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Abstract

The global behavior of a dynamical system can be described by its
Morse decompositions or its attractor and repeller con�gurations. There
is a close relation between these two approaches and also with (maximal)
chain recurrent sets that describe the system behavior on �nest Morse
sets. These sets depend upper semicontinuously on parameters. The
connection with ergodic theory is provided through the construction of
invariant measures based on chains.
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1 Introduction

This paper elaborates on some notions and results in the theory of dynamical
systems in continuous time, due to C. Conley. We stress the relations between
chain transitivity, Morse decompositions and attractors. While many of the
individual results in this paper are known, they have not been presented in a
uni�ed way that explores all the connections. The paper is mostly self-contained
(except for a few topological results), and presents several examples to stress
the core concepts of global behavior. It is an extended version of Appendix B
in [7].
In Section 2 we recall some basic properties of compact metric spaces. Sec-

tion 3 discusses the basic concepts of continuous �ows on compact metric spaces
with time in the real line R. Sections 4, 5, and 6 analyze the relations between
Morse decompositions and attractors, Morse decompositions and chain recur-
rence, and chain recurrence and attractors, respectively. Section 7 is devoted to
the construction of invariant measures based on chains. The �nal Section 8 con-
siders families of dynamical systems and shows that maximal chain transitive
sets depend upper semicontinuously on parameters.
Conley�s theory of �ows on compact metric spaces also allows the construc-

tion of generalized Lyapunov functions outside of the chain recurrent set. For
an elaboration of this point of view, see Robinson [22, Section 9.1] or Easton
[11].

2 Metric Spaces

This paper considers continuous dynamical systems on compact metric spaces.
For these, we recall a few basic concepts and theorems.

De�nition 2.1 A metric space (X; d) is a set X together with a distance func-
tion d : X �X ! R such that for all points x; y; z 2 X the following holds: (i)
d(x; y) � 0 and d(x; y) = 0 if and only if x = y, (ii) d(x; y) = d(y; x), and (iii)
d(x; z) � d(x; y) + d(y; z).

A metric space X is compact if every sequence in X has a convergent subse-
quence. This is equivalent to each of the following conditions (cp., e.g., Pedersen
[19, Theorem 1.6.2 ]):

(i) Each cover X =
S
� V� by open subsets V� with � in some index set has

a �nite subcover.
(ii) If � is a family of closed subsets of X; such that no intersection of �nitely

many sets in � is empty, then the intersection of all sets in � is nonempty.
Note that condition (ii) implies, in particular, that every decreasing (with

respect to set inclusion) family of nonempty closed subsets of X has nonvoid
intersection.
A metric space X is compact if and only if it is complete (i.e., each Cauchy

sequence has a limit) and it is totally bounded; this property means that for
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every " > 0 there are �nitely many points x1; :::; xn 2 X such that

X =

n[
i=1

fy 2 X; d(y; xi) < "g

(see, e.g., Engelking [12, Theorem 4.3.29]). Furthermore, every compact metric
space has a countable basis of its topology, i.e., there are countably many open
sets Vn; n 2 N, such that every open set V can be written as the union of sets
Vn.

Theorem 2.2 (Baire) The countable intersection of open and dense subsets
in a complete metric space is dense.

A proof is given, e.g., in Pedersen [19, Proposition 2.2.2.] or Engelking [12,
Corollary 3.9.4].

Theorem 2.3 (Blaschke) The set of nonvoid closed subsets of a compact met-
ric space becomes a compact metric space under the Hausdor¤ distance

dH(A;B) = max

�
max
a2A

�
min
b2B

d(a; b)

�
; max
b2B

�
min
a2A

d(a; b)

��
: (1)

In fact, one can verify that this space is complete and totally bounded and
hence compact.

3 Flows

We start with some basic concepts and properties for continuous dynamical
systems on compact metric spaces with an emphasis on Conley�s theory [8], [9].
For a thorough analysis see, in particular, Akin [1], Robinson [22], and Katok
and Hasselblatt [15]. For generalizations to the case of noncompact metric
spaces, see Rybakowski [24] and Hurley [14].

De�nition 3.1 A �ow or continuous time dynamical system on a metric space
X is given by a continuous map � : R�X ! X that satis�es �(0; x) = x and
�(t+ s; x) = �(t;�(s; x)) for all x 2 X and all t; s 2 R:

In the following we frequently use the suggestive notations x � t := �tx :=
�(t; x) for t 2 R and x 2 X. The orbit of a point x 2 X is then fy 2 X, there
is t 2 R with y = �(t; x)g = x � R.

