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Abstract— For compact locally controlled invariant subsets of
the state space, minimal data rates for achieving invariance are
characterized by the invariance entropy. In particular, for linear
control systems with bounded control range, locally invariant
sets are constructed and the associated minimal data rates are
computed.

I. INTRODUCTION

The purpose of this paper is to characterize the minimal
data rates which are necessary to render a subset Q of the
state space of a control system invariant. More precisely, let

ẋ(t) = f(x(t), u(t)), u ∈ U ,

be a finite dimensional control system in Rn with admissible
(open-loop) controls in a set U of functions defined on R
with values in Rm. We fix a subset Q of the state space
Rn where the system should remain under the action of
a controller. Often controls are generated by sending the
information about the state at a time T to a controller which
computes a time-dependent control function which is used on
a certain time interval [T, T + S] until the next information
about the state arrives. Such devices are, in particular, used
in nonlinear model-predictive control; see, e.g., Grüne [6].
If the digital communication to the controller is restricted,
symbolic controllers may be used, which only need a limited
amount of bits transferred to them per time unit in order to
generate the desired control action. In any case, the result
of all possible controller actions will be an, in general
infinite, set R of time dependent control functions. Here we
neglect the (for practical purposes dominant) question how
to encode the information on the states which is sent over the
communication channel. Instead we analyze the information
that is needed in order to determine control functions in such
a set R.

Then the main topic of this paper is the problem when
the minimal data rate (i.e. the average number of bits per
time) equals the invariance entropy introduced in [2]. In the
present paper, we require a property, which is stronger than
the standard assumption of controlled invariance. For initial
values in Q, it must be possible to steer the system into the
interior of Q, without leaving a neighborhood of Q. This
property, which we call local controlled invariance, is close
to a hypothesis in [11].

Similar problems have received some attention in the last
years; see e.g. [5], [7], [11]; the fundamental paper [11]
by Nair, Evans, Mareels, and Moran establishes a relation
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to the notion of topological entropy from the theory of
dynamical systems. In [2] we could relate minimal data
rates to the so-called strict invariance entropy which is based
on quantization of the state space. However, we can show
finiteness of strict invariance entropy only under restrictive
assumptions. The present paper instead relates minimal data
rates to invariance entropy which is finite under weak hy-
potheses. The dissertation [8] and the papers [9], [10], [1]
contain a number of further results for invariance entropy.
Hopefully, the analysis put forward here will also be useful
for understanding minimal data rates in networks of control
systems.

In section II, a precise problem formulation is given
and the notion of local controlled invariance is introduced.
Section III presents the main result on the relation between
minimal data rates and invariance entropy.

II. MINIMAL DATA RATES AND LOCAL CONTROLLED
INVARIANCE

In this section, the control problem is stated formally, and
the notion of minimal data rates for almost invariance is
introduced.

Consider a finite-dimensional control system in Rn de-
scribed by

ẋ(t) = f(x(t), u(t)), u ∈ U .

Here f : Rn × Rm → Rn is continuous and Lipschitz-
continuous with respect to the first argument. The control
functions u are in a set U of admissible control functions
defined on [0,∞) with values in Rm. We assume that unique
global solutions ϕ(t, x0, u), t ≥ 0, exist for controls u ∈ U
and initial conditions x(0) = x0 ∈ Rn. The control task will
be to keep the system in or near a given compact subset
Q ⊂ Rn which we keep fixed throughout this paper.

A standard model supposes that the information on the
state is encoded and transmitted via a digital communication
channel, then decoded and used by the controller for the
determination of a control. (For simplicity, we suppose that
the information packets are received with no delay and no
error.) Instead of analyzing in more detail the encoding and
decoding of information about the state which is used by
the controller, we concentrate on the information about the
(open-loop) controls which are employed in order to keep
the system near the set Q. A motivation is that the result
of successful data transmissions is an, in general infinite,
set of time dependent control functions keeping the system
in or near Q. Encoding of the state must result in uniquely
determined control functions, hence minimal data rates can
be related to the encoding of sets of control functions.



We use the following mathematical formalization. Let
ε > 0 and consider a set R(ε) ⊂ U of controls which
are sufficient for the control task to keep the system within
the ε-neighborhood of the set Q for all t ≥ 0, i.e., for all
x ∈ Q there is u ∈ R(ε) with dist(ϕ(t, x, u), Q) < ε for
all t ≥ 0. We want to determine which information has to
be transmitted through a digital communication channel in
order to determine a control function in such a set R(ε). Let

R(T, ε) := {u|[0,T ] | u ∈ R(ε)}

be the corresponding set of controls which are used up to
time T . It appears reasonable to assume that R(T, ε) only
contains finitely many elements, if only a finite amount of
information is received up to time T . In this case, the finitely
many elements of R(T, ε) can be encoded by symbols given
by finite sequences of 0’s and 1’s in sets

Σk := {(s0s1s2...sk−1) with si ∈ {0, 1}}, k ∈ N.

