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Abstract: Averages of functionals along trajectories are studied by eval-
uating the averages along chains. This yields results for the possible limits
and, in particular, for ergodic limits. Applications to Lyapunov exponents
and to concepts of rotation numbers of linear Hamiltonian �ows and of gen-
eral linear �ows are given.
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1 Introduction

The purpose of this paper is to expose a topological construction to obtain
characteristics of dynamical systems via ergodic limits obtained by aver-
ages along trajectories. We replace limits along trajectories by limits along
("; T )�chains as " ! 0 and T ! 1. Then the numbers which are de-
�ned by an ergodic limit procedure are replaced by intervals, each of them
corresponding to a maximal chain transitive set, i.e., a chain recurrent com-
ponent. Thus as a part of the construction the chain recurrent components
of the relevant �ow have to be determined.
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In particular, we consider linear �ows on vector bundles. Then, for Lya-
punov exponents, the relevant �ow is the induced �ow on the projective
bundle and the construction yields the Morse spectrum as introduced in [4].
For rotation numbers of linear Hamiltonian �ows in R2n (see, e.g., [7]) the
induced �ow on the n�dimensional Lagrange subspaces is the relevant one.
For rotation numbers in the sense of L.A.B. San Martin [11] (for the stochas-
tic case see also L. Arnold [1]) the induced �ow on the bundle of oriented
2�planes has to be considered. In all cases the corresponding maximal chain
transitive sets are described, since they determine the numbers of intervals
of Lyapunov exponents and of rotation numbers.
The contents of the paper are as follows: Section 2 presents the con-

struction of limit intervals corresponding to chain transitive sets. Section 3
discusses rotation numbers for linear Hamiltonian �ows and Section 4 dis-
cusses rotation numbers of oriented planes for arbitrary linear �ows.

2 Growth Rates and Chain Transitivity

This section describes a general construction for �ows on �ber bundles of
metric spaces that relates growth rates along trajectories and, in particular,
ergodic limits, to evaluations along chains.
In the following a (locally trivial) �ber bundle with typical �ber E is

considered which is given by a continuous map � : X ! B of metric spaces
and a �nite open cover (U�) of B together with homeomorphisms

'� : �
�1(U�)! U� � E; z 7! ('1�(z); '

2
�(z));

satisfying '1�(z) = �(z). We will always assume that the base space B is
compact.
Let � be a (continuous) �ber preserving �ow on the �ber bundle � :

X ! B given by �t(x) = �(t; x). By local triviality, � induces a �ow ��
on the base space which, for simplicity, is denoted by b � t; b 2 B and t 2 R.
Furthermore, let f : X ! Rm be continuous. We are interested in the growth
rates along trajectories for t!1 given by

1

t
[f(�(t; x))� f(x)] : (1)

We impose the following two basic assumptions:
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The map

fB : R�B ! Rm; (t; b) 7! f(�(t; x))� f(x) with �x = b; (2)

is well de�ned, and the growth rates are uniformly bounded, i.e.,

C := sup
x2X

lim sup
t!1

1

t
jf(�(t; x))� f(x)j <1; (3)

with some norm j�j inRm. Assumption (2) means that the di¤erence f(�(t; x))
�f(x) is independent of the choice of x with �x = b. In view of (2), assump-
tion (3) is equivalent to

C = sup
b2B

lim sup
t!1

1

t
jfB(t; b)j <1:

Assumption (2) immediately implies that cluster points for t!1 of (1) are
independent of the element x in the �ber over �x.

Remark 2.1 For a linear �ow � on a vector bundle V ! 
 with compact
metric base space 
 write kvk = k(!; x)k = kxk. Then the Lyapunov ex-
ponent of v is given by the limit as t ! 1 (if it exists) of 1

t
log k�(t; v)k.

Clearly, V is not compact, while the projective bundle PV ! 
 is. With

f : V ! R; f(v) := log kvk :

one sees that

f(�(t; v))� f(v) = log k�(t; v)k � log kvk

only depends on t and Pv 2 PV. Thus condition (2) is satis�ed if we consider
� as the �ber preserving �ow in the �ber bundle V ! PV with base space PV.
Furthermore, condition (3) is satis�ed, since there are constants K,� > 0
with

1=Ke��t kvk � k�(t; v)k � Ke�t kvk ; t 2 R:
This implies for t large enough

1

t
[log k�(t; v)k � log kvk] � 1

t
logK + � � �+ 1;

and an analogous lower bound is valid.
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Remark 2.2 The general problem above includes ergodic limits on a compact
metric space B. In fact, consider for a �ow b 7! b � t : B ! B and a
continuous functional g : B ! R ergodic limits for t!1 of

1

t

Z t

0

g(b � �) d�: (4)

De�ne on the �ber bundle R � B ! B the �ber preserving �ow �t(s; b) =
(s� t; b � t) and the functional

f : R�B ! R; f(s; b) =
Z 0

s

g(b � �) d�:

Then for x = (s; b)

f(�t(x))� f(x) = f(s� t; b � t)� f(s; b)

=

Z 0

s�t
g(b � (t+ �)) d� �

Z 0

s

g(b � �) d�

=

Z t

s

g(b � �) d� �
Z 0

s

g(b � �) d�

=

Z t

0

g(b � �) d�:

Thus this di¤erence is independent of the element (s; b) in the �ber over
b 2 B, as required in (2); furthermore, also (3) is satis�ed, since g is bounded
on the compact space B.

