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Abstract. For systems with slowly varying parameters the controllability
behavior is studied and the relation to the control sets for the systems with
frozen parameters is clarified.

1. Introduction

This paper studies control systems with parameters which are slowly evolving
according to a differential equation. We show that the controllability behavior is
determined by the corresponding family of systems with frozen parameters.

More precisely, we consider the following family of systems on Rd depending
on a parameter y:

(1.1) ẋ(t) = f(x(t), y, u(t)), u ∈ U ,
where U = {u : R → U ⊂ Rm, locally integrable}, the control range U is a subset
of Rm, and f(y, ·, u) are smooth vector fields on Rd. Throughout we assume that
unique solutions ϕ(t, x0, y, u), t ∈ R, exist for all x0, u, and y. We model slowly
varying y by requiring that

(1.2) ẏ(t) = εg(y(t))

for a smooth vector field g on a Riemannian manifold M and ε > 0.
Here we are concerned with the controllability behavior of the fast subsystem

(1.1). This is complementary to other contributions to the area of singularly per-
turbed systems concentrating on the behavior of the slow subsystem; then averaging
is applied in order to describe the influence of the fast subsystem on the slow sub-
system; see, for example, Kokotovic, Khalil, O’Reilly [12], Khalil [11] and Artstein
[1], Artstein, Gaitsgory [2], Vigodner [16], Grammel [7]. Our approach (correcting
and extending Colonius/Kliemann [5]; see Remark 1 at the end of Section 3) is,
in particular, motivated by bifurcation problems, where for different (constant) pa-
rameters control sets may be born; see, e.g., Grünvogel [9], [10]. Our results show
that for slow, dynamic parameter perturbations this picture remains valid.

In Section 2, we collect some preliminaries and specify our technical assump-
tions. Section 3 contains the controllability results. In particular, we introduce
the notion of control(ability) bundles and show that they are equivalent to families
of control sets for the system with frozen parameters. Finally, Section 4 briefly
discusses two examples.
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2. Notation and Preliminaries

In this section, we recall some notation and state our basic assumptions.
Consider for ε ≥ 0 the systems in Rd ×M

ẋ(t) = f(x(t), y(t), u(t)),(2.1)

ẏ(t) = εg(y(t)),

where u ∈ U . Partly, we will restrict our attention to the special case of control-
affine systems where

(2.2) f(x, y, u) = f0(x, y) +
mX
i=1

ui(t)fi(x, y)

with smooth vector fields fi; here we assume that the control range U is convex
and compact. This guarantees that U is a weak∗ compact subset of L∞(R,Rm)
and that the trajectories depend continuously on u. Using the notation z = (x, y)
and F ε = (f, εg) we can write system (2.1) as

(2.3) ż(t) = F ε(z(t), u(t)), z ∈ Rd ×M.

We assume that for all u ∈ U the vector fields (f(·, u), εg(·)) on Rd×M are smooth
and that unique global solutions exist for all u ∈ U and ε ≥ 0. Prescribing an initial
value z0 = (x0, y0) at time t = 0 and a control function u the solution in Rd ×M
can be rewritten as

z(t) =

µ
x(t)
y(t)

¶
=

µ
xε(t, x0, y0, u)

yε(t, y0)

¶
.

Observe that for ε = 0 we obtain the solutions of (1.1), i.e., x0(t, x0, y0, u) =
ϕ(t, x0, y0, u), t ∈ R. The corresponding reachable sets are denoted by Oε,±(z0).
The reachable sets for the x-component which depend on the initial value of the
y-component are

Oy0,ε,+
≤T (x0) = {xε(t, x0, y0, u), 0 ≤ t ≤ T and u ∈ U}.

For the system with ε = 0 we also abbreviate

Oy,+(x) = Oy,0,+(x0).

We remark that by continuous dependence on parameters one has, uniformly on
bounded t-intervals,

(2.4) xε(t, x0, y0, u)→ x0(t, x0, y0, u) for ε→ 0.

For controls ui ∈ U and times τ i > 0, i = 1, ..., d, define a piecewise constant
control uτ ∈ U by
(2.5) uτ (t) = ui for t ∈ [τ0 + τ1 + . . .+ τ i−1, τ0 + τ1 + . . .+ τ i].

