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Abstract Linear periodic descriptor systems represent a broad classof time evo-
lutionary processes in micro-electronics and circuit simulation. In this paper, we
consider discrete-time linear periodic descriptor systems and study the concepts of
periodic reachability and observability Gramians. We alsodiscuss a lifted repre-
sentation of periodic descriptor systems and propose a balanced truncation model
reduction method for such systems. The behaviour of the suggested model reduction
technique is illustrated using a numerical example.

Keywords: Periodic descriptor systems, lifted state space representation, peri-
odic projected Lyapunov equations, balanced realization,model reduction.

1 Introduction

Linear discrete-time periodic descriptor systems have received a lot of attention
over the last twenty years. They are suitable models for several natural as well as
man-made phenomena, and have applications in modeling of periodic time-varying
filters and networks [16, 21], multirate sampled-data systems [16, 18], circuit simu-
lation [3, 8, 10, 18], micro-electronics [19, 20], aerospace realm [34, 35], control of
industrial processes and communication systems [1, 20].

A linear discrete-time periodic descriptor system with time-varying dimensions
has the form

Ekxk+1 = Akxk +Bkuk, yk = Ckxk, k∈ Z, (1)
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whereEk ∈ Rµk+1×nk+1, Ak ∈ Rµk+1×nk, Bk ∈ Rµk+1×mk, Ck ∈ Rpk×nk are periodic
with a periodK ≥ 1 and∑K−1

k=0 µk = ∑K−1
k=0 nk = n. The matricesEk are allowed to be

singular for allk. For system (1), a reduced-order model of dimensionr would be
a system of the form

Ẽkx̃k+1 = Ãkx̃k + B̃kuk, ỹk = C̃kx̃k, k∈ Z, (2)

whereẼk ∈ Rγk+1×rk+1, Ãk ∈ Rγk+1×rk, B̃k ∈ Rγk+1×mk, C̃k ∈ Rpk×rk areK-periodic
matrices,∑K−1

k=0 γk = ∑K−1
k=0 rk = r and r ≪ n. Apart from having a much smaller

state-space dimension, it is also important that the reduced-order model preserves
physical properties of the original system such as regularity, stability and passivity,
and that the approximation error is small.

The dynamics of the discrete-time periodic descriptor system (1) are often
addressed by the regularity and the eigenstructure of the periodic matrix pairs
{Ek,Ak}

K−1
k=0 . If all Ek are nonsingular, the eigenvalues (also called characteristic

multipliers) of system (1) are given by the eigenvalues of the matrix product

E−1
K−1AK−1E−1

K−2AK−2 · · ·E
−1
0 A0 (3)

associated with the periodic matrix pairs{Ek,Ak}
K−1
k=0 . This product only yields

a well-defined matrix if allEk are nonsingular. Even if they are, the formulation
of that matrix should be avoided for reasons of numerical stability. Note that even
for someEk being singular, we use (3) in a formal way to denote a generalization
of matrix pencils to this periodic case (see [2] for details of this formal matrix prod-
uct calculus). We compute the eigenvalues of (3) via the generalized periodic Schur
decomposition [11, 32].

There exist unitary matricesPk ∈ Cµk+1×µk+1 andQk ∈ Cnk×nk, with Qk+K = Qk

such that the transformed matrices

Nk = P∗
k EkQk+1, Mk = P∗

k AkQk, k = 0, . . . ,K−1,

are all upper triangular, where for the ease of notation we allow complex arithmetic
(in practice, however, computations can be performed in real arithmetic leading to
quasi-triangular structure of one of theMk).