In order to describe the limiting behavior of (1) as t ! 1, it is help-
ful to relax this problem: instead of studying directly the evaluation along
trajectories, we study the evaluation along ("; T )�chains, and then let " !
0; T !1.
For an ("; T )�chain � inB given by n 2 N; b0 = b; b1; :::; bn 2 B, T0; :::; Tn�1 >

T with
d(bi � Ti; bi+1) < " for all i = 0; :::; n� 1;

pick arbitrary points xi in X with �xi = bi. Then

f(�) :=

 
n�1X
i=0

Ti

!�1 n�1X
i=0

[f(�(Ti; xi))� f(xi)] (5)
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is independent of the choice of the xi. An easy consequence of (3) is that for
all ("; T )�chains with T large enough

jf(�)j < C + 1: (6)

Recall that a set M is chain transitive, if for any two points a; b 2M and all
"; T > 0 there is an ("; T )�chain from a to b. For a compact invariant chain
transitive set M � B de�ne

F (M) =

�
� 2 Rm; there are "k ! 0; T k !1 and

("k; T k)� chains �k in M with f(�k)! �

�
: (7)

It is our aim to describe the set F (M) and its relation to the asymptotic
growth rates (1) as t!1.
We note a number of observations.

Lemma 2.3 The map fB de�ned by (2) is continuous.

Proof. By local triviality of the �ber bundle, there exists for b 2 B a
local continuous section � : U ! X de�ned on a neighborhood U of b with
� � � = idU . Thus for tn ! t; bn ! b one has with xn = �(bn)

fB(tn; bn) = f(�(tn; xn))� f(xn)! f(�(t; �(b)))� f(�(b)) = fB(t; b);

as claimed.
The following lemma (Lemma B.2.23 in [5]) gives a uniform upper bound

for the time needed to connect any two points in a chain transitive set. For
convenience of the reader we sketch the proof.

Lemma 2.4 LetM be a compact invariant chain transitive set and �x "; T >
0. Then there exists �T ("; T ) > 0 such that for all x; y 2 M there is an
("; T )�chain from x to y with total length � �T ("; T ).

Proof. By assumption, one �nds for all x; y 2 M an ( "
2
; T )�chain in M

from x to y. Using continuous dependence on initial values and compactness,
one �nds �nitely many ("; T )�chains connecting every x 2 M with a �xed
z 2M . One also �nds �nitely many (modulo their endpoints) ("; T )�chains
connecting z with arbitrary elements y 2M . Thus one ends up with �nitely
many ("; T )�chains connecting all points inM . The maximum of their total
lengths is the desired upper bound �T ("; T ).
The growth rates of concatenated chains are a convex combination of the

individual growth rates.
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Lemma 2.5 Let �; � be ("; T )�chains in B of total lengths � and � , respec-
tively, such that the initial point of � coincides with the �nal point of �. Then
for the concatenated chain � � � one has

f(� � �) = �

� + �
f(�) +

�

� + �
f(�):

Proof. Let the chains � and � be given by �x0; :::; �xk and �y0 = �xk; :::;
�yn, with times S0; :::; Sk�1 and T0; :::; Tn�1, respectively. Thus the total
times are � =

Pk�1
i=0 Si and � =

Pn�1
i=0 Ti and

f(� � �)

= [� + � ]�1
"
�

�

k�1X
i=0

[f(�(Si; xi))� f(xi)] +
�

�

n�1X
i=0

[f(�(Ti; yi))� f(yi)]
#

= [� + � ]�1 [�f(�) + �f(�)]

=
�

� + �
f(�) +

�

� + �
f(�):

The following proposition shows that it is su¢ cient to consider periodic
chains.

