R (k) are the complementary projectors. Let for

everyk=0,1,...,K — 1, the vectoZ, x = [(x{)T, (})T]T and the matrices

WB, = m . G&=cl .
BY

be partitioned in blocks conformally to the periodic maphdrs{Ek,Ak}E;Ol in (6).
Under this transformation, system (1) can be decouplediameard and backward
periodic subsystems

f fof o of £ Aff
X1 = A Bl Ve =Gex, (7)
EPxei1 =  Xg+BRuk, YR =Cxe, (8)

respectively, withy, = YLE + yE k=0,1,...,K — 1. The state transition matrix for
the forward subsystem (7) is given Bp:(i,]) = AifflAiffz---Ajf fori> j and
@5 (i,i) = Inif. For the backward subsystem (8), the state transition restrie-
fined as®y (i, j) = EPEP,; -+ EP_; fori < j and®y(i, i) = ly=. Using these matrices
we can now define the forward and backward fundamental reata€the periodic
descriptor system (1) as

z {q’f("g”) g}vv,-, i> ],

Zi[g —%(Ei,n] ISl

These fundamental matrices play an important role in thentiefn of the reacha-
bility and observability Gramians of the periodic desaipgystem (1) that we will
consider in the next section.

Hi=
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3 Periodic Gramians and Matrix Equations

The dynamics of the periodic descriptor system (1) are aftielressed by the eigen-
structure of the periodic matrix paifEx, Ax} i o

Definition 1. The periodic matrix palrQEk,Ak} ! are said to beeriodic stable
(pd-stablg if all the finite eigenvalues o{Ek,Ak} l lie inside the unit circle.

In balanced truncation model reduction, Gramians play adumental role [15,
25, 28, 31]. For periodic descriptor system (1), the reattityaland observability
Gramians have been first introduced in [6].

Definition 2. Suppose that the periodic matrix pa{fsy, Ak} are pd-stable. For
k=0,1,...,K—1, we define theausalandnoncausal reachablhty GramiansiG
andGEcr of system (1) as

k+vK—-1

G = Z %JBJBJT%TJ" Gy = Zk LHﬂBJBJT

j=—o0

The complete reachability Gramian |Gis the sum of the causal and noncausal
Gramians, i.e.G, =G+ G fork=0,1,..., K—1.

Definition 3. For the pd-stable matrix pairfEy, Ac}k—o- andk = 0,1,...,K — 1,
the causalandnoncausal observability Gramians;Gand G{°° of system (1) are
defined as

o k-1
G = Z{L"’kaflchCjo,kfl, G0 = Z W 1CIC¥ .
= j=k=VvK

The complete observability Gramiands the sum of the causal and noncausal
Gramians, i.e.G) = G°+ G °°fork=0,1,... K- 1.

Note that the causal and noncausal Gramians corresporalfaritard and back-
ward subsystems (7) and (8), respectively.

3.1 Periodic Projected Lyapunov Equations

It has been shown in [26] that the Gramians of discrete-tim&cdptor systems
satisfy projected generalized discrete-time Lyapunowadéquos with special right-
hand sides. A similar result also holds for periodic degoripystems.

Theorem 1.[6] Consider a periodic discrete-time descriptor sysidn where the
periodic matrix palrs{Ek,Ak} are pd-stable.
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1. For k= O 1. -1, the causal reachability and observability Gramians
Heahe and {GCO} 1 are the unique symmetric, positive semidefinite so-
lutions of the prolected generalized discrete-time paddd/apunov equations
(PGDPLES)

AGY AL~ EGE1E] = —RNBBIR(KT, o
G = R(KGFR (K,

and
ALGRA— B 1GPE, 1 = —R(KTGIC PR (K),
G =R(k—1)TG°R(k—1),

respectively, where 5= Gff, GR° = G§°, E_1 =Ex_1,and R(—1) =R (K —1).

2. Fork= 0 1,...,K-1, the noncausal reachability and observability Gramians
(GRS and {G“°°} 1 are the unique symmetric, positive semidefinite solu-
tions of the PGDPLEs

AGAL —EGITE = QBB Q(K)T,
Gncr Qr( Gnchr(k)T,

and
ALGREIA— EL1GE_ = Q& (KT G Qr(K)
Gnco Ql(k 1)TGnCOQ (k 1)

respectively, where 8" = G§* , Gp°= G and Q(—1) = Q (K —1).