We write F ε(u) = F ε(·, u) and denote by etF
ε(u) the solution maps at time t of

ż = F ε(z, u), u ∈ U . We obtain

z(t) =

µ
x(t)
y(t)

¶
= eτ

d Fε(ud) . . . eτ
1 Fε(u1)

µ
x0
y0

¶
(2.6)

=

µ
xε(t, x0, y0, u

τ )
yε(t, y0)

¶
.
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Frequently, we will assume the following accessibility rank condition for system
(1.1) in Rd with frozen y ∈M . For the Lie algebra

Ly = LA{f(y, u), u ∈ U}
generated by the vector fields f(y, u) := f(·, y, u), we require
(2.7) dim∆Ly(x) = d,

where ∆Ly denotes the subspace of the tangent space generated by the vector
fields in Ly. This implies that there exist a time T > 0 and (constant) controls
u1, . . . , ud ∈ U such that the map

(0, T )d ⊂ Rd → Rd

τ := (τ1, . . . , τd) 7→ eτ
d f(y,ud) . . . eτ

1 f(y,u1)x0

has full rank at every point. Thus it follows that the orbits Oy,±
≤T (x) have nonvoid

interiors for all T > 0.
Next we recall the notion of control sets, maximal sets of complete controlla-

bility (compare [4]).

Definition 1. A subset Dy ⊂ Rd is a control set for system (1.1), if Dy is a
maximal set with the properties that for all x ∈ Dy one has Dy ⊂ clOy,+(x) and
there is u ∈ U with ϕ(t, x, u) ∈ Dy for all t ≥ 0.

Note that local accessibility implies exact controllability in the interior of a
control set, i.e., intDy ⊂ Oy,+(x) for all x ∈ Dy; furthermore cl intDy = clDy.
We will need the following result from [4, Theorem 3.2.28] concerning a lower
semicontinuity property of control sets depending on a parameter.

Theorem 1. Let Dy0 be a control set of (1.1) for y = y0 and consider a com-
pact subset Q ⊂ intDy0 such that for all points x ∈ Q system (1.1) satisfies the
accessibility rank condition (2.7). Then there exists δ > 0 such that for all y ∈ M
with d(y, y0) < δ there is a unique control set Dy of (1.1) with Q ⊂ intDy.

Concerning the slow system (1.2), we note that in the slow time s = εt it is
described by

(2.8)
d

ds
ỹ(s) = g(ỹ(s)), u ∈ U ,

where we write ỹ(s) = ỹ(s, y0) = yε(s/ε). We refer to (2.8) as the base system and
write

O+(y0) = {ỹ(s, y0), s ≥ 0}.

3. Control Sets for Slowly Varying Parameters

In this section we analyze the behavior of the control sets Dy as y becomes
slowly varying.

First we specify our notion of subsets of complete controllability for the singu-
larly perturbed system (2.1).

Definition 2. Consider the singularly perturbed control system (2.1). For an
open subset B ⊂M , a family of subsets By ⊂ Rd, y ∈ B, with nonvoid interiors is
called a control bundle if
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(i) for all y0 ∈ B one has cl intBy0 = clBy0 and for all x ∈ intBy0 there is δ > 0
such that d(y, y0) < δ implies x ∈ intBy;
(ii) for every y0 ∈ B and every compact subset Q ⊂ intBy0 there are a neighborhood
N0(y0) and numbers ε0 > 0 and T0 > 0 such that for every y1 ∈ N0(y0) ∩O+(y0),
all x0, x1 ∈ Q and for every 0 < ε < ε0 there are a control u ∈ U and a time
0 < t < T0 with x

ε(t, x0, y1, u) = x1;
(iii) the sets By, y ∈ B, are maximal (with respect to inclusion) with these proper-
ties.
We refer to the sets By as the fibers of the control bundle.