Then the formal matrix product

N−1
K−1MK−1N−1

K−2MK−2 · · ·N
−1
0 M0

has the same eigenvalues as (3). The blocks on the diagonals of the transformed
matricesMk andNk are used to define the eigenvalues of the periodic matrix pairs
{Ek,Ak}

K−1
k=0 . A finite eigenvalueis given by

λl =
K−1

∏
k=0

m(k)
ll

n(k)
ll

,
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providedn(k)
ll 6= 0 for k = 0, . . . ,K −1. Herem(k)

ll ∈ Λ(Mk) andn(k)
ll ∈ Λ(Nk), where

Λ denotes the eigenspectrum of the corresponding matrix. An eigenvalue is called

infinite if ∏K−1
k=0 n(k)

ll = 0, but∏K−1
k=0 m(k)

ll 6= 0.
In this paper, we briefly review some basic concepts of discrete-time periodic

descriptor systems (Section 2). In Section 3, we study the periodic reachability and
observability Gramians from [6] using a lifted representation. A balanced truncation
model reduction method for periodic descriptor systems is presented in Section 4.
Section 5 contains a numerical example that illustrates theproperties of the sug-
gested model reduction technique.

2 Periodic Descriptor Systems

Lifted representations of discrete-time periodic systemsplay an important role in
extending many theoretical results and numerical algorithms for time-invariant sys-
tems to the periodic setting [4, 7, 33]. We consider here the cyclic lifted represen-
tation which was introduced first for standard periodic systems in [17]. Thecyclic
lifted representationof the periodic descriptor system (1) is given by

E Xk+1 = A Xk +BUk, Yk = CXk, (4)

where
E = diag(E0,E1, . . . ,EK−1), B = diag(B0,B1, . . . ,BK−1),

A =











0 · · · 0 A0

A1 0
...

...
0 AK−1 0











, C =











0 · · · 0 C0

C1 0
...

...
0 CK−1 0











.
(5)

The descriptor vector, system input and output of (4) are related to those of (1)
via

Xk = [xT
1 , . . . ,xT

K−1,x
T
0 ]T , Uk = [uT

0 ,uT
1 , . . . ,uT

K−1]
T , Yk = [yT

0 ,yT
1 , . . . ,yT

K−1]
T ,

respectively.
A set of periodic matrix pairs{Ek,Ak}

K−1
k=0 is calledregular if the pencilzE −A

is regular, i.e., det(zE −A ) 6≡ 0. In this case, we can define a transfer function of
the lifted system (4) asH (z) = C (zE −A )−1B.

The regular set of periodic matrix pairs{Ek,Ak}
K−1
k=0 can be transformed into

a periodic Kronecker canonical form [6, 32]. Fork = 0,1, . . . ,K − 1, there exist
nonsingular matricesWk ∈ Rµk+1×µk+1 andZk ∈ Rnk×nk such that

WkEkZk+1 =

[

I
nf

k+1
0

0 Eb
k

]

, WkAkZk =

[

Af
k 0

0 In∞
k

]

, (6)
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whereZK = Z0, Af
k+K−1Af

k+K−2 · · ·A
f
k = Jk is annf

k × nf
k matrix corresponding to

the finite eigenvalues,Eb
kEb

k+1 · · ·E
b
k+K−1 = Nk is ann∞

k ×n∞
k nilpotent matrix corre-

sponding to an eigenvalue at infinity,nk = nf
k + n∞

k andµk+1 = nf
k+1 + n∞

k . The in-
dexν of the periodic descriptor system (1) is defined asν = max(ν0,ν1, . . . ,νK−1),
whereνk is the nilpotency index ofNk. Note that the finite eigenvalues of{Ek,Ak}

K−1
k=0

coincide with the finite eigenvalues of the lifted pencilzE −A .
Fork = 0,1, . . . ,K −1, the matrices

Pr(k) = Zk

[

I
nf

k
0

0 0

]

Z−1
k , Pl (k) = W−1

k

[

I
nf

k+1
0

0 0

]

Wk,

are thespectral projectorsonto thek-th right and left deflating subspaces of the
periodic matrix pairs{Ek,Ak}

K−1
k=0 corresponding to the finite eigenvalues, and

Qr(k) = I −Pr(k) andQl (k) = I −Pl(k) are the complementary projectors. Let for
everyk = 0,1, . . . ,K−1, the vectorZ−1

k xk = [(xf
k)T , (xb

k)
T ]T and the matrices

WkBk =

[

Bf
k

Bb
k

]

, CkZk =
[

C f
k , Cb

k

]

,

be partitioned in blocks conformally to the periodic matrixpairs{Ek,Ak}
K−1
k=0 in (6).