Let B(R(T, ε)) be the minimal number k such that the
controls used up to time T can be encoded by Σk. Equiva-
lently, there is an injective map from R(T, ε) to Σk; or, the
number of control functions on [0, T ] is bounded above by
2k. The number of bits determining an element of Σk are
log2(2k) = k. If up to time T we use symbols in ΣB(R(ε)),
then the data rate on the time interval [0, T ] is defined as
1
T B(R(T, ε)) and the required asymptotic data rate for R(ε)
is lim supT→∞

1
T B(R(T, ε)).

Definition 1: With the notions introduced above, the
asymptotic minimal data rate for controlled almost invariance
of Q ⊂ Rn is

Rinv(Q) := lim
ε→0

inf
R(ε)

lim sup
T→∞

1
T
B(R(T, ε)),

where the infimum is taken over all sets R(ε) ⊂ U of
controls such that for every element x in Q there is u ∈ R(ε)
with dist(ϕ(t, x, u), Q) < ε for all t ≥ 0. For brevity, we
call Rinv(Q) just the invariance data rate for Q.

The discussion of invariance entropy in [2] presupposes
that the set Q is compact and controlled invariant, i.e., for
all x ∈ Q there is an admissible control u ∈ U such that the
corresponding trajectory ϕ(t, x, u) remains in Q for t ≥ 0.
In the present context, we need the following variant of this
condition.

Definition 2: A compact set Q ⊂ Rn is locally controlled
invariant if for all ε > 0 and every x ∈ Q there are T > 0
and v ∈ U with

dist(ϕ(t, x, v), Q) < ε for t ∈ [0, T ] (1)

and
ϕ(T, x, v) ∈ intQ. (2)

Hence for initial values in Q, the system can be steered
into the interior of Q, without leaving a neighborhood of Q.

Remark 3: For control-affine systems with convex and
compact control range, local controlled invariance implies
controlled invariance, if the times T in (1), (2) are bounded
away from 0. This follows, since here a sequence of control

functions un keeping the system within distance 1
n of Q has

a cluster point and the trajectories depend continuously on
the controls (see, e.g., [3].)

The following proposition draws an immediate conse-
quence of local controlled invariance.

Proposition 4: Suppose that Q ⊂ Rn is compact and
locally controlled invariant. Then for all ε > 0 there are
δ > 0 and finitely many times T1, ..., Ts > 0 and controls
v1, ..., vs ∈ U , s = s(ε, δ), such that for every x with
dist(x,Q) ≤ δ there are Tj , vj with

dist(ϕ(t, x, vj), Q) < ε for t ∈ [0, Tj ] and ϕ(Tj , x, vj) ∈ Q.
(3)

Proof: Let ε > 0. By assumption, for every x ∈ Q
there are Tx > 0 and vx ∈ U with dist(ϕ(t, x, vx), Q) < ε
for all t ∈ [0, Tx] and ϕ(Tx, x, v) ∈ intQ. By continuous
dependence on the initial value for all y in an open neigh-
borhood one has dist(ϕ(t, y, vx), Q) < ε for all t ∈ [0, Tx]
and ϕ(Tx, y, vx) ∈ intQ. Then the compact set Q can be
covered by finitely many of these neighborhoods. Hence for
all x in a closed δ-neighborhood of Q the assertion holds.

Remark 5: It is the property obtained in Proposition 4 as
a consequence of local controlled invariance which will be
used in the rest of this paper.

III. MINIMAL DATA RATES AND INVARIANCE ENTROPY

This section shows that the invariance entropy coincides
with the invariance data rate of a compact set Q, if Q is
locally controlled invariant.

Recall the following definition of invariance entropy from
[2]; see also [8] for far reaching further results on this
concept.

Definition 6: Let Q ⊂ Rn be compact. For given T, ε > 0
we call S ⊂ U a (T, ε)-spanning set for Q, if for every x ∈ Q
there exists u ∈ S with

dist(ϕ(t, x, u), Q) < ε for all t ∈ [0, T ].

Let rinv(T, ε,Q) denote the minimal number of elements of
a (T, ε)-spanning set. Then the invariance entropy hinv(Q)
is defined by

hinv(ε,Q) := lim sup
T→∞

1
T

ln rinv(T, ε),

hinv(Q) := lim
ε↘0

hinv(ε).

Our main result is that the minimal data rate Rinv(Q) for
almost invariance of a compact locally controlled invariant
set Q coincides with its invariance entropy.