The maximality property (iii) means that for every family of subsets B̃y, y ∈ B,
satisfying properties (i) and (ii) and By ⊂ B̃y for all y ∈ B, it follows that By = B̃y

for all y ∈ B. The decisive property in this definition is (ii). It states a complete
controllability property in compact subsets Q contained in a single fiber By0 which
holds as y varies. We would like to emphasize that here the times t are uniformly
bounded, independently of 0 < ε < ε0.

The next theorem shows complete controllability from one fiber By0 to another
fiberBy1 in large times, where the point reached by the slow system during this time
from y0 is close to y1. Thus, as announced, control bundles may be viewed as subsets
of approximate controllability for the system with slowly varying parameters.

Theorem 2. Let By ⊂ Rd, y ∈ B ⊂ M, be a control bundle. Let y0 ∈ B and
y1 = ỹ(S, y0), S ≥ 0, with ỹ(s, y0) ∈ B for all s ∈ [0, S]. Then for all x0 ∈ By0 ,
x1 ∈ intBy1 and all τ0 > 0 there is ε0 > 0 such that for all 0 < ε < ε0 there are a
control u ∈ U and a time T > 0 such that 0 < S−εT < τ0 and xε(T, x0, y0, u) = x1.

Note that here the distance between the point reached by the slow system, i.e.,
yε(T, y0) = ỹ(εT, y0), and y1 = yε(S/ε, y0) = ỹ(S, y0) can be made arbitrarily small
by choosing τ0 > 0 small.

Proof. Consider y0 ∈ B, y1 = ỹ(S, y0) and x
0 ∈ By0 , x1 ∈ intBy1 . Fix ε > 0

and recall that ỹ(S, y0) = yε(S/ε, y0). By property (i) of control bundles, there
exists for every σ ∈ [0, S] a number δ > 0 such that for ỹ(σ) = ỹ(σ, y0)\

σ∈[s−δ,s+δ]∩[0,S]
intBỹ(σ) 6= ∅.

Choose δ small enough such that the neighborhood N0(ỹ(s)) as in property (ii) of
control sets contains every y(σ), σ ∈ [s−δ, s+δ]. By compactness, there are finitely
many s0 = 0, s1, ..., sm = S and δ0, ..., δm > 0 such that

Sm
i=0[si−δi, si+δi] ⊃ [0, S].

Then we find points

x0 = x0 ∈ intBy0 , x1 ∈ intBỹ(s1), . . . , xm−1 ∈ intBỹ(sm−1), xm = x1 ∈ intBy1

with xi ∈
T
σ∈[si,si+1] intB

ỹ(σ) for all i. We may assume that for all

s00 = 0, s
0
1, ..., s

0
m−1, s

0
m = S

in neighborhoods of s0 = 0, s1, ..., sm−1, sm = S, respectively, one has
m[
i=1

(s0i−1, s
0
i) ⊃ [0, S] and xi ∈

\
σ∈[s0i,s0i+1]

intBỹ(σ),

and that the neighborhoods N0(ỹ(si)) are also neighborhoods of ỹ(s0i) containing
all y(σ), σ ∈ [si−1, si+1].
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Now we iteratively use property (ii): for every i there are a neighborhood
N0(ỹ(si)) and εi > 0 and Ti > 0 such that for every y0 ∈ N0(ỹ(si)) ∩ O+(ỹ(si))
and xi ∈ intBỹ(si) and for all 0 < ε < εi there are a control u ∈ U and a time
0 < t < Ti with xε(t, xi, y

0, u) = xi.
For i = 0 we find u00 ∈ U and t00 with 0 < t00 < T0 such that x

ε(t00, x0, y0, u
0
0) =

x1. Observe that after time t
0
0 > 0 the y-system is in y

ε(t00, y0). We proceed to find

controls uj0 ∈ U and times tj0 with 0 < tj0 < T0 such that x
ε(tj0, x1, y

ε(tj−10 ), uj0) = x1.
Denote by J0 the largest J with

JX
j=0

tj0 < s1/ε.

Note that for ε > 0, small enough,

s01 := ε

J0X
j=0

tj0

can be chosen in any neighborhood of s1, since

s1 − s01 ≤ εtJ0+10 < εT0.