Numerical solution of the PGDPLEs has been considered inTle¢ method
proposed there extends the periodic Schur method [5, 2%30the generalized
Schur-Hammarling method [23] developed for periodic staddnd projected ge-
neralized Lyapunov equations, respectively. This metisdobised on an initial re-
duction of the periodic matrix pair@Ek,Ak}Egol to the generalized periodic Schur
form [11, 32] and solving the resulting generalized peridljlvester and Lyapunov
equations of (quasi)-triangular structure using the reigarblocked algorithms [9].
Due to the computational complexity, the periodic geneealiSchur-Hammarling
method is restricted to problems of small and medium sizfL2n29, 27], iterative
methods based on Smith iterations [22] have been develapgzkfiodic standard
Lyapunov equations and also for projected generalized lwyap equations. These
methods can also be extended to periodic projected Lyapeqostions by using
the lifted repsentation of these equations. Therefore, vlledvgcuss these lifted
representations in the following subsection.

3.2 Lifted Representation of Periodic Lyapunov Equations

It is known that the Gramians of standard periodic systenisfgahe lifted form of
the periodic Lyapunov equations and the solutions of thgsaténs are diagonal
matrices [12, 29].
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The following theorem describes the block structures obthiations of periodic
Lyapunov equations in lifted form and their relations to tleeresponding solutions
of PGDPLEs in Theorem 1.

Theorem 2. Consider the periodic discrete-time descriptor sys{éjrand its lifted
representatior(4), where the periodic matrix pair@Ek,Ak}Egol are pd-stable. The
causal and noncausal reachability Gramia#$" and ¥"“" satisfy the lifted pro-
jected Lyapunov equations

G AT — EGYET = —PBRB P, G = PGP (10)
(Q{gncr%T _ (gogncréﬂ— — QI %%T B@T7 @ner Qrgncrg;l',

respectively, wheré¢’, o7 and % are as in(5) and
4% =diag(GY',...,G{_1,Gf), ¥" =diag(G}¥,...,Gg"1,Gg),

2 =diagR(0),A(1).....AKK-1), 2 =1-2,

_ (11)
P, =diagR(1),....R(K-1),R(0), 2 =I-2.

Proof. We will only sketch the proof due to space limitation of thgea Using the
block structure of matrix coefficients, a straightforwacsrgputation shows that the
projected Lyapunov equation (10) is equivalent to the mkciprojected Lyapunov
equation (9). Since the periodic matrix pa{Ek,Ak}Ez’Ol are pd-stable, the pencil
z5 — o/ is regular and all its eigenvalues lie inside the unit cirdleen (10) has
a unique solution [24]. The proof f&f"°" can be treated similarly. O

For the observability Gramians, the situation becomes mbie complex. The
reason is that we do not want to destroy the block diagonatttre of the lifted
solutions and we would like to use the lifted solution to findadanced realization
of the original system.

Theorem 3. Consider the periodic discrete-time descriptor sys{éjrand its lifted
representatior{4). The causal and noncausal observability Gramigt$ and¥"c°
satisfy the lifted projected Lyapunov equations

ATGPd — TGO =—PICTC P, GO =PG4,
o Tgneoy _ @Tgncoe Q;I'%”T%QH @gnco ,@rgnw,@“

respectively, wheré” and .7 are as in(5), the projectors?}, &, 2, and 2, are
asin(11), ¢ = diag(C,...,Cxk-1,Cp) and

gco = dlag(G‘io, ce aGﬁoflv Ggo>5 gnco = diag(GTCOa ceey GQEOla GSCO)'

Proof. The proof is analogous to the previous proof of Theorem2.
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3.3 Hankel Singular Values

Let the periodic matrix pair$Ek,Ak}E;Ol be pd-stable. Then the causal and non-
causal matriceM = GF'Ey_; Gf°Ey—1 andM°® = GAf GI99A  k=0,1,..., K~

1, have real and nonnegative eigenvalues. These eigepwaieeised to define the
causal and noncausal Hankel singular values of system (1).