Proposition 2.6 Let M � B be a compact invariant chain transitive set.
Then

F (M) =

�
� 2 Rm, there are "k ! 0; T k !1 and periodic
("k; T k)�chains �k in M with f(�k)! � as k !1

�
:

Proof. Let � 2 F (M) and �x "; T > 0. It su¢ ces to prove that for every
� > 0 there exists a periodic ("; T )�chain � 0 with j�� f(� 0)j < �. By
Lemma 2.4 there exists �T ("; T ) > 0 such that for all �x; �y 2M there is an
("; T )�chain � in M from �x to �y with total time � �T ("; T ). For S > T
choose an ("; S)�chain � with j�� f(�)j < �

2
given by, say, �x0; :::; �xm with

times S0; :::; Sm�1 > S and with total time � =
Pm�1

i=0 Si. Concatenate this
with an ("; T )�chain � from �xn to �x0 with points �y0 = �xn; :::; � ym =
�x0, with times T0; :::; Tm�1 > T and total time � =

Pm�1
i=0 Ti � �T ("; T ):

The periodic ("; T )�chain � 0 = � � � has the desired approximation property:
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Since the chain � depends on �, also � depends on �. However, the total
length of � is bounded as � = �(�) � �T ("; T ). Lemma 2.5 implies

jf(�)� f(� � �)j =
����f(�)� �

� + �
f(�)� �

� + �
f(�)

����
�
�
1� �

� + �

�
jf(�)j+ �

� + �
jf(�)j

By (6) there is a uniform bound for jf(�)j and jf(�)j for all considered chains
� and �. Since � remains bounded for chains � with total length � tending
to 1, the right hand side tends to 0 as S !1.
The next theorem describes the set of asymptotic growth rates; part (ii)

shows that the cluster points for chains in the chain recurrent set comprise
all asymptotic growth rates for arbitrary initial points. Together with Propo-
sition 2.6 it is our main result on growth rates.

Theorem 2.7 (i) Assume that M � B is a compact invariant set and that
the �ow b 7! b � t restricted to M is chain transitive. Then the set F (M) is
compact and convex.
(ii) For all x 2 X and all sequences tk !1 we have

lim
k!1

1

tk
f(�(tk; x)) 2 F (!(�x)) � F (M);

if the limit exists; here M is the maximal chain transitive set containing
!(�x) � B.

Proof. (i) The proof is based on a �mixing�of growth rates. It is clear that
F (M) is closed; it is also bounded by (6), hence compact. Thus it su¢ ces to
show that for all � 2 coF (M), all � > 0; and all "; T > 0 there is a periodic
("; T )�chain � in M with

jf(�)� �j < �: (8)

So let � =
PN

i=0�
i�i with �i 2 F (M) and �i > 0,

P
�i = 1. For �xed � > 0

and "; T > 0; there are periodic ("; T )�chains � i in M with��f(� i)� �i�� < �:
Denote the initial (and �nal) point of � i by �xi. By chain transitivity there
are ("; T )�chains �i from �xi to �xi+1 and �N from �xn to �x0. For k 2
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N let � i;k be the k�fold concatenation of � i. Then for k1; :::; kN 2 N the
concatenation �(k1; :::; kN) = �N��N;kN�:::��1��1;k1 is a periodic ("; T )�chain
in M . Recall from Lemma 2.5 that f�values of concatenated chains are
convex combinations of the individual f�values. Hence one �nds numbers
k1; :::; kN 2 N such that

��f(�(k1; :::; kN))� ��� < �. This proves (8).
(ii) Here we start from an arbitrary initial point x 2 X and have to show

that the corresponding limit points can be approximated by chains in !(�x)
Recall that !�limit sets are connected and contained in the chain recurrent
set. Hence the maximal chain transitive set M � B containing !(�x) is well
de�ned for x 2 X and the inclusion is obvious. Thus it su¢ ces to show the
following:
Let �(x) be a cluster point of 1

t
f(�(t; x)) for t ! 1. For all � > 0 and

all " > 0; T > 1 there exists a periodic ("; T )�chain � in !(�x) with

jf(�)� �(x)j < �: (9)

Fix � > 0; " > 0; and T > 1. By uniform continuity of �� on the compact
set [0; 2T ] � B, one �nds �1 = �1(�; "; T ) > 0 such that for all �y; �z 2 B it
follows from d(�y; �z) < �1 that

d(�y � t; �z � t)) < "

3
(10)

Invoking Lemma 2.3 one can also require that

jf(�(t; y))� f(y)� [f(�(t; z))� f(z)]j = jfB(t; �y)� fB(t; �z)j <
�

4
(11)

holds for all t 2 [0; 2T ]. Furthermore, one may assume that

d(�x � t; !(�x)) < �1 for all t > 0: (12)

By de�nition there are tn !1 with

�(x) = lim
n!1

1

tn
f(�(tn; x));

where one can assume without loss of generality that �x � tn converges for
tn !1. Now �x N 2 N such that for all n � N

d(�x � tn; �x � tN) <
"

3
: (13)
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Setting �n = tn � tN we have

�(x) = �(�(tN ; x)) = lim
n!1

1

�n
f(�(�n;�(tN ; x))):

Choose n large enough such that with T0 = �n we have T0 > 2T and�����(x)� 1

T0
f(�(T0;�(tN ; x)))

