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Abstract— We present a passivity-preserving balanced trun- circuit topology, and® , L andC are resistance, inductance

cation model reduction method for circuit equations (PABTEC).  and capacitance matrices, respectively. We will assumie tha
This method is based on balancing the solutions of the projeed

Lure equations and admit computable error bounds. We « the matrixA, has full column rank;

show how the topological structure of circuit equations can o the matrix[ A, A,, Az, Ay] has full row rank;

be exploited to reduce the computational complexity of the « the matricesg , L, ¢ are symmetric, positive definite.

presented model reduction method. The first two conditions mean that the circuit does not contai
I. INTRODUCTION loops of voltage sources and cutsets of current sourceseThe

With decreasing structural size and increasing complexigmd_itions together with positive definitengss of the felmme
of modern integrated circuits, there is a growing deman atrices guarantee that the penki — A is regulgr, €.,
for new modelling techniques and simulation algorithms fofiet(/\E — A) # 0. Moreover, system (1), (_2) BaSSIVE1.€.,
circuit design that make use of the structure and propesties 't 40€S not generate energy, almtlpropa_L l.e., its transfer
the underlying problem. The numerical treatment of compleftnction G(s) = C(sE _TA)_ B satisfies the symmetry
circuit models containing hundreds of millions of equation relation G(S) = SextG(s)" Sexe With an gxtgrnal glgnature
tﬁFXt = diag(/,,, —I,,), see [1]. Passivity is an important

and variables is extremely expensive with respect to bo ey - , .

computing time and memory requirements. Therefore, thRyStem property in C|rCU|t(_jeS|gn._It IS well "“OWF‘ n netkor

reduction of model complexity or model order reduction iéheor_y [2] that s_ystem 1)is passive i af_‘d only |f_|ts_ tragrst

of great importance. functlor_1 G positive realmeaning thaiG |sT a_na_lytlc in _the
Electronic circuits often contain large linear RLC suboPen “9“_‘ half-planeC.. and G(s) + G (3) is positive

networks that consist of resistors, inductors and capaacitosem'def'n'te for alls € C,. . )

only. Such subnetworks are used to model interconnects,A general idea of model reduction is to approximate the

transmission lines and pin packages. Using a modified nod@f9¢-scale system (1) by a reduced-order model

analysis (MNA), linear RLC circuits can be modelled by Eg(t) _ E%(t) +§u(t)
a linear system of differential-algebraic equations (DAES i) = 5%5) ’ (3)
Ex(t) = Axz(t)+ Bu(t), ~ ~ ~ ~
y8 _ C:r%t%, © (1) whereE, A € R%, B e RA™, C e R™ andl < n. It is

required that the approximate system (3) captures the-nput

where ] output behavior of (1) to a required accuracy and preserves
A.cAT 0 0 passivity and reciprocity.
E = 0 L 0, For linear systems, a variety of passivity-preserving meth
0 0 0 ods exist. These are interpolation-based methods like PRIM
- [3], SPRIM [4] and spectral zero interpolation [5], [6] and
—A, R A —-A, -A, also balancing-related methods [7], [8], [9], [10]. Intels-
A= AT 0 0 |, (2)  tory model reduction methods are closely related to rationa
AT 0 0 Krylov subspace methods. Despite the successful applicati
- v of these methods in circuit simulation, they provide good
—Az 0 local approximations only and so far, there exist no global
B = 0 0|=c". error bounds. Another drawback of Krylov subspace methods
. O I is the ad hoc choice of interpolation points that strongly

Here A, e R, A, e R A, e R, A, eRmnene  influence the approximation quality. Recently, an optimal

and A; € R™ "™ are incidence matrices describing thepoint selection strategy based on tangential interpoiatio
has been developed [11], [12] that provides an optifiial
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computing the reduced-order model. Besides preservafionwhere A = A — BC, P, and P, are the spectral projectors

passivity and reciprocity, the PABTEC method provides alsonto the right and left deflating subspaces of the pencil

computable error bounds. AE — A corresponding to the finite eigenvalues and
Throughout the papeR™™ denotes the space af x m .o . PN

real matrices. The open right half-plane is denote@hyand Mo = 51320 Gls)=T-2 sli{lolo ClsE = A)7'B.