Under this transformation, system (1) can be decoupled intoforward and backward
periodic subsystems

xf
k+1 = Af

kxf
k +Bf

kuk, yf
k = C f

k xf
k , (7)

Eb
kxb

k+1 = xb
k +Bb

kuk, yb
k = Cb

kxb
k, (8)

respectively, withyk = yf
k + yb

k, k = 0,1, . . . ,K −1. The state transition matrix for

the forward subsystem (7) is given byΦ f (i, j) = Af
i−1Af

i−2 · · ·A
f
j for i > j and

Φ f (i, i) = I
nf

i
. For the backward subsystem (8), the state transition matrix is de-

fined asΦb(i, j) = Eb
i Eb

i+1 · · ·E
b
j−1 for i < j andΦb(i, i) = In∞

i
. Using these matrices

we can now define the forward and backward fundamental matrices of the periodic
descriptor system (1) as

Ψi, j =















Zi

[

Φ f (i, j +1) 0
0 0

]

Wj , i > j,

Zi

[

0 0
0 −Φb(i, j)

]

Wj , i ≤ j.

These fundamental matrices play an important role in the definition of the reacha-
bility and observability Gramians of the periodic descriptor system (1) that we will
consider in the next section.
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3 Periodic Gramians and Matrix Equations

The dynamics of the periodic descriptor system (1) are oftenaddressed by the eigen-
structure of the periodic matrix pairs{Ek,Ak}

K−1
k=0 .

Definition 1. The periodic matrix pairs{Ek,Ak}
K−1
k=0 are said to beperiodic stable

(pd-stable) if all the finite eigenvalues of{Ek,Ak}
K−1
k=0 lie inside the unit circle.

In balanced truncation model reduction, Gramians play a fundamental role [15,
25, 28, 31]. For periodic descriptor system (1), the reachability and observability
Gramians have been first introduced in [6].

Definition 2. Suppose that the periodic matrix pairs{Ek,Ak}
K−1
k=0 are pd-stable. For

k = 0,1, . . . ,K −1, we define thecausalandnoncausal reachability Gramians Gcr
k

andGncr
k of system (1) as

Gcr
k =

k−1

∑
j=−∞

Ψk, jB jB
T
j ΨT

k, j , Gncr
k =

k+νK−1

∑
j=k

Ψk, jB jB
T
j ΨT

k, j .

The complete reachability Gramian Grk is the sum of the causal and noncausal
Gramians, i.e.,Gr

k = Gcr
k +Gncr

k for k = 0,1, . . . ,K −1.

Definition 3. For the pd-stable matrix pairs{Ek,Ak}
K−1
k=0 and k = 0,1, . . . ,K − 1,

the causalandnoncausal observability Gramians Gco
k andGnco

k of system (1) are
defined as

Gco
k =

∞

∑
j=k

ΨT
j ,k−1C

T
j CjΨj ,k−1, Gnco

k =
k−1

∑
j=k−νK

ΨT
j ,k−1C

T
j CjΨj ,k−1.

The complete observability Gramian Gok is the sum of the causal and noncausal
Gramians, i.e.,Go

k = Gco
k +Gnco

k for k = 0,1, . . . ,K −1.

Note that the causal and noncausal Gramians correspond to the forward and back-
ward subsystems (7) and (8), respectively.