���� < �

2
: (14)

Clearly, (12) remains valid, with �(tN ; x) instead of x. Hence writing x
instead of �(tN ; x) in (13) and (14), we obtain in addition to (12)

d(�x � T0; �x) <
"

3
(15)

and �����(x)� 1

T0
f(�(T0; x))

���� < �

2
: (16)

We partition the interval [0; T0] into pieces of length �j with T � �j < 2T for
j = 0; :::; l � 1. Thus

T0 =
l�1X
j=0

�j andT0 � l: (17)

Set y0 = x and yj+1 = �(�j; yj) for j = 0; :::; l � 1. Then �(T0; x) = yl and

1

T0
f(�(T0; x)) =

1

T0

l�1X
j=0

[f(yj+1)� f(yj)] (18)

=

 
l�1X
j=0

�j

!�1 l�1X
j=0

[f(�(�j; yj))� f(yj)] :

De�ne an ( "
3
; T )�chain ~� in X by l 2 N, �0; :::; �l�1 � T; �y0; :::; �yl�1; �y0 2

X, noting that by (15) we have

d(�yl�1 � �l�1; �y0) <
"

3
: (19)

Using (18) we obtain

f(~�) =
1

T0
f(�(T0; x)): (20)
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However, the chain ~� is not necessarily contained in !(�x). In order to obtain
an appropriate chain � in !(�x), we use (10) and (12): For yj = �(�j; yj�1);
j = 0; :::; l � 1; we �nd points z0; ::; zl�1; zl = z0 with �zi 2 !(�x) with

d(�yj � t; �zj � t) <
"

3
for t 2 [0; 2T ] :

Hence we obtain for j = 0; :::; l � 1
d(�zj � �j; �zj+1)
� d(�zj � �j; �yj � �j) + d(�yj � �j; �yj+1)) + d(�yj+1; �zj+1))

<
"

3
+
"

3
+
"

3
= ";

where for j = l � 1 we have used (19). Thus l 2 N; �1; :::; �l�1 � T; and
�z0; :::; �zl�1; �zl = �z0 2 X de�ne a periodic ("; T )�chain in !(�x): For
the chain � the estimates (16) and (20) yield

j�(x)� f(�)j �
����(x)� 1

T0
f(�(T0; x))

���+ ���f(~�)� f(�)���
< �

2
+ 1

T0

l�1P
j=0

ff(�(�j; yj))� f(yj)� [f(�(�j; zj)� f(zj)]g :

Hence (11), (12), and (17) yield

j�(x)� f(�)j < �

2
+
1

T0
l
�

2
< �:

This proves (9) and concludes the proof of the theorem.
The special case of the average functional (4) has the advantage that

one can also use methods from ergodic theory for its analysis leading to the
following results.

Theorem 2.8 Consider the average functional (4) given by

1

t

Z t

0

g(�s(x)) ds;

where g : B ! Rm is continuous.
(i) Let � be an ergodic measure and let M be the maximal chain transitive
set containing the topological support of �. Then

�(f) :=

Z
f d� 2 F (M).

(ii) Every extremal point of F (M) is attained for an appropriate ergodic
measure.
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Proof. (i) follows from the factZ
f d� = lim

t!1

1

t

Z t

0

f(�t(x)) dx

for almost all �x 2 supp�. The proof of (ii) follows the arguments in Johnson,
Palmer and Sell [9].

Remark 2.9 For Lyapunov exponents of linear �ows as discussed in Remark
2.1, we get back the main results on the Morse spectrum from [4] which is
a special case of the construction above. Since by Selgrade�s Theorem there
are at most d = dimV maximal chain transitive sets in the projective bundle
PV, the Morse spectrum consists of at most d (possibly overlapping) compact
intervals, each of them corresponding to a maximal chain transitive set in
the projective bundle. If we use the integral representation for Lyapunov
exponents (which is based on an embedding of the (continuous) linear �ow
	 into a sub�ow of a smooth linear �ow), we also recover the results on the
ergodic representation of the boundary points of the spectral intervals.

Remark 2.10 An analogous construction gives the Morse spectrum on �ag
bundles and on Grassmann bundles (instead of the projective bundle) as pre-
sented in [6].