j is the imaginary unit. The matrMT denotes the transpose For the passive MNA System (1), (2) these equations are

of A. An identity matrix of ordern is denoted byl, or gglvable for X € R™", K, € R*»™, J. € R™™ and

simply by I. We denote bym(A) andker(A) the image and y ¢ R K, € R™7, J, € R™™, respectively, see [13].

the kernel of the matrix4, respectively. A matrixz € R™*  Moreover, there exist the extremal solutions that satisfy

is called a basis matrix for a subspagecC R™ if Z has

full column rank andm(Z) = Z. A matrix Z’ € R*" % is 0< Xmin £ X < Ximax, 0= Yinin €Y < Yinax

called a complementgry maFrix wif (Z, Z']is ngnsingular. for all symmetric solutionsY andY of (4) and (5), respec-
Further, for symmetric matrice¥” andY’, we write X >V tively. The minimal solutionsX,,;, and Yy, are called the

(X >Y)if X -V is positive definite (semidefinite). bounded real controllabilityand observability Gramianof
Il. PASSIVITY-PRESERVING BALANCED th? Mr‘]’ebgus'”j‘”jfoml‘ef SYSteG . Hod we d
TRUNCATION n the bounded real balanced truncation method, we de-

termine the Cholesky facto®® and L of X,,;, = RR” and

In this SeCtion, we describe the PABTEC method thaymin — LLT' respective'y, and Compute the Singu'ar value
is based on bounded real balanced truncation applied gcomposition

a Moebius-transformed system.
For a square transfer functiad with det(I + G(s)) # 0, LYER = [Uy, Uy] [Hl I ] [Va, Vo7,
a Moebius transformatioris defined as 2

é( ) = M(G)(s) = (I e )) (I—|— G ))_1 where the matrice§/;, U] and [V, V] have orthonormal

columns,
One can show thaG is positive real if and only if the I, =diagmIi,,...,m1;,),
Moebius-transformed functio6 is bounded real, i.e is I, = diag(m, 11 e mody)
o A AT . Tt T
analytic inC andl — G(s)G (3) is positive semidefinite | .. M > ...> 7 > w1 > ... > m,. The valuesr;

for all s € C.., see [2]. are called thecharacteristic valuef G. A reduced-order

i — -1 ~
For the transfer functio=(s) = C(sE — A)™" B of the model forG can be computed by projection onto the left and

pa§siv_e system (1), we fir_st dete_rmin%(s) = M(G)(s) right subspaces corresponding to the dominant charaateris
which is bounded real. This function can be represented 83 a5 \We obtaire (s) = Gy (sEy — A,) 1B, + I with

G(s) = C(sE — A)"'B + I with
) A ) ) . [1 o0 i _[wra-sor o
E=E, A=A-BC, B=-V2B=-C". E-=1y ol r= 0 Ik

Then using the bounded real balanced truncation method [8], ~ —2WTB
[10], G(s) can be approximated by a bounded real function T Boo

:| ) ér = [ﬁCT, Coo] )
G,(s) = CT(SET—AT)713T+I of lower dimension. Finally,

a back transformation whereW = LU, II; "/, T = RV,II; */?, and the matrices
. . R ) . B, andC,, are chosen such that — My = Coc Bso.
G(s) = M YG,)(s) = (I — Gr(s)) (I + G, (s)) Using the structure of circuit equations, the model reduc-

o " . . tion procedure presented above can be made more efficient
will gives the positive real function that can be realized 31d accurate. Since the MNA matrices in (2) satisf
G(s) = C(sE — A)~1 B with ' y

ET = Sint E Sint, AT = Sint A Sint, BT = Sext C Sint,

~ ~ ~ . 1. 4 - 2 4 ~ 2 A
E=E, A=A, -2BC., B:—gBT, o= gcr. where
. . . Sint = diannna _I"L 3 _Inv)v
Consider the dual projected Lur'e equations Sext = diagLy, —In,)
EXA"+ AXE"+2PBB"Pl'= 2K K[, we find thatP; = Sin, PT Sine and
EXCT - PpBM! = -K_J', (4)