Theorem 7: Let Q be a compact set in Rn with nonvoid
interior and assume that Q is locally controlled invariant.
Then the invariance data rate Rinv(Q) of Q and the invari-
ance entropy of Q are related by

Rinv(Q) = log2 e · hinv(Q).
Proof: First we show the upper bound on Rinv(Q).

Let ε, T > 0 be given. By Proposition 4 there are δ > 0 and



finitely many times T1, ..., Ts > 0 and controls v1, ..., vs ∈
U , s = s(ε, δ), such that for every y with dist(y,Q) ≤ δ
there are Tj , vj with

dist(ϕ(t, y, vj), Q) < ε for t ∈ [0, Tj ] and ϕ(Tj , y, vj) ∈ Q.

Consider a (T, δ)-spanning set S = {u1, ..., uk} ⊂ U for Q
with minimal number k = rinv(T, δ) of elements. Thus for
every x ∈ Q there exists ui ∈ S with

dist(ϕ(t, x, ui), Q) < δ for all t ∈ [0, T ].

In particular, one has dist(ϕ(T, x, ui), Q) < δ. Next we
define ks controls wij on intervals [0, T + Tj ] by

wij(t) =
{

ui(t) for t ∈ [0, T ]
vj(t+ T ) for t ∈ (T, T + Tj ].

Since we may assume δ < ε, we see that for every x ∈ Q
there are a control wij and a time Tj with

dist(ϕ(t, x, wij), Q) < ε for t ∈ [0, T + Tj ] and
ϕ(T + Tj , x, wij) ∈ Q.

Note that the associated data rate for the set of controls wij
on the interval [0, T + minj Tj ] is, with s = s(ε, δ),

≤ 1
T + minj Tj

[log2(ks) + 1]

≤ 1
T

[log2 k + log2 s+ 1] .

Since ϕ(T+Tj , x, wij) ∈ Q we can apply one of the controls
ui to ϕ(T +Tj , x, wij) in the next time interval [T +Tj , T +
Tj + T ]. We extend the controls wij to [0,∞) by taking all
the possible combinations of the ui and the vj (naturally,
these extensions are, in general, not periodic) and obtain a
set R0(ε) ⊂ U of controls such that for every element x in
Q there is u ∈ R0(ε) with dist(ϕ(t, x, u), Q) < ε for all
t ≥ 0.

A rough estimate for the number of controls on an interval
[0, S] with S = mT is

≤ (ks)m = [rinv(T, δ)s(ε, δ)]m .

Hence the associated data rate satisfies

1
S
B(R0(S, ε)) ≤ 1

mT
[log2 rinv(T, δ)m + log2 s(ε, δ)

m]

=
1
T

log2 rinv(T, δ) +
1
T

log2 s(ε, δ).

Note that the number s(ε, δ) does not depend on T . Hence
for every l ∈ N one finds Tl > 0 such that for all T > Tl
one has

1
T

log2 rinv(T, δ) +
1
T

log2 s(ε, δ)

<
1
T

log2 rinv(T, δ) +
1
l
.

We find that

lim sup
S→∞

1
S
B(R0(S, ε))

≤ lim sup
T→∞

1
T

log2 rinv(T, δ)

= log2 e · lim sup
T→∞

1
T

ln rinv(T, δ).

Taking (i) the infimum over all sets R(ε) of controls such
that for every element x in Q there is a control with
dist(ϕ(t, x, u), Q) < ε for all t ≥ 0; then (ii) the limit for
δ → 0, and, finally, taking (iii) the limit for ε → 0, we
conclude.

Rinv(Q) = lim
ε→0

inf
R(ε)

lim sup
T→∞

1
T
B(R(T, ε))

≤ log2 e · lim
δ→0

lim sup
T→∞

1
T

ln rinv(T, δ)

= log2 e · lim
δ→0

hinv(δ,Q)

= log2 e · hinv(Q).

For the converse inequality, we again fix ε > 0 and sup-
pose that we have a set R(ε) of controls such that for every
element x in Q there is u ∈ R(ε) with dist(ϕ(t, x, u), Q) <
ε for all t ≥ 0. This immediately implies that for T > 0
the set R(T, ε) := {u|[0,T ] | u ∈ R(ε)} is (T, ε)-spanning
for Q. If R(T, ε) can be encoded by Σk with minimal
k = B(R(T, ε)), then the number l of controls in R(T, ε) is
equal to or less than 2k. Hence one finds for the associated
data rate

1
T
B(R(T, ε)) ≥ 1

T
log2 l

≥ 1
T

log2 rinv(T, ε)

= log2 e ·
1
T

ln rinv(T, ε).