3 Rotation Numbers for Linear Hamiltonian
Systems

In this section we will apply the general results above to linear Hamiltonian
�ows and rotation numbers. For the de�nition of the rotation number we
follow the exposition in Fabbri, Johnson and Nunez [7, Section 2] without,
however, specifying an ergodic measure on the base.
Consider a family of linear Hamiltonian systems

J _z = H(� � t)z; � 2 
: (21)

Here

J =

�
0 �In
In 0

�
;
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with the identity matrix In, 
 is a compact metric space with continuous
�ow � abbreviated by �(�; t) = � � t; and H is a continuous 2n� 2n matrix-
valued function on 
 with values H(�) in the real symmetric 2n�2n matrices
(equivalently, J�1H 2 sp(n;R), the algebra of in�nitesimally symplectic ma-
trices). The solutions induce a skew product �ow on 
�LR where LR is the
space of all real n�dimensional Lagrangian planes of R2n. This space is a
compact manifold of dimension n(n+ 1)=2. Let U(t; !) be the fundamental
solution of (21). Then U(t; !)l0 2 LR for l0 2 LR. Hence we obtain a linear
skew product �ow � on KR = 
� LR given by

�(t; !; l0) = (! � t; U(t; !)l0); t 2 R. (22)

Recall that the space LR of Lagrange planes can be identi�ed with U(n)=O(n).
Following V.I. Arnold [2] de�ne

Det2 : U(n)=O(n)! S1; Det2(u �O(n)) = �(detu)2.

Note that this is independent of the representation by u, since u � O(n) =
u0 �O(n) implies u = u0O for an orthogonal matrix O, and hence

(detu)2 = [det(u0O)]2 = [detu0 detO]2 = (detu0)
2
:

Then, �nally, for an ergodic measure � on 
 de�ne the rotation number �
by

�(�) =
1

2t
lim
t!1

argDet2U(t; !)l0; (23)

where arg is any argument of a complex number. Then ��almost everywhere
this limit exists and is constant. (Note that the argument here is independent
of the branch, but follows one of them; thus we may choose argDet2l0 as the
principal value in [0; 2�).) Furthermore, the limit in (23) can also be written
in the form (4) as an ergodic limit.
The limit in (23) �ts into the framework of Section 2. De�ne the contin-

uous function

f : X = 
� LR ! R; f(!; l0) = argDet2l0

Our previous results yield the following.

Corollary 3.1 Consider a nonautonomous linear Hamiltonian di¤erential
system of the form (21) and the associated linear Hamiltonian skew product
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�ow on KR = 
�LR given by (22). Then for every compact chain transitive
set M of this �ow the set of chain rotation numbers over M is a compact
interval,

�(M) = [��(M); �(M)] :

For every ergodic invariant measure � on KR the corresponding rotation num-
ber satis�es

�(�) = lim
t!1

arg
1

2t
Det2U(t; !)l0 2 �(M);

where M is the maximal chain transitive set containing the support of �.
Furthermore, the boundary points ��(M) and �(M) are attained for certain
ergodic invariant measures on KR.

Remark 3.2 In order to analyze rotation numbers corresponding to ergodic
measures � on the base space 
, we have to lift them to ergodic measures
� on 
 � LR projecting down to �. This is always possible, however, there
may be several possibilities for � (depending, in particular, on the choice of
the maximal chain transitive set containing the support of �).

The next step is the classi�cation of the maximal chain transitive sets in
KR. If the �ow on 
 is chain transitive and locally transitive this has been
done by Braga Barros and San Martin [3], who show in particular that their
number is bounded by 2n. Here is their setting:
The space LR of n-dimensional Lagrangian subspaces of R2n is a com-

pact manifold embedded in the Grassmannian Grn (2n) of n-dimensional
subspaces of R2n. The group Sp (n;R) acts transitively on LR. We cite
the following de�nition.

De�nition 3.3 The local group of local homeomorphisms of a metric space
X is locally transitive with parameters c; � > 0, if for every x 2 X and every
y in the ball B(x; �) of radius � around x there is a local homeomorphism � of
X with �(x) = y and d(�; id) = sup d(�(z); z) � cd(x; y) where the supremum
is taken over all elements in the domain of de�nition of �:

Under the assumption of local transitivity the chain recurrent components
of � can be described by �xed point sets (in LR) of diagonalizable matrices
in Sp (n;R). Consider a diagonal matrix of the form

D =

�
� 0
0 ��1

�
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with � = diagf�1; : : : ; �ng a n�n diagonal matrix with �i > 0, i = 1; : : : ; n.
Such a matrix belongs to Sp (n;R). Put

O (�) = fgDg�1 : g 2 Sp (n;R)g

for the adjoint orbit ofD. To have this orbit we can choose � = diagf�1; : : : ; �ng
so that �1 � �2 � � � � � �n � 1 (this is because there are matrices
g 2 Sp (n;R) such that the conjugation gDg�1 just permutes the entries
of �). The chain recurrent components of � are described in terms of O (�)
as follows [3].

Theorem 3.4 Assume that the base �ow on 
 is chain transitive and that
the local group of local homeomorphisms on 
 is locally transitive. Then
there exist �� 2 Sp (n;R) and a map D� : 
! O (��) such that any chain
recurrent component has the form

S
x2
 �xD� (!) where �xD� (!) is a �xed

point set of D� (!) in LR.