Thus, again by property (ii) of control bundles, we can for ε > 0, small enough,
choose a control u01 ∈ U and a time t01 with 0 < t01 < T0 such that xε(t01, x1, y

ε(s01), u01) =
x2.

Proceeding iteratively for all i we arrive at xε(s0m/ε) = xm = x1; here

s0m :=
m−1X
i=0

s0i + ε

Jm−1X
j=0

tjm−1 < sm = S.

Then

0 ≤ sm − s0m ≤ εt
Jm−1+1
m−1 < εTm.

With T = s0m/ε this concludes the proof, since sm − s0m < εTm−1 can be made
arbitrarily small by choosing ε > 0 small (note that the bound Tm−1 does not
depend on ε). ¤

Next we will relate control bundles to the control sets for frozen parameter
y. We need some preparations and note the following easy consequence of the
accessibility rank condition.

Lemma 1. Suppose that accessibility rank condition (2.7) is satisfied for some
point (x0, y0) ∈ Rd ×M . Then there are neighborhoods N1(x0) and N1(y0) and
ε1 = ε1(x0, y0) > 0 such that the map

[0, ε1)× (0, T )d×N1(x0)×N1(y0)→ Rd : (ε, τ1, . . . , τd, x, y) 7→ xε(
dX
i=1

τ i, x, y, uτ ),

is continuously differentiable and the derivative with respect to τ = (τ1, ..., τd) has
full rank.

Next we consider controllability for positive ε > 0 between two points in a
control set in Rd.
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Proposition 1. Suppose that accessibility rank condition (2.7) is satisfied at
points x0, x1 ∈ intDy0 , where Dy0 is a control set for some y0 ∈ M . Then there
exist neighborhoods N(y0), N(x0), and N(x1), a number ε0 > 0 and a time T0 > 0
such that for all 0 < ε < ε0, y ∈ N(y0), x ∈ N(x0) and x̄ ∈ N(x1) we have

xε(T, x, y, u) = x̄

for some time 0 < T < T0 and some control u ∈ U.
Proof. Applying Lemma 1 we find neighborhoods N1(y0) and N1(x0) and a

number ε1 = ε1(x0, y0) > 0 such that the map

[0, ε1)×N1(x0)×N1(y0)× (0, T )d : (ε, x, y, τ) 7→ xε(
dX
i=1

τ i, x, y, uτ )

has partial derivative with respect to τ of full rank. The implicit function theorem
implies that (for possibly smaller ε1 and N1(x0) ×N1(y0)) there are a point ξ0 ∈
intDy0 and a neighborhood N(ξ0) such that for all 0 < ε < ε1, all y ∈ N1(y0), all
x ∈ N1(x0), and all ξ ∈ N(ξ0) there is τ0 = τ0(ε, x, y, ξ) ∈ (0, T )d such that

ξ = xε(σ0, x, y, u
τ0) with σ0 =

dX
i=1

τ i0.

Observe that in system (1.2) we obtain yε(σ0, y).
Applying Lemma 1 to the point x1 backwards in time, we find neighborhoods

N2(x1) and N2(y0) and ε2 = ε2(x1, y0) > 0 such that the map

[0, ε2)×N2(x1)×N2(y0)× (0, T )d → Rd : (ε, x, y, τ) 7→ xε(−
dX
i=1

τ i, x, y, uτ )

has partial derivative with respect to τ of full rank. Again the implicit function
theorem implies that (for possibly smaller ε2 and N2(x1)×N2(y0)) there are a point
ζ0 ∈ intDy0 and a neighborhood N(ζ0) such that for all 0 < ε < ε2, all x̄ ∈ N2(x1),
all y ∈ N2(y0), and all ζ ∈ N(ζ0) there is τ1 = τ1(ε, x̄, y, ζ) with

ζ = xε(−σ1, x̄, y, uτ ) where σ1 =
dX
i=1

τ i1.