Taking the limit superior for T → ∞, the infimum over all
sets R(ε) of controls such that for every element x in Q
there is a control with dist(ϕ(t, x, u), Q) < ε for all t ≥ 0
and, finally, taking the limit for ε→ 0, we conclude

Rinv(Q) ≥ log2 e · hinv(Q).

Remark 8: Theorem 7 shows in particular, that the min-
imal data rate Rinv(Q) remains invariant under topological
conjugation of the state space; see [2, Theorem 3.5].

Next we discuss as an example minimal data rates for
linear control systems. Recall (see e.g. [3]) that a subset
D ⊂ Rn with nonvoid interior is a control set if it is a
maximal set such that for all x ∈ D one has D ⊂ clO+(x),
where O+(x) := {y ∈ Rn, there are u ∈ U and t > 0 with
ϕ(t, x, u) = y} is the reachable set from x ∈ Rn.

Consider linear control systems given by

ẋ = Ax+Bu with u(t) ∈ U, (4)



where A ∈ Rn×n, B ∈ Rn×m, and the control range U ⊂
Rm is compact and convex and contains the origin in its
interior. If the reachability rank condition

rank[B,AB, ..., An−1] = n (5)

holds, then there exists a unique control set D with nonvoid
interior, and D is bounded iff A is hyperbolic, i.e., A has
no eigenvalue with vanishing real part (see [4]). The closure
clD and the interior intD of D are controlled invariant and
clD equals the closure of intD. The next proposition shows,
how to construct locally controlled invariant sets from control
sets.

Proposition 9: Consider linear control systems (4) with
control ranges Uρ := ρ · U, ρ > 0. Assume that A is
hyperbolic and that the reachability rank condition (5) holds,
and denote the corresponding control sets by Dρ. Then for
every ρ ∈ (0, 1) the closure of the control set Dρ is locally
controlled invariant for the system with control range U .

Proof: Since, for every ρ > 0 the closure clDρ is
controlled invariant for the system with control range Uρ ⊂
U , it is also controlled invariant for each system with control
range Uρ

′
with ρ′ > ρ.

The reachability rank condition implies that the linear and
continuous map

u 7→ ϕ(T, x, u) : L∞([0, T ],Rm)→ Rn

is surjective. Let

Uρ
′

:= {u ∈ L∞([0, T ],Rm) | u(t) ∈ Uρ
′

for t ∈ [0, T ]}.

Then Uρ ⊂ intUρ′
and the open mapping theorem implies

that the corresponding reachable sets at time T > 0

Oρ
′,+
T (x) := {y ∈ Rn, there is u ∈ Uρ

′
with ϕ(T, x, u) = y}

satisfy Oρ,+T (x) ⊂ intOρ
′,+
T (x). Similarly, one sees that

Oρ,−T (x) ⊂ intOρ
′,−
T (x), where

Oρ
′,−
T (x) := {y ∈ Rn, there is u ∈ Uρ

′
with ϕ(T, y, u) = x}.

If x ∈ intDρ one finds a control u ∈ Uρ with ϕ(T, x, u) ∈
Dρ. Let x ∈ clDρ. Then there are xn ∈ intDρ and un ∈ Uρ
with xn → x and ϕ(T, xn, un) ∈ Dρ and ϕ(T, xn, un) →
ϕ(T, x, u) and it follows that

ϕ(T, x, u) ∈ clDρ ∩ Oρ,+(x) ⊂ cl intDρ ∩ intOρ
′
(x).

Thus one finds a control v ∈ Uρ′ ⊂ U1 = U with
ϕ(T, x, v) ∈ intDρ. By choosing ρ′ − ρ > 0 small enough,
one sees that x can be steered into intDρ without leaving
an ε-neighborhood of clDρ.

Remark 10: The construction of locally controlled invari-
ant sets in Proposition 9 can be generalized to control-affine
systems with compact and convex control range, provided
that the so-called ρ-inner pair condition holds; see [3, Lemma
4.7.3 and Proposition 4.5.17].

The following example illustrates the preceding results.
Example.(
ẋ
ẏ

)
=
(

5 0
0 −1

)(
x
y

)
+
(

1
1

)
u(t), u(t) ∈ U,

with U = [−1, 1]. The solutions are(
x(t)
y(t)

)
=
(

e5tx0

e−ty0

)
+
∫ t

0

u(s)
(
e5(t−s)

es−t

)
ds.

There is a unique control set Dρ with nonvoid interior,

Dρ = (−ρ
5
,
ρ

5
ρ)× [−ρ, ρ]

and
hinv(clDρ) = 1.

By Proposition 9 the sets clDρ are locally controlled invari-
ant for the systems with control range ρ ·U with ρ ∈ (0, 1).
Hence, according to Theorem 7, the minimal data rates
Rinv(clDρ1) for these systems are equal to 5 log2 e.
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