The �xed point set which enter in each union is taken in a compatible
way. The following example in the regular situation clari�es the meaning of
compatible. Suppose that for a given �ow �

�� = diagf�1; : : : ; �ng

is such that �1 > � � � > �n � 1. Denote by fe1; : : : ; en; f1; : : : ; fng be the basis
which diagonalizes D�(!). There are 2n �xed points of D�(!) in LR, namely,
the n-dimensional Lagrangian subspaces spanned by basic elements (that is,
spanfei1 ; : : : ; eikg [ ffj1 ; : : : ; fjn�kg with fi1; : : : ; ikg \ fj1; : : : ; jn�kg = ;).
Thus there are 2n chain transitive components of the �ow in LR. To see how
they are built above the base space 
 note that �� has just one attractor,
namely att (��) = spanfe1; : : : ; eng. The same way D� (!) has also one
attractor att (D� (!)). This way,[

!2

att (D� (!))

is a chain transitive component, which turns out to be an attractor of �.
Also, �� (and each D� (!)) has just one repeller (spanff1; : : : ; fng) �xed-
point and these repellers are combined together to give a repeller component
of �.
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Analogously, the other �xed points of D� (!) 2 O (��), ! 2 
, can be
labelled (in terms of bases like fe1; : : : ; en; f1; : : : ; fng) in a consistent way to
give all the 2n components.
In case �� is not regular (that is, there is repetition of eigenvalues) the

picture is similar. The main di¤erence is that a repetition of the eigenvalues
forces a collapsing of the components.
This implies the following result.

Corollary 3.5 Consider a nonautonomous linear Hamiltonian di¤erential
system (21) and the associated linear Hamiltonian skew product �ow KR given
by (22). Assume that the base �ow on 
 is chain transitive and that the local
group of local homeomorphisms on 
 is locally transitive. Then there are at
most 2n compact intervals of rotation numbers, each of them corresponding
to a chain recurrent component M of the �ow � on KR.

Since the rotation number is speci�ed by the behavior of a Lagrange plane,
the corresponding Lyapunov exponent also has to be speci�ed for Lagrange
planes. Thus one has to look at the growth rates in the corresponding exterior
product space. For the Morse spectrum this was analyzed in [6]. One can
either study these Lyapunov exponents separately; or, and this appears to be
more adequate, study the exponential growth rates (of the Lagrange planes)
and the rotation numbers simultaneously. Thus we de�ne the continuous
map

f : X = KR = 
� LR ! R2; f(!; l0) = (log jl0j ; argDet2l0): (24)

Conditions (2) and (3) are satis�ed, and we obtain the following result.

Corollary 3.6 Consider a nonautonomous linear Hamiltonian di¤erential
system of the form (21) and the associated linear Hamiltonian skew product
�ow on KR given by (22). Assume that the base �ow on 
 is chain transitive
and that the local group of local homeomorphisms on 
 is locally transitive.
Then, for each of the at most 2n chain recurrent component Mi of the �ow
� on KR, the set

F (Mi) =

�
(�; �) 2 R2; there are "k ! 0; T k !1 and

("k; T k)� chains �k with f(�k)! (�; �)

�
is a compact and convex set. For each ergodic measure � on the base 

there is a chain recurrent component M in KR such that the corresponding

15



Lyapunov exponent and the rotation number

�(�) = lim
t!1

1

t
log j�(t; !)l0j ; �(�) = lim

t!1
arg

1

2t
Det2U(t; !)l0;

respectively, satisfy
(�(�); �(�)) 2 F (M):

Remark 3.7 It may appear more natural to consider f in (24) as a map
into the complex numbers C where the Lyapunov exponent is the real part
and the rotation number is the imaginary part. Thus F (Mi) is a compact
convex subset of C.

Remark 3.8 Braga Barros and San Martin [3] show that local transitivity
holds, e.g., if X is a compact Riemannian manifold. It is not clear if local
transitivity holds for the closure of an almost periodic function or for the set
U = fu 2 L1(R;Rm); u(t) 2 U for almost all t 2 Rg of functions with values
in a compact and convex set U � Rm, endowed with the weak� topology on
L1. The latter space is of relevance in control theory (cp. [5]).

Remark 3.9 If we omit the assumption of local transitivity, we conjecture
that the methods from Salamon/Zehnder [10] combined with [6] (concerning
general linear �ows on vector bundles) can be modi�ed so that they give exis-
tence of a �nest Morse decomposition for the �ow on Lagrange planes. Thus
it would follow that the number of maximal chain transitive sets is �nite.