Definition 4. Let the set of periodic matrix pair§Ex, Ac}k—; be pd-stable. For

k=0,1,...,K—1, the square roots of the Iargeéteigenvalues of the matridg,
denoted byoy j, are called theausal Hankel singular valuemd the square roots of
the largesty eigenvalues oM}, denoted byd ;, are called th@oncausal Hankel
singular value®f the periodic descriptor system (1).

Since the causal and noncausal reachability and obsety&hiamians are sym-
metric and positive semidefinite, there exist the Choleskydrizations

Gf =RRL, GP=L{L, GI=RRI, GF°=L{L, (12)

Simple calculations show thak ; = {j(LkEx_1Rk) and6y ; = {j (L. 1AR«), where
j(.) denotes the singular values of the corresponding matrices.

4 Balanced Truncation Model Reduction

In this section, we present a generalization of a balaneetdation model reduc-
tion method to periodic descriptor systems. For a balangst@ s, the reachability
and observability Gramians are both equal to a diagonalix{a#s, 25]. Balanced
realizations for periodic descriptor system have beenidensd in [6].

Definition 5. A realization (Ey, Ax,Bk,C«) of a periodic descriptor system (1) is
calledbalancedf

5 0 0 0
of e |5 o -em=o o
wheres, = diag(akyl,...,ak nf) and@y = diag(ek‘l,...,ekynoko), k=0,1,...,K—-1.
s K

Consider the Cholesky factorizations (12) of the reacltgtahd observability
Gramians and let

LkEx- 1R = UkSkVY, L1 AR = UGV (13)

be the singular value decompositions of the matrlods,_;R¢ and Iv_k+1AkF§k for
k=0,1,...,K — 1. HereUy, Vi, Uy, Vi are orthogonal, and, and @y are diagonal.
If a realization(Ex, Ay, Bk, Ci) with pd-stable matrix pair§Ey, Ax}4 is minimal,
i.e., 2k and@ are nonsingular, then there exist nonsingular periodicioes
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-1/2 N ~—1/2 -1/2 3\ ~-1/2
So= U s Y Taabo V7, Te= RME M2, RO, M7,

such that the transformed realizati¢®! Ex Ty 1, S ATk, S Bk, CiTk) is balanced
[6]. Note that as in the case of standard state space sydtearisalancing transfor-
mation matrices for periodic discrete-time descriptoteys(1) are not unique.

Model reduction via balanced truncation is discussed vadely for standard
discrete-time periodic systems [12, 31] and also for carmairs-time descriptor sys-
tems [14, 25]. For a balanced system, truncation of stateteckto the small causal
Hankel singular values does not change system propertentaly. Unfortunately,
we can not do the same for the noncausal Hankel singularsdfuge truncate the
states that correspond to the small non-zero noncausaldtsinigular values, then
the pencil for the reduced-order system may get finite eiglei@s outside the unit
circle that will lead to additional errors in the system apgimation.

Assume that the periodic matrix pai{Ek,Ak}Egol are pd-stable. Consider the
Cholesky factorizations in (12). Let

s, 5 ...
LkEx—1R¢ = [Uk 1, Uk 2] { ot 5 J M1, Vi2l T, L1 AR = UkOV]

)

be singular value decompositionslgfE, 1 Rx andIV_kJrlAklik, where

Zk,1 = diaQak,l, R O'krf ), Zk,2 = diag(akrf . ,O'nf ),
"k 7 k41 k

with g1 > -+ > O, >0 >...20 >0, andoy = diag(ek‘l,...,ekJEo) is
’ i k41 b '
nonsingularfok=0,1,...,K —1. Then the reduced-order system can be computed

as
Ek = Sl—,r Eka+l,r7 Ak = Sl:rAka,l’v ék = Sl:r Bk; ék = Cka,I’v (14)

where e »
S [LI+1Uk+l,lZ|;+1/’l7 LIJrlUk@I; / ] € RHkt1 M1
Tir = [Rka,lzgll/Z, Iik\v/kek’l/z] € Rk,

with ry = r|£ +re. Let%z(z) be the transfer function of the reduced-order lifted sys-

tem formed from the reduced-order subsystems in (14). Treenawe the following
He,-norm error bound