Since ξ0, ζ0 ∈ intDy0 , we can find a control v ∈ U and a time R > 0 such that
ϕ(R, ξ0, y0, v) = ζ0. Then there is ε3 ≤ min(ε1, ε2) such that forN(ζ0) small enough
and all 0 < ε < ε3 the neighborhood {xε(R, ξ, yε(σ0, y0, uτ0), v), ξ ∈ N(ξ0)} is
contained in N(ζ0). Applying these controls we reach the points

ηx = xε
¡
R,xε(σ0, x, y, u

τ0), yε(σ0, y), v
¢

ηy = yε
¡
R,yε(σ0, y)

¢
.

We may choose ε0 ≤ ε3 and the neighborhoods N(x0) and N(y0) small enough
such that for all 0 < ε < ε0 and all y ∈ N(y0), all x ∈ N(x0), and all x̄ ∈ N2(x1)

xε(σ1, ηx, ηy, u
τ1) = x̄.

Putting things together we conclude that there is a time T0 > 0 such that for all
0 < ε < ε0 and for every y ∈ N(y0) every point in N(x0) can be steered to every
point x̄ in N2(x1) for some time t < T0, i.e., xε(t, x, y, u) = x̄ for some control
u ∈ U . ¤
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Next we show that these properties hold uniformly in compact subsets in the
interior of control sets.

Proposition 2. Let Dy0 be a control set with nonvoid interior of system (1.1)
for a parameter y0 ∈M. Suppose that accessibility rank condition (2.7) is satisfied
for y0 and for all x ∈ Dy0 , and let Q ⊂ intD y0 be compact. Then there exist a
neighborhood N(y0), a number ε0 > 0 and a time T0 > 0 such that for all 0 < ε < ε0,
all y ∈ N(y0), and all x0, x1 ∈ Q we find a time 0 < T < T0 and a control u ∈ U
such that xε(T, x0, y, u) = x1.

Proof. Cover the compact set Q×Q by the open setsN(x0)×N(x1), x0, x1 ∈
Q, with corresponding neighborhoodsN(y0) = N(y0;x0, x1) and times T0(x0, x1) >
0 and ε0(x0, x1) > 0, as constructed in Proposition 1. By compactness of Q finitely
many of these open sets are sufficient and we can take T0 as the maximum of the
corresponding T0(x0, x1) and ε0 as the minimum of the ε0(x0, x1) and N(y0) as the
intersection of the N(y0;x0, x1). ¤

The next theorem presents the announced equivalence between the control sets
Dy for the system (1.1) with frozen parameter y and the control bundles for the
perturbed system (2.1). It is our main motivation for the consideration of control
bundles.

Theorem 3. Consider for the control-affine system (1.1), (2.2) a family of
subsets F y, y ∈ Y, with nonvoid interiors in Rd, where Y ⊂ M is open. Assume
that for all y ∈ Y there is δ > 0 with intF y ∩ intF y0 6= ∅ for all y0 with d(y, y0) < δ
and that accessibility rank condition (2.7) holds for all x ∈ F y and all y ∈ Y . Then
the following properties are equivalent:
(i) The sets {F y, y ∈ Y } form a control bundle for the singularly perturbed system
(2.1), (2.2).
(ii) For every y ∈ Y the set F y is a control set for system (1.1), (2.2) with parameter
value y.

Proof. (i) Suppose that the sets {F y, y ∈ Y } form a control bundle for system
(2.1). In order to prove that F y0 is a control set for system (1.1) with frozen
parameter y0, take x0 ∈ F y0 and x1 ∈ intF y0 . By property (i) of control bundles,
we have that x1 ∈ intF y for all y in a neighborhood N0(y0) of y0. Let S1 > 0
be small enough such that y1 := ỹ(S1, y0) ∈ N0(y0) ∩ O+(y0) and hence x1 ∈
intF y1 . Thus, by property (ii) of control bundles, there are ε0 > 0 and T0 > 0
such that for all 0 < ε < ε0 there are a control uε ∈ U and a time 0 < t < T0
with xε(t, x0, y0, u

ε) = x1. Since the set U is a compact metric space there is
a converging subsequence uεk in U for εk → 0. Furthermore, the corresponding
solutions converge uniformly on compact time intervals. Thus cluster points t and
u for εk → 0 satisfy

ϕ(t, x0, y0, u) = x0(t, x0, y0, u) = x1.