Ymin = Sint Xmin Sint = SintRRTSi:Zth = LLT
JJi =1-MMy,  X=PXP], . o . .
Thus, for the linear circuit equations (1), (2), it is enough
and to compute only one projector and solve only one projected
ETY A+ ATYE + 2PTCTOP, = —2KTK, Lure equatl?n. Anot.her prOjgctor and also the solution of
- T .’ the dual Lur'e equation are given .for free. Fu_rthermore, we
—E'YB+ P/ C"My = -2K, J,, (5)  can show thal.” ER = RT S, ER is symmetric. Then the

Jrj, =1—-MIM,, Y =P'YP, characteristic values; can be computed from an eigenvalue



Algorithm 1. Passivity-preserving balanced truncation foprojector P, onto the right deflating subspace of the pencil
electrical circuits (PABTEC). A\E—(A—BC) corresponding to the finite eigenvalues along
Given passivé&s = (£, A, B, C'), compute a reduced-order the right deflating subspace corresponding to the eigeavalu

modelG = (E, A, B, C). at infinity are given by
1) Compute the Cholesky factdt of the minimal solu- - S S
tion Xmin = RRT of the projected Lur’e equation (4). My = 1=2A1 ZH, 7" A; 247 ZH, 27 A, 8)
2) Compute the eigenvalue decomposition | —2A0ZHy'ZTA; —I+2A7ZHy ZTA, |
A _
RTSiwER = [Uy, Us] [ ! AQ] Vi, Vo7, Hs(H4Hy — I) HsH4 A, Hg 0
P.= 0 Hg 0|, (9)
where[U, Us] and[V1, V2] have orthonormal columns, —AT(H4H, — 1) —-ATH,A.Hg O
Ay =diagAr, .- Mgy ), As = diagAe 1, -5 Ay )- o
3) Compute the eigenvalue decomposition where
_ 7T 1T T T
(I — Mo)Sext = UpAoUg . s i A
. . H=Z_ AL AZ _ .
whereU, is orthogonal and\, = diag Ay, ..., Am). ' eRIVT L LRty
Hy = AR AT + A, AT + A, AT
4) Compute the reduced-order system 2= A R o T vy 1 ,p
E: [I O:| +ALL ALZFRI'VHl ZcxI'VALL AL?
0 0}’ Hy=ZTHyZ, (10)
il [ 2WTAT V2WTBC Hy=Z.H;'ZT,
== ) _ -1
2 _\/EBOOCT 2I—BOOCOO (6) H5:ZCRI“VH1 IZZ;{IFI/ALL A?—I,
T —1 _
B= { ;;V Bi/i] ’ He=1— L AlZ.q,H, 1Z£(I'VAL’
—Boo/ Z = ZFZﬂI(I’I/ff’
C = [CT, Coo/\/i}, Z. is a basis matrix forker(A”),
where Zy1v_c is @ basis matrix foker([ Ay, Az, Ay |7 Z.),
Boo = So|Ao| 2UY Sext,  Coo = Uy|Ag|*/?, Zy 1y is @ complementary matrix @y zy ¢,
W = S RU,|AL|7Y/2, T = RU,S:|AL|~Y/2, Zog7v IS a basis matrix foker([ A., Ag, Az, Ay ]7T).
S = diaQsign(S\l), o ,sigr’(f\m)), Proof: It has been shown in [13] that
|Ao| = diag(| A1, .- -, [Aml), My =1+ BYA;'B,
Sy = diag(sign(A1), ..., sign(A; ) with
A =diag|M1|, ..., | Ae ]). _
|As| = diag(|A ... [Ag ]) AR AT - A AT A, —A,
Ay = AT 0 0 |,
T _
decomposition ofR” S, ER instead of a more expensive A OA'V 0 1
singular value decomposition. Finally, using the symmetry By — /2 OI 0
of (I — Mp)Sext, We can determind3,, and C, from the 0= 0 I ’
eigenvalue decomposition ¢f — M) Sext. We summarize
the PABTEC method in Algorithm 1. Let
One can show the reduced-order model computed by X1 Xio 1 .
the PABTEC method preserves not only passivity but also Xo1 Xoof = 5 Ay By.
reciprocity. Moreover, we have the following error bound Xa1 Xso

I+ Gl (Trs1+ ...+ ) @)
=1+ Gl (mrg1 + -+ 7g)

provided ||/ + G|u_ (7r41 + ... + 1) < 1, see [10] for
details.