3.1 Periodic Projected Lyapunov Equations

It has been shown in [26] that the Gramians of discrete-time descriptor systems
satisfy projected generalized discrete-time Lyapunov equations with special right-
hand sides. A similar result also holds for periodic descriptor systems.

Theorem 1. [6] Consider a periodic discrete-time descriptor system(1), where the
periodic matrix pairs{Ek,Ak}

K−1
k=0 are pd-stable.
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1. For k = 0,1, . . . ,K − 1, the causal reachability and observability Gramians
{Gcr

k }
K−1
k=0 and {Gco

k }K−1
k=0 are the unique symmetric, positive semidefinite so-

lutions of the projected generalized discrete-time periodic Lyapunov equations
(PGDPLEs)

AkG
cr
k AT

k −EkG
cr
k+1ET

k = −Pl (k)BkB
T
k Pl (k)T ,

Gcr
k = Pr(k)Gcr

k Pr(k)T ,
(9)

and
AT

k Gco
k+1Ak−ET

k−1Gco
k Ek−1 = −Pr(k)TCT

k CkPr(k),
Gco

k = Pl(k−1)TGco
k Pl (k−1),

respectively, where Gcr
K = Gcr

0 , Gco
K = Gco

0 , E−1 = EK−1, and Pl (−1) = Pl (K−1).
2. For k= 0,1, . . . ,K − 1, the noncausal reachability and observability Gramians

{Gncr
k }K−1

k=0 and{Gnco
k }K−1

k=0 are the unique symmetric, positive semidefinite solu-
tions of the PGDPLEs

AkG
ncr
k AT

k −EkG
ncr
k+1ET

k = Ql (k)BkB
T
k Ql (k)T ,

Gncr
k = Qr(k)Gncr

k Qr(k)T ,

and
AT

k Gnco
k+1Ak−ET

k−1G
nco
k Ek−1 = Qr(k)TCT

k CkQr(k)
Gnco

k = Ql (k−1)TGnco
k Ql (k−1),

respectively, where Gncr
K = Gncr

0 , Gnco
K = Gnco

0 and Ql (−1) = Ql (K−1).

Numerical solution of the PGDPLEs has been considered in [6]. The method
proposed there extends the periodic Schur method [5, 29, 30]and the generalized
Schur-Hammarling method [23] developed for periodic standard and projected ge-
neralized Lyapunov equations, respectively. This method is based on an initial re-
duction of the periodic matrix pairs{Ek,Ak}

K−1
k=0 to the generalized periodic Schur

form [11, 32] and solving the resulting generalized periodic Sylvester and Lyapunov
equations of (quasi)-triangular structure using the recursive blocked algorithms [9].
Due to the computational complexity, the periodic generalized Schur-Hammarling
method is restricted to problems of small and medium size. In[12, 29, 27], iterative
methods based on Smith iterations [22] have been developed for periodic standard
Lyapunov equations and also for projected generalized Lyapunov equations. These
methods can also be extended to periodic projected Lyapunovequations by using
the lifted repsentation of these equations. Therefore, we will discuss these lifted
representations in the following subsection.

3.2 Lifted Representation of Periodic Lyapunov Equations

It is known that the Gramians of standard periodic systems satisfy the lifted form of
the periodic Lyapunov equations and the solutions of these equations are diagonal
matrices [12, 29].
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The following theorem describes the block structures of thesolutions of periodic
Lyapunov equations in lifted form and their relations to thecorresponding solutions
of PGDPLEs in Theorem 1.