Thus that there exists a control set Dy0 with intF y0 ⊂ Dy0 . Hence the assumption
cl intF y0 = clF y0 implies that F y0 ⊂ Dy0 . The proof of the converse inclusion will
be deferred to (iii), below.

(ii) Conversely, consider a family {F y, y ∈ Y } such that F y are control sets for
system (1.1) with frozen parameter value y ∈ Y . By Theorem 1 and the properties
of control sets, property (i) of control bundles is satisfied. For property (ii) let
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y0 ∈ B and x0, x1 ∈ intF y0 . We claim that there are a neighborhood N0(y0)
and ε0 > 0 and T0 > 0 such that for every y1 ∈ N0(y0) ∩O+(y0), all x0, x1 ∈ Q
and for every 0 < ε < ε0 there are a control u ∈ U and a time 0 < t < T0
with xε(t, x0, y1, u) = x1. By Proposition 1 there exist a neighborhood N(y0), a
number ε0 > 0 and a time T0 > 0 such that for all 0 < ε < ε0, all y ∈ N(y0),
and all x0, x1 ∈ Q we find a time 0 < T < T0 and a control u ∈ U such that
xε(T, x0, y, u) = x1. Hence the F

y, y ∈ Y , are contained in a control bundle. The
proof of the converse inclusion will be given in (iv), below.

(iii) To finish the argument in part (i) of the proof we need to show that every
F y, y ∈ Y, is a control set. By (i) there exists a control set Dy containing F y for
all y ∈ Y . By (ii) the corresponding family of control sets is contained in a control
bundle. By the maximality property this control bundle coincides with the original
one. Thus the F y are control sets.

(iv) To finish the argument in part (ii) of the proof we need to show that the
family F y, y ∈ B, is a control bundle. By (ii) we know that there exists a control
bundle By, y ∈ Y, containing F y, y ∈ Y . By (i) the By are contained in control
sets. By the maximality property of control sets they coincide with the original
ones. Hence the F y form a control bundle. ¤

Remark 1. Preliminary results on the behavior of control sets for slowly vary-
ing parameters appeared in [5]. There only the situation near a singular point as
discussed in the second part of our Section 4 was considered for the special case of
scalar parameters y. In the present paper, we had to change the definition of control
bundles: By our Theorem 3 the existence of a control set family {Dy, y ∈ Y } is
equivalent to the properties indicated in Definition 2. Theorem 2 indicates that this
implies certain controllability properties for the systems with slowly varying y. In
[5] these properties were taken as a definition of control bundles and their equiv-
alence to the control set property of the system with frozen y was claimed. The
corresponding proof is not valid (though the technique used in the proof of Theorem
3 is very similar.)

4. Examples

In this section we briefly describe two situations where the results above give
information on the considered systems.

First we consider the following escape equation with periodic excitation

(4.1) ẍ+ γẋ+ x− x2 = F sin(εt) + u(t)

with linear viscous damping γ > 0 and amplitude F of forcing; ε is the excitation
frequency and u(t) is a noise term. Note that the system governs the escape from
the cubic potential well of

V (x) =
1

2
x2 − 1

3
x3.

In Soliman and Thompson [13] and Fischer, Guder and Kreuzer in [6] this equation
has been analyzed, where u is considered as a stochastic perturbation. For bounded,
deterministic u this system has been studied in detail by Szolnoki [14], [15].

We rewrite system (4.1) as a three dimensional control system to eliminate the
second order derivative as well as the time dependency of the forcing term and
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require u(t) ∈ [−ρ, ρ] for all t ∈ R, where ρ ≥ 0. We obtain the control system

(4.2)

 ẋ1
ẋ2
ẏ

 =

 x2
−γx2 − x1 + x21

ε

+
 0
1
0

F sin y + u(t).