Remark 3.10 A possible application of the framework developed above con-
cerns autonomous linear Hamiltonian systems of the form

J _z = H0z;

and their nonautonomous perturbations

J _z = [H0 +
Pm

i=1Hiui(t)]z; u(t) 2 �U;

where � � 0 is a parameter and U is a compact and convex subset of Rm.
Then we can take as the base �ow the shift on the space U of perturbation (or
control) functions. One will expect semicontinuity results of rotation numbers
and Lyapunov exponents in dependence on �. Under an inner-pair condition
(cp. Gayer [8] for methods to verify it) also continuous dependence on � may
be expected.
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4 Rotation Numbers in Planes

An alternative generalization of rotation numbers has been proposed by
L.A.B. San Martin [11]. It relies on the restriction of the �ow to oriented
planes. We follow here the presentation in L. Arnold [1].
Recall that the free operation G � E ! E of a �nite group G on a

Hausdor¤ space E de�nes a principal G�bundle (cp., e.g., tom Dieck [12],
Beispiel 6.5)

p : E ! E=G:

For rotation numbers the Grassmann manifold G+2 (d) of oriented 2�planes
has to be considered. It is a twofold covering of the Grassmann manifold
G2(d). It is helpful to consider also the Stiefel manifold St2(d) of orthonor-
mal 2�frames which is a principal bundle over G2(d) with structure group
SO(2;R). One also has the principal �ber bundle over the (1; 2)��ags

St2(d)! F(1;2): (25)

with structure group G �= Z22, the Kleinian group of four elements. More
explicitly, for a �ag (V1 � V2) 2 F(1;2) an element n = (u; v) 2 St2(d) is
given by u 2 V1 with kuk = 1 and v 2 V2 with kvk = 1 and hu; vi = 0.
These two vectors give rise to four orthonormal frames, namely n1 = n =
(u; v); n2 = (�u; v); n3 = (�u;�v); n4 = (u;�v). Here n1 and n3 have the
same orientation, and n2 and n4 also have the same, but opposite, orientation.
The action of G = fg1; g2; g3; g4g is de�ned by gin = ni; i = 1; :::; 4. Thus
(25) is a fourfold covering.
This generalizes to vector bundles

� : V = Rd � 
! 


with �bers Rd�f!g where Rd is endowed with the Euclidean inner product.
Along with V come the Grassmann bundles G2(V) = G2(d)�
 and G+2 (V) =
G+2 (d) � 
, the Stiefel bundle St2(V) = St2(d) � 
, and the �ag bundle
F(1;2)(V) = F(1;2)(d)� 
.

Remark 4.1 Analogous de�nitions can be given for the Stiefel manifold over
a Riemannian manifold (cp. Arnold [1]). Note that here the rotation number
(to be de�ned below) depends on the Riemannian metric.
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Let � be a smooth linear �ow � on V. This induces smooth �ows on the
oriented 2�planes G+2 (V) and on the �ag bundle F(1;2)(V). It also induces a
smooth �ow on the Stiefel bundle which is de�ned as follows: Take a frame
n = (u; v) and ! 2 
. Then for t 2 R de�ne the image at time t as the
orthonormalized pair

?(�tu;�tv) =
�
�tu

k�tuk
;
�tv � h�tv;�tui�tu
k�tv � h�tv;�tui�tuk

�
:

This de�nes a �ow on St2(V) which, as those on the Grassmann bundles and
on the �ag bundle, we also denote for simplicity by �. Then

St2(V)! F(1;2)(V)

is a �ber bundle with structure group G = Z22 and compact base space. The
induced �ows are equivariant with respect to G.
The next proposition relates the maximal chain transitive sets in the

bundle and in the base.

Proposition 4.2 Consider a principal G��ber bundle � : E ! B with �nite
structure group G, jGj = l, and assume that B is compact. Let � be a �ber
preserving �ow on E which is equivariant with respect to G. Then for every
compact maximal chain transitive set MB of the induced �ow on the base
B there are k 2 f1; :::; lg maximal chain transitive sets Mi � E of � with
�(Mi) = MB and every compact maximal chain transitive set of � is of this
form.

Proof. Consider a maximal chain transitive set MB � B and let b 2 MB.
Fix " > 0 and consider for b and b0 2 MB the sets ��1(b) = fe1; :::; elg and
��1(b0) = fe01; :::; e0lg. Then for � > 0, small enough, a ��chain in MB from b
to b0 gives rise to "�chains from each of the ei to some e0j(i). Since �

�1(MB)
is compact invariant, it contains a maximal chain transitive set which then
is invariant. Hence there is a maximal chain transitive set ME in ��1(MB)
which projects to MB. By uniform continuity, a chain transitive set in E
projects down to a chain transitive set in B. Thus, by maximality of MB,
the set ME is also a maximal chain transitive set in E (not just in ��1(MB).
For every g 2 G the set gME is also a maximal chain transitive set.
Every maximal chain transitive set maps down into a maximal chain

transitive set in B. The arguments above show that it is of the form above
and hence the projection is onto. Thus the assertion follows.
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As a consequence of this result one can give estimates on the number
of maximal chain transitive sets in Stiefel bundles and in oriented 2�plane
bundles.