Theorem 2.Consider the periodic discrete-time descriptor system(1) and its lifted
representation(4), where the periodic matrix pairs{Ek,Ak}

K−1
k=0 are pd-stable. The

causal and noncausal reachability GramiansG cr and G ncr satisfy the lifted pro-
jected Lyapunov equations

A G
cr

A
T −E G

cr
E

T = −PlBB
T
P

T
l , G

cr = PrG
cr

P
T
r , (10)

A G
ncr

A
T −E G

ncr
E

T = Ql BB
T
Q

T
l , G

ncr = QrG
ncr

Q
T
r ,

respectively, whereE , A andB are as in(5) and

G
cr = diag(Gcr

1 , . . . ,Gcr
K−1,G

cr
0 ), G

ncr = diag(Gncr
1 , . . . ,Gncr

K−1,G
ncr
0 ),

Pl = diag(Pl (0),Pl (1), . . . ,Pl (K −1)), Ql = I −Pl ,

Pr = diag(Pr(1), . . . ,Pr(K −1),Pr(0)), Qr = I −Pr .
(11)

Proof. We will only sketch the proof due to space limitation of the paper. Using the
block structure of matrix coefficients, a straightforward computation shows that the
projected Lyapunov equation (10) is equivalent to the periodic projected Lyapunov
equation (9). Since the periodic matrix pairs{Ek,Ak}

K−1
k=0 are pd-stable, the pencil

zE −A is regular and all its eigenvalues lie inside the unit circle. Then (10) has
a unique solution [24]. The proof forG ncr can be treated similarly.⊓⊔

For the observability Gramians, the situation becomes a bitmore complex. The
reason is that we do not want to destroy the block diagonal structure of the lifted
solutions and we would like to use the lifted solution to find abalanced realization
of the original system.

Theorem 3.Consider the periodic discrete-time descriptor system(1) and its lifted
representation(4). The causal and noncausal observability GramiansG co andG nco

satisfy the lifted projected Lyapunov equations

A TG coA −E TG coE = −PT
r Ĉ T Ĉ Pr , G co = PT

l G coPl ,

A TG ncoA −E TG ncoE = QT
r Ĉ T ĈQr , G nco = QT

l G ncoQl ,

respectively, whereE andA are as in(5), the projectorsPl , Pr , Ql andQr are
as in(11), Ĉ = diag(C1, . . . ,CK−1,C0) and

G
co = diag(Gco

1 , . . . ,Gco
K−1,G

co
0 ), G

nco = diag(Gnco
1 , . . . ,Gnco

K−1,G
nco
0 ).

Proof. The proof is analogous to the previous proof of Theorem 2.⊓⊔
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3.3 Hankel Singular Values

Let the periodic matrix pairs{Ek,Ak}
K−1
k=0 be pd-stable. Then the causal and non-

causal matricesMc
k = Gcr

k ET
k−1Gco

k Ek−1 andMnc
k = Gncr

k AT
k Gnco

k+1Ak , k=0,1, . . . ,K−
1, have real and nonnegative eigenvalues. These eigenvalues are used to define the
causal and noncausal Hankel singular values of system (1).

Definition 4. Let the set of periodic matrix pairs{Ek,Ak}
K−1
k=0 be pd-stable. For

k = 0,1, . . . ,K −1, the square roots of the largestnf
k eigenvalues of the matrixMc

k,
denoted byσk, j , are called thecausal Hankel singular valuesand the square roots of
the largestn∞

k eigenvalues ofMnc
k , denoted byθk, j , are called thenoncausal Hankel

singular valuesof the periodic descriptor system (1).

Since the causal and noncausal reachability and observability Gramians are sym-
metric and positive semidefinite, there exist the Cholesky factorizations

Gcr
k = RkR

T
k , Gco

k = LT
k Lk, Gncr

k = ŘkŘ
T
k , Gnco

k = ĽT
k Ľk, (12)

Simple calculations show thatσk, j = ζ j(LkEk−1Rk) andθk, j = ζ j(Ľk+1AkŘk), where
ζ j(.) denotes the singular values of the corresponding matrices.

4 Balanced Truncation Model Reduction

In this section, we present a generalization of a balanced truncation model reduc-
tion method to periodic descriptor systems. For a balanced system, the reachability
and observability Gramians are both equal to a diagonal matrix [15, 25]. Balanced
realizations for periodic descriptor system have been considered in [6].