It is appropriate to consider the equation for y as an equation on the unit sphere
M = S1 parametrized by the angle in [0, 2π). Clearly, this is a system of the form
(2.1), (2.2). For F = 0, ε = 0 and ρ = 0, there are three equilibria. For ρ > 0
small, these equilibria are, as can be easily proven, in the interior of three different
control sets Dy

i , i = 1, 2, 3 (since F = 0, they are identical for all y ∈ S1). It
is also clear that the accessibility rank condition (2.7) is satisfied. Then, by [4,
Theorem 4.2.28], there are for F > 0, small, ε = 0, and every y ∈ S1 three different
control sets. Theorem 3 shows that these control sets yield a control bundle for the
perturbed system (4.1).

Another class of examples contains a singular point where the accessibility rank
condition (2.7) is violated. We consider again a family of control-affine systems
(1.1), (2.2) depending on a parameter y taking values in an interval A = (a, b) ⊂ R.
Suppose that x∗ ∈ Rd is a singular point, i.e.,
(4.3) fi(x

∗, y) = 0

for all i = 0, 1, ...,m and all considered y. Again we will replace y by a time
dependent, slowly varying parameter, and our goal is to discuss the changes in the
controllability behavior as y evolves. The linearized (bilinear) control system is

ẋ(t) = A0(y)x(t) +
mX
i=1

ui(t)Ai(y)x(t)), u ∈ U ,

where Ai(y) :=
∂
∂xfi(x

∗, y) for all i with trajectories xlin(t, x0, y, u). The corre-
sponding Lyapunov exponents are given by

λ(u, x0, y) = lim sup
t→∞

1

t
log |xlin(t, x0, y, u)| ,

and the Lyapunov spectra are

Σy = {λ(u, x0, y), x0 6= 0 and u ∈ U}.
Again we model slowly varying y by requiring that ẏ(t) = ε > 0, small. In other
words, we consider the system in Rd ×R

ẋ(t) = f0(x(t), y(t)) +
mX
i=1

ui(t)fi(x(t), y(t)),(4.4)

ẏ(t) = ε,

with u ∈ U .
The following result due to Grünvogel [9, Theorem 8.1] shows that, for fixed y,

control sets near the singular point are determined by the Lyapunov spectrum.

Theorem 4. Consider the control-affine systems (1.1), (2.2) with a singular
point x∗ ∈ Rd satisfying (4.3) and assume that the accessibility rank condition (2.7)
holds for all x 6= x∗. Furthermore assume that
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(i) there are periodic control functions us and uh such that for us the linearized
system is exponentially stable, i.e., the corresponding Lyapunov (Floquet) exponents
satisfy

0 > λs1 > ... > λsd,

and for uh the corresponding Lyapunov exponents satisfy

λh1 ≥ ... ≥ λhk > 0 > λhk+1 > ... > λhd ;

(ii) all pairs (uh, x) ∈ U × Rd with x 6= x∗ are strong inner pairs, i.e.,
ϕ(t, x, y, uh) ∈ intOy,+(x) for all t > 0.

Then there exists a control set Dy with nonvoid interior such that x∗ ∈ ∂Dy.

Using these results one observes in a number of control systems, e.g., in the
Duffing-Van der Pol oscillator [9], that for some y-values the singular point x∗ is
exponentially stable for all controls, hence there are no control sets near x∗. Then,
for increasing y-values, control sets Dy occur with x∗ ∈ ∂Dy. For some upper
y-value, they move away from x∗. These results refer to constant y-values only.
Theorems 2 and 3 in the present paper show that also the systems with slowly
increasing y-values have a similar controllability behavior.

Remark 2. Assumption (i) in Theorem 4 is in particular satisfied, if 0 is in
the interior of the highest Floquet spectral interval and the corresponding subbundle
is one-dimensional.

Remark 3. Grünvogel [9] also shows that there are no control sets in a neigh-
borhood of the origin if zero is not in the interior of the Morse spectrum of the
linearized system. This also follows from a Hartman-Grobman Theorem for skew
product flows; see Bronstein/Kopanskii [3]. One has to take into account that the
spectral condition implies hyperbolicity, since the base space U is chain recurrent.
Then the use of appropriate cut-off functions yields the desired local version.

Remark 4. Using averaging techniques, Grammel/Shi [8] considered the sta-
bility behavior and the Lyapunov spectrum of bilinear control systems perturbed by
a fast subsystem.
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