~ ) o K—1
|4 — A \n, = sup [|A(€°)—#(€°)]2<2 Zotrace(zk,z), (15)
k=

we[0,271]

where||.||2 denotes the matrix spectral norm ahg, contains the truncated causal
Hankel singular values. This error bound can be obtainedasisnto the standard
state space case [13, 31].
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5 Example

We consider a periodic discrete-time descriptor systerh pit= n, = 10, m, = 2,

pk = 3, and perioK = 3 as presented in [6, Example 1]. The periodic matrix pairs
{Ex, AL are pd-stable witm{ = 8 andn® = 2 for k = 0,1,2. The norms of
the computed solutions of the periodic Lyapunov equatiomsthe corresponding
residuals, e.g.,

P = IAGEAL — EiGY 1 E{ +R(KBBIA(K)T|2

are shown in Table 1 and Table 2.

Table 1: Norms and relative residuals for the reachabilitgr@ans

k Il GE" [l [ [ G [I2 [

0 5.8182x 107 6.1727x 1012 1.3946x 10" 1.5444x 1014
1 8.2981x 10* 8.2172x 1012 1.3660x 10" 1.7508x 1014
2 7.1107x 10° 3.0961x 10712  1.4308x 10! 3.3847x 10714

Table 2: Norms and relative residuals for the observab@itgmians

k Il G&° 2 [or [RehadIP: P

0 9.7353x 10t 2.7678x 1012 1.6866x 10° 1.3372x 1015
1 1.1373x 10° 7.7003x 1014 1.7406x 10° 2.1113x 10715
2 9.6984x 10° 1.7859%x 104 1.6866x 10° 1.1626x 1015

The original lifted system has ordee= 30. Figure 1(a) shows the causal Hankel
singular values of the different subsystemsHiet 0,1,2. We see that they decay
fast, and, hence system (1) can be well approximated by aeedorder model.
We have 24 causal Hankel singular values for the origingddifsystem and the
remaining 6 are noncausal Hankel singular values which eséipe. We approxi-
mate system (1) to the tolerance £y truncating the states corresponding to the
smallest 7 causal Hankel singular values.

Figure 1(b) shows the finite eigenvalues of the original adiiced-order lifted
systems. We observe that stability is preserved for thecehorder system. In
Figure 2(a), we present the norms of the frequency respaté@s®) and./Z (€%)
of the original and reduced-order lifted systems for a festpy rang€d0, 2. We
observe nice match of the system norms.

In Figure 2(b), we display the absolute erfio”(€) — 7 ()|, and the error
bound (15). One can see that the absolute error is smalletlleserror bound.
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" Causal Hankel singular values Proper eigenvalues
10 085
® k=0 © Original
, o k=1 0.6 + Reduced
10 ° + k=2
0.4
g )
10° ¢ s 02 + o
+ > o o
. g o e O °
107 o s % 3?’ °
-0.2
s £
_ -0.4
107
-0.6
g o
1 08
07 2 3 4 5 6 7 8 0f5 0 05 1
iteration real axis
(@) (b)

Fig. 1: (a) Causal Hankel singular values of different ssbays, (b) finite eigenvalues of the
original and the reduced-order lifted systems.

Systems norms Error systems and error bounds

300 10

250 -o- Reduced - --Error bound

200}, b f ! 5 | T
£ \ 4\ it ' 5
S \ ie (Al |
= ° | i ? 2107
€ 150f1 ' id 7 5 10
[=2] i e f I =
g L] I\ 1 $ 2
b4 | Y o ¢ 3

oI A * *.\J )

kY LY
VA
50) \_/
107
G0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Frequency (rad/sec) Frequency (rad/sec)
(@) (b)

Fig. 2: (a) The frequency responses of the original and ttieaed-order lifted systems; (b) abso-
lute error and error bound.

6 Conclusion

In this paper, we have considered the reachability and vhb#ity Gramians as

well as Hankel singular values for periodic discrete-tinesatiptor systems. For
such systems, a balanced truncation model reduction méthedeen presented.
The proposed method delivers a reduced-order model the¢wes the regularity
and stability properties of the original system. A compigaiobal error bound for

the approximate system is also available.
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