Definition 5. A realization (Ek,Ak,Bk,Ck) of a periodic descriptor system (1) is
calledbalancedif

Gcr
k = Gco

k =

[

Σk 0
0 0

]

, Gncr
k = Gnco

k+1 =

[

0 0
0 Θk

]

,

whereΣk = diag(σk,1, . . . ,σk,nf
k
) andΘk = diag(θk,1, . . . ,θk,n∞

k
), k = 0,1, . . . ,K−1.

Consider the Cholesky factorizations (12) of the reachability and observability
Gramians and let

LkEk−1Rk = UkΣkVT
k , Ľk+1AkŘk = ǓkΘkV̌T

k (13)

be the singular value decompositions of the matricesLkEk−1Rk and Ľk+1AkŘk for
k = 0,1, . . . ,K −1. HereUk,Vk,Ǔk,V̌k are orthogonal, andΣk andΘk are diagonal.
If a realization(Ek,Ak,Bk,Ck) with pd-stable matrix pairs{Ek,Ak}

K−1
k=0 is minimal,

i.e.,Σk andΘk are nonsingular, then there exist nonsingular periodic matrices
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Sk = [LT
k+1Uk+1Σ−1/2

k+1 , ĽT
k+1ǓkΘ

−1/2
k ], Tk = [RkVkΣ−1/2

k , ŘkV̌kΘ
−1/2
k ],

such that the transformed realization(ST
k EkTk+1,ST

k AkTk,ST
k Bk,CkTk) is balanced

[6]. Note that as in the case of standard state space systems,the balancing transfor-
mation matrices for periodic discrete-time descriptor system (1) are not unique.

Model reduction via balanced truncation is discussed very widely for standard
discrete-time periodic systems [12, 31] and also for continuous-time descriptor sys-
tems [14, 25]. For a balanced system, truncation of states related to the small causal
Hankel singular values does not change system properties essentially. Unfortunately,
we can not do the same for the noncausal Hankel singular values. If we truncate the
states that correspond to the small non-zero noncausal Hankel singular values, then
the pencil for the reduced-order system may get finite eigenvalues outside the unit
circle that will lead to additional errors in the system approximation.

Assume that the periodic matrix pairs{Ek,Ak}
K−1
k=0 are pd-stable. Consider the

Cholesky factorizations in (12). Let

LkEk−1Rk = [Uk,1,Uk,2]

[

Σk,1
Σk,2

]

[Vk,1,Vk,2]
T , Ľk+1AkŘk = ǓkΘkV̌T

k ,

be singular value decompositions ofLkEk−1Rk andĽk+1AkŘk, where

Σk,1 = diag(σk,1, . . . ,σk,r f
k
), Σk,2 = diag(σ

k,r f
k+1

, . . . ,σ
nf

k
),

with σk,1 ≥ ·· · ≥ σ
k,r f

k
> σ

k,r f
k+1

≥ . . . ≥ σ
k,nf

k
> 0, andΘk = diag(θk,1, . . . ,θk,r∞

k
) is

nonsingular fork = 0,1, . . . ,K−1. Then the reduced-order system can be computed
as

Ẽk = ST
k,rEkTk+1,r , Ãk = ST

k,rAkTk,r , B̃k = ST
k,rBk, C̃k = CkTk,r , (14)

where
Sk,r = [LT

k+1Uk+1,1Σ−1/2
k+1,1, ĽT

k+1ǓkΘ
−1/2
k ] ∈ Rµk+1,rk+1,

Tk,r = [RkVk,1Σ−1/2
k,1 , ŘkV̌kΘ

−1/2
k ] ∈ Rnk,rk,

with rk = r f
k + r∞

k . LetH̃ (z) be the transfer function of the reduced-order lifted sys-
tem formed from the reduced-order subsystems in (14). Then we have the following
H∞-norm error bound