Corollary 4.3 Let � be a linear �ow on a d�dimensional vector bundle
� : V = Rd�
! 
 with compact chain transitive base space 
 and let l be the
number of chain recurrent components of the induced �ow on the �ag bundle
F(1;2)(V). Then l � d(d�1) and the numbers of chain recurrent components of
the induced �ows on the Stiefel bundle St2(V) and on the oriented Grassmann
bundle G+2 (V) are bounded above by 4l and 2l, respectively.

Proof. By [6], Theorem 5 the number of chain recurrent components in
F(1;2)(V) is at most d(d� 1). Thus the estimate in the Stiefel bundle follows
from Proposition 4.2 and the fact that the structure group has four elements.
By [6], Proposition 2 the number of chain recurrent components in G2(V) is
at most d(d � 1). Thus the estimate in G+2 (V) follows from Proposition 4.2
and the fact that the structure group has two elements.

Remark 4.4 If the base space 
 satis�es the local transitivity condition, see
De�nition 3.3, of Braga Barros/San Martin [3], then one will be able to give
more precise estimates for l using the theory of semi-simple Lie groups.

Now the rotation number (cp. [1]) can be de�ned in the following way.

De�nition 4.5 For a linear di¤erential equation _x(t) = A(t)x(t) in Rd, with
d � 2 and locally integrable t 7! A(t), the rotation number of the oriented
2�plane p 2 G+2 (d) is

lim
T!1

1

T

Z T

0

hA(t)�ut n;�vtni dt;

(provided the limit exists) where n(t) = (�ut n;�
v
tn) = �t(n) is the �ow in-

duced in St2(d) with arbitrary initial frame n = (u; v) 2 St2(d) in the �ber
over p;

Note that the limit (if it exists) is independent of the choice of n; if an
ergodic measure in the base space is given and additional assumptions are
satis�ed, existence of the limit can be guaranteed almost everywhere (cp. [1]).
The chain construction introduced above leads us to the following de�nition.
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Consider a smooth linear �ow � on a vector bundle V = Rd � 
 with
compact base space 
 and let

d

dt
�t(x; !) = A(! � t)�t(x; !); (x; !) 2 Rd � 
,

where ! � t denotes the induced �ow on the base. For a chain � in St2(V)
given by

(u0; v0); ::; (un; vn) 2 St2(V); T0; :::; Tn > T .
de�ne the rotation number of � as

�(�) =

 
n�1X
i=0

Ti

!�1 n�1X
i=0

Z Ti

0

hA(t)�ut ni;�vtnii dt:

Recall that the chain recurrent components in St2(V) project down to the
chain recurrent components in G+2 (V).

De�nition 4.6 For a chain recurrent component M of the induced �ow on
the Grassmann bundle G+2 (V) of oriented 2�planes de�ne the chain rotation
numbers as

�(M) =

�
� 2 R; there are "k ! 0; T k !1 and

("k; T k)�chains �k with �(�k)! �

�
;

here the chains �k are taken in the chain recurrent components in St2(V)
which project down to M .

The general theory above and the estimates on the numbers of chain
recurrent components in G+2 (V) imply the following result.

Theorem 4.7 Let � be a smooth linear �ow on a vector bundle Rd�
 with
compact and chain transitive base space 
. Then, for every compact chain
transitive set M of the induced �ow on the Grassmann bundle G+2 (V), the
set of chain rotation numbers over M is a compact interval

�(M) = [��(M); �(M)] :

For every ergodic invariant measure � on G+2 (V) with support contained in the
maximal chain transitive set M , the corresponding rotation number satis�es

�(�) = lim
t!1

1

T

Z T

0

hA(t)�ut n;�vtni dt 2 �(M): (26)
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Furthermore, the boundary points ��(M) and �(M) are attained for certain
ergodic invariant measures. There are k intervals of rotation numbers with
k 2 f1; :::; 2d(d� 1)g:

Proof. For maximal chain transitive sets in the Stiefel bundle St2(V), Corol-
lary 4.3 and Theorem 2.8 yield the assertions above. It remains to show that
for every chain recurrent component in St2(V) projecting down to M , one
obtains the same interval I. Let �� be a boundary point of I. Then �� is
attained in an ergodic measure on St2(V). Hence there is an orthonormal
frame in St2(V), for which the limit in (26) exists and coincides with ��.
Then it follows (cp. [1]) that the limit does not change if we start in an-
other orthonormal frame in the same �ber over G+2 (V). Thus the boundary
point �� is also attained for each other chain recurrent component in St2(V)
projecting down to M .

Acknowledgement 1 We thank Luiz A.B. San Martin for making [3] avail-
able and for his help in understanding Theorem 3.4.
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