Then the matrices(;; satisfy the equations

||é - G”Hoo < 1 1,47 T
(Ag R Ay +A7AT) X1+ A Xor + Ay X3y = Az, (11)
-ATXx; =0, (12)

—ATX1 + X5 =0, (13
Ill. TOPOLOGICAL ANALYSIS v 13)

Using the topological structure of circuit equations, th&nd
matrix Mo_and_the projecto_PT can be computed in explicit (A R~ Az £ ALAT) X o+ AcXop + Ay Xa2 =0, (14)
form as given in the following theorem. T

Theorem 1:Let E, A, B andC be as in (2). Then the —A: X2 =0, (19)
matrix My = I — 2 lim C(sE — A+ BC)"'B and the ~AT X5+ X350 =1. (16)

5—00



SubstitutingXs; from (13) in (11), we obtain
(AR AL + A, AT + A AT X)) + AcXor = Az (17)

(10) coincide with those in [13], where the representation
(9) for the projectorP,. has been proved. [ ]
Note that the matricegi; in (10) are more efficient to

Furthermore, it follows from equation (12) that columns ofompute than those presented in [13]. Inde&d, and H;

X11 belong toker(A”) = im(Z.), i.e., X11 = Z:Y; for
some matrixY;. SubstitutingX;; in (17) and multiplying
this equation from the left byz”, we get

72X A, R TAL + A AT + A AT Z Y =

LetYs = Zyzv_cY11 + Z, Y1». Then a multiplication
of (18) from the left by(Z! R TV — C) yields HyYy2 = ZT Az
with Hy and Z as in (10). SinceH is nonsingular, we have

X1 = ZCZRIV—CYII + ZH(;lzTAIa
X3y = AY(Z Zyzo— Y + ZHy 2T A7)
= ATZH, ' ZT A;.

ZT A7 (18)

RI‘V c

Analogously, we find from equations (14)—(16) that
X1g = Zc Znzv—cYar — ZHy ' ZT Ay,
Xso=1-ATZH;'ZT A,

with some matrixys;. Finally, substituting the matriceX; 1,

X31, Xio andX32 in

I-2AY Xy,

—2X3;

—2A§X12

My=TI+BlA;'B, = I 2%,

and taking into account that?Z.Z, 7, .= 0, we obtain
the expression (8) foi.
In order to prove (9), we first show that

Z H 1ZT QCRIVHl_l Z*;(Iq/v

CRIV CRIV

where
Hl PC)(I'I/PN(IV + QC&I'VA L ATQCKI’I/’
Qcxzv IS a projector ontoker([ Ao, Ag, Az, Ay ]7T),
PCRI“V =1- Q(‘ﬂ{zﬂ/-

Sinceim(Zexzv) = im(Qexzv), the prOJectorQCKIV can
be represented a@.x7» = ZCMVZ with 27 Zexry = 1.
Then

I=2"Zeyzv = ZTﬁ71H1Q
- ZTH Qc&zv ZCKI’I/
=ZTa ' 22T H,Z

CRIV
Hence, (Z% ;, H\Z,7,)"t = ZTH;'Z. On the other

hand, we have
(Zg;(Iq/EIIZM{Iﬂ/)_
Thus,

Z

VA

CRIV T CRIV

CRIV*

—1 _ _
b= (Zg;{IVALL AZZCRIV) t= Hl !