‖H − H̃ ‖H∞ = sup
ω∈[0,2π ]

‖H (eiω )− H̃ (eiω )‖2 ≤ 2
K−1

∑
k=0

trace(Σk,2), (15)

where‖.‖2 denotes the matrix spectral norm andΣk,2 contains the truncated causal
Hankel singular values. This error bound can be obtained similarly to the standard
state space case [13, 31].
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5 Example

We consider a periodic discrete-time descriptor system with µk = nk = 10,mk = 2,
pk = 3, and periodK = 3 as presented in [6, Example 1]. The periodic matrix pairs
{Ek,Ak}

K−1
k=0 are pd-stable withnf

k = 8 andn∞
k = 2 for k = 0,1,2. The norms of

the computed solutions of the periodic Lyapunov equations and the corresponding
residuals, e.g.,

ρcr
k = ‖AkGcr

k AT
k −EkGcr

k+1ET
k +Pl(k)BkBT

k Pl (k)T‖2,

are shown in Table 1 and Table 2.

Table 1: Norms and relative residuals for the reachability Gramians

k ‖ Gcr
k ‖2 ρcr

k ‖ Gncr
k ‖2 ρncr

k

0 5.8182×102 6.1727×10−12 1.3946×101 1.5444×10−14

1 8.2981×104 8.2172×10−12 1.3660×101 1.7508×10−14

2 7.1107×103 3.0961×10−12 1.4308×101 3.3847×10−14

Table 2: Norms and relative residuals for the observabilityGramians

k ‖ Gco
k ‖2 ρco

k ‖ Gnco
k ‖2 ρnco

k

0 9.7353×101 2.7678×10−13 1.6866×100 1.3372×10−15

1 1.1373×103 7.7003×10−14 1.7406×100 2.1113×10−15

2 9.6984×100 1.7859×10−14 1.6866×100 1.1626×10−15

The original lifted system has ordern = 30. Figure 1(a) shows the causal Hankel
singular values of the different subsystems fork = 0,1,2. We see that they decay
fast, and, hence system (1) can be well approximated by a reduced-order model.
We have 24 causal Hankel singular values for the original lifted system and the
remaining 6 are noncausal Hankel singular values which are positive. We approxi-
mate system (1) to the tolerance 10−2 by truncating the states corresponding to the
smallest 7 causal Hankel singular values.

Figure 1(b) shows the finite eigenvalues of the original and reduced-order lifted
systems. We observe that stability is preserved for the reduced-order system. In
Figure 2(a), we present the norms of the frequency responsesH (eiω ) andH̃ (eiω )
of the original and reduced-order lifted systems for a frequency range[0,2π ]. We
observe nice match of the system norms.

In Figure 2(b), we display the absolute error‖H (eiω )−H̃ (eiω )‖2 and the error
bound (15). One can see that the absolute error is smaller than the error bound.
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Fig. 1: (a) Causal Hankel singular values of different subsystems, (b) finite eigenvalues of the
original and the reduced-order lifted systems.
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Fig. 2: (a) The frequency responses of the original and the reduced-order lifted systems; (b) abso-
lute error and error bound.

6 Conclusion

In this paper, we have considered the reachability and observability Gramians as
well as Hankel singular values for periodic discrete-time descriptor systems. For
such systems, a balanced truncation model reduction methodhas been presented.
The proposed method delivers a reduced-order model that preserves the regularity
and stability properties of the original system. A computable global error bound for
the approximate system is also available.
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8. Freund, R.W.: Padé-type model reduction of second-order and higher-order linear dynamical
systems. In: P. Benner, V. Mehrmann, D. Sorensen (eds.) Dimension Reduction of Large-Scale
Systems,Lecture Notes in Computational Science and Engineering, vol. 45, pp. 191–223.
Springer-Verlag, Berlin/Heidelberg, Germany (2005)
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