De�nition 3.2 The !-limit set of a subset Y � X is de�ned as

!(Y ) =

�
y 2 X; there are tk !1 and yk 2 Y

such that yk � tk ! y

�
=
\
t>0

cl (Y � [t;1)) :

Similarly

!�(Y ) =

�
y 2 X; there are tk ! �1 and yk 2 Y

such that yk � tk ! y

�
=
\
t>0

cl (Y � (�1;�t]) :
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Note that, in general, !(Y ) will be larger than the union of all !(y); y 2
Y , see Example 3.3. If the space X is compact, the sets !(Y ) are nonvoid,
compact, and invariant. They are connected if Y is connected. The !�-limit
sets (often denoted as �-limit sets) are the !-limit sets for the time reversed
system ��(t; x) := �(�t; x); t 2 R; x 2 X. A point x 2 X is called recurrent if
x 2 !(x).

Example 3.3 Consider the ordinary di¤erential equation

_x = x(x� 1)(x� 2)2(x� 3)

on the compact interval X := [0; 3]. The solutions '(t; x) of this equation with
'(0; x) = x are unique and exist for all t 2 R. Hence they de�ne a dynamical
system � : R� [0; 3] �! [0; 3] via �(t; x) := '(t:x). The limit sets of this system
are of the following form: For points x 2 [0; 3] we have

!(x) =

8>><>>:
f0g for x = 0
f1g for x 2 (0; 2)
f2g for x 2 [2; 3)
f3g for x = 3.

Limit sets for subsets of [0; 3] can be entire intervals. E.g., for Y = [a; b] with
a 2 (0; 1] and b 2 [2; 3) we have !(Y ) = [1; 2], which can be seen as follows:
Obviously, it holds that 1; 2 2 !(Y ). Let x 2 (1; 2), then limt!�1�(t; x) = 2.
We de�ne tn := n 2 N and xn := '(�n; x) 2 (1; 2) � Y . Then �(tn; xn) =
�(n;�(�n; x)) = x for all n 2 N, which shows that !(Y ) � [1; 2]. For the
reverse inclusion let x 2 (0; 1). Note that limt!1�(t; a) = 1 and for all
y 2 [a; 1) and all t � 0 we have d(�(t; y); 1) � d(�(t; a); 1), where d(�; �) is
the metric on [0; 3] inherited from R. Hence for any sequence yn in [a; 1)
and any tn ! 1 one sees that d(�(tn; yn); 1) � d(�(tn; a); 1) and therefore
limn!1 d(�(tn; yn); 1) � limn!1 d(�(tn; a); 1) = 0. This implies that no point
x 2 (0; 1] can be in !(Y ). The same argument applies to x = 0, and one argues
similarly for x 2 (2; 3].
Furthermore, the limit set of a subset Y can strictly include Y , e.g., for Y =
(0; 3) it holds that !(Y ) = [0; 3]:
We show that 0; 3 2 !(Y ), the rest follows easily. Let x 2 (0; 1). De�ne
yn := �(�2n; x) and xn := �(�n; x), then �(n; yn) = �(n;�(�2n; x)) =
�(�n; x) = xn and limxn = 0. Hence with tn := n and yn as above we have
�(tn; yn) ! 0. The argument is similar for proving that 3 2 !(Y ), and for
points in (0; 3).

Example 3.4 Consider the following dynamical system � in R2nf0g, given by
a di¤erential equation in polar form for r > 0, � 2 [0; 2�), and a 6= 0:

_r = 1� r; _� = a:

For each x 2 R2nf0g the !-limit set is the circle !(x) = S1 = f(r; �); r = 1;
� 2 [0; 2�)g.The state space R2nf0g is not compact, and �-limit sets exist only
for y 2 S1, for which we have !�(y) = S1.
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Example 3.5 For dynamical systems in R2 we have: A non-empty, compact
limit set of a dynamical system in R2, which contains no �xed points, is a closed,
i.e. a periodic orbit (theorem of Poincaré-Bendixson, see, e.g., [22]). Any non-
empty, compact limit set of a dynamical system in R2 consists of �xed points,
connecting orbits (such as homoclinic or heteroclinic orbits), and periodic orbits.

De�nition 3.6 A �ow on a metric space X is called topologically transitive if
there exists some x 2 X such that !(x) = X; the �ow is called topologically
mixing if for any two open sets V1; V2 � X there exists T > 1 such that

V1 � (�T ) \ V2 6= ?:

Proposition 3.7 If a �ow on a complete metric space is topologically mixing,
it is topologically transitive and fx 2 X; !(x) = Xg is residual, i.e., it contains
a countable intersection of open and dense subsets.