1
H'Z% 1ZCTKIV

CRIV

=Z
=Z

(Z(&IVHIZCKIV)
ZTH lz77

CRIV
-1
= QCKI’I/ QC&I’V
Analogously, we can show thaf. H; 17T = Q.H;'QT,

where H; = A.cAT + QTHQQ( and Q( is a projector
onto ker(AZ). Thus the matricedl,, H,4, Hs and Hg in

CRIV CRIV

cRIV

have smaller dimension and they are often much better con-
ditioned thanH; andHs used in [13]. The basis matricés
andZ., 7, can be computed by analyzing the corresponding
subgraphs of the given network graph as described in [14].
For example, the matri¥,. can be constructed in the form

1y,

ZC:HC 1 )
k

(s

where 1, = [1,...,1]7 € R¥, i = 1,...,s, and II. is

a permutation matrix, by searching the components of con-
nectivity [15] in the C-subgraph consisting of the capaeiti
branches only. As a consequence, the nonzero columns of
ZT[Ag, Az, Ay] form an incidence matrix, and, hence,
Zy1v—c Can also be determined from the associated graph
as described above. In this case, the complementary matrix
Zy 1, required forM, is just a selector matrix constructed
from the identity matrix by removing some columns. One can
see that the resulting basis matrices and also the mafiiges
Hs, Hs and Hg are sparse. Of course, the projecterwill
never be constructed explicitly. Instead, we use projector
vector products required in the numerical solution of the
Lur'e equation.

IV. COMPUTING THE GRAMIANS

In order to compute the Gramiaki,,;;;, we have to solve
the projected Lur'e equation (4). Dy = I — MM is
nonsingular, then this equation is equivalent to the ptejtc
Riccati equation

(A— BO)XE" + EX(A - BC)" +2P,BBT PF
+2(EXCT-PBMJ)Dy(EXCT-PBM{)T =0,
X =PXxPT. (19)

that can be solved via Newton’s method. This method was
first developed for standard Riccati equatiofs=£ I) [16],

[17] and then extended in [10], [18] to projected Riccati
equations. In each Newton iteration, we have to solve the
projected Lyapunov equations of the form

EXFT + FXET = —PGGTPT, X = P.XPT (20)

with given matrices?, F, G, the projectorP. as in (9) and
P = it PT Sing. Such equations can be solved using the
generalized alternating direction implicit (ADI) methatB].
Low-rank version of this method provides low-rank Cholesky
factors of the solution of (20) that allow, finally, to deténm
an approximate solution of the projected Riccati equation
(19) in factored formX.i, ~ RRT with R € R™* and
k < n, see [10] for details.

The most expensive step in the ADI method is solving
linear systems of the form\iE + 7F)z = f with different



Bounded real characteristic values

Frequency responses

10 10
—Full order
10° | | -e-PABTEC
107 3
o0 S
107 1 N
g
=
-5
. 107} 1
10 ]
107207 | | | | | | 10'6 L L
10 20 30 40 50 60 10° 0° 10% 10™
] Frequencyw

Fig. 1. The bounded real characteristic values of the Maetansformed  Fig.
system.

parameters. This can be done either by computing sparse
LU factorization or by using Krylov subspace methods [20].
In case of singulad — M,M{', small to medium-sized
DAE systems can be transformed similarly to the standar
state space case [21] to systems of smaller dimension fi
which the bounded real projected Riccati equations exis
For large-scale problems, the numerical solution of Lur’e
equations requires further investigations.

Magnitude

V. NUMERICAL EXAMPLE

In this section, we present some results of numerice
experiments to demonstrate the feasibility of the PABTEC
method for large-scale circuit equations.

We consider a transmission line model consisting o

a scalable number of RLC ladders. We have a reciproca,Lig_ 3. The absolute endG(jw) — G(jw)

passive DAE system of order= 127 869 with a single input
and a single output. The minimal solution of the projected
Riccati equation (19) was approximated by a low-rank matrix[s]
Xmin ~ RRT with R € R™3 using Newton’s method.
Figure 1 shows that the characteristic values decay rapidly
SO we can expect a good approximation by a reduced-ordTg
model. The original system was approximated by a mode
of order? = 24. In Figure 2 we present the magnitude of
the frequency responsés(jw) and G(jw) for a frequency
rangew € [1, 10'%]. We also display in Figure 3 the absolute
error |G (jw) — G(jw)| and the error bound (7).

(7]

(8]
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