Proof. Topological mixing implies that for any two open sets V1; V2 � X there
exists a sequence tk !1 such that

V1 � (�tk) \ V2 6= ?:

Thus for all open V � X the set
S
t�0 V � (�t) is dense in X, because otherwise

there would exist open sets V1 and V2 with
�S

t�0 V1 � (�t)
�
\V2 = ?. Now for

a countable basis Vn of the topology and m;n 2 N the sets Vn � (�m) are open.
Then the sets

Xm;n :=
[
t�m

Vn � (�t) =
[
t�0
(Vn � (�m)) � (�t)

are open and dense. Hence, by Baire�s theorem (Theorem 2.2), the intersectionT
m;n2NXm;n is nonvoid. We claim that for every x in this set !(x) = X. It

su¢ ces to show that the closure of every basis set Vn has nonvoid intersection
with !(x): Clearly, x 2

T
m;n2NXm;n �

T
n2N

S
t�m (Vn � (�t)). This shows

that x � tm 2 Vn for a sequence tm !1.
We note that related but di¤erent concepts of topological transitivity and

topological mixing are, e.g., discussed in [15]. The next result due to Banks et
al. [3] shows that a topologically transitive �ow with a dense set of periodic
points also has sensitive dependence on initial conditions. Thus it is chaotic in
the sense of Devaney [10].

De�nition 3.8 A �ow � on a metric space X has sensitive dependence on ini-
tial conditions if there is � > 0 such that for every x 2 X and every neighborhood
N of x there are y 2 N and T > 0 such that d(y � T; x � T ) > �.

Proposition 3.9 Consider a �ow � on a metric space X that is not a single
periodic orbit. If the �ow is topologically transitive and has a dense subset of
periodic points, then it has sensitive dependence on initial points.
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Proof. First observe that there is a number �0 > 0 such that for all x 2 X
there exists a periodic point q 2 X whose orbit is a distance at least �0=2 from
x. Indeed, choose two arbitrary periodic points q1 and q2 with disjoint orbits
q1 � R and q2 � R. Let �0 denote the distance between the compact sets q1 � R
and q2 � R. Then by the triangle inequality, every point x 2 X is a distance at
least �0=2 from one of the chosen two periodic orbits. We will show that � has
sensitive dependence on initial conditions with sensitivity constant � = �0=8.
Let x be an arbitrary point in X and let N be some neighborhood of x.

Because the periodic points of � are dense, there exists a periodic point p in the
intersection U = N \B�(x) of N with the open ball B�(x) of radius � centered
at x. Let T denote the period of p. As we showed earlier, there exists a periodic
point q 2 X whose orbit is a distance at least 4� from x. Set

V =
\

0�t�T
(B�(q � t) � (�t)) :

By continuous dependence on the initial value, the set V is open and nonvoid
because q 2 V . Consequently, because � is topologically transitive, there exist
y in U and � > 0 such that y � � 2 V .
Now let j be the integer part of �=T + 1. Then 0 � jT � � � T and, by

construction, one has

y � (jT ) = (y � �) � (jT � �) 2 V � (jT � �) � B�(q � (jT � �)):

Now p � (jT ) = p, and so by the triangle inequality

d(p � (jT ); y � (jT )) = d(p; y � (jT ))
� d(x; q � (jT � �))� d(q � (jT � �); y � (jT ))� d(p; x):

Consequently, because y � (jT ) 2 B�(q � (jT � �)), one has

d(p � (jT ); y � (jT )) > 4� � � � � = 2�:

Thus, using the triangle inequality again, either d(x � (jT ); y � (jT )) > � or
d(x � (jT ); p � (jT )) > �. In either case, we have found a point in N whose image
after time jT is more than distance � from the image of x.

Remark 3.10 The proof of Proposition 3.9 is adapted from discrete to contin-
uous time from Banks et al. [3].

4 Morse Decompositions and Attractors

The global behavior of �ows on compact metric spaces can be described via
Morse decompositions, which are special collections of compact invariant sub-
sets. A set K � X is called invariant if x � R � K for all x 2 K; a compact
subset K � X is called isolated invariant, if it is invariant and there exists a
neighborhood N of K, i.e., a set N with K � intN , such that x �R � N implies
x 2 K. Thus an invariant set K is isolated if every trajectory that remains close
to K actually belongs to K.
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Example 4.1 Consider the dynamical system discussed in Example 3.3. In-
variant sets for this system are the sets of the form fx�g, where x� is a �xed
point, all closed intervals with �xed points at the boundaries, and disjoint unions
of these two types. Note that �invariant�means forward (for t � 0) and back-
ward (for t � 0) in time, hence this �ow has no other invariant sets. It is easily
proved that all invariant sets of this system are isolated invariant.

Example 4.2 Consider on the interval [0; 1] � R the ordinary di¤erential equa-
tion

_x =

�
x2 sin(�x ) for x 2 (0; 1]

0 for x = 0.

Invariant sets for the associated �ow include again sets of the form fx�g where
x� is a �xed point. But the set f0g is not isolated invariant: Let U(0; ") be the
"�neighborhood of 0 in [0; 1]. Then there exists x 2 U(0; ") with sin(�x ) = 0,
i.e. x is a �xed point and hence �(t; x) = x 2 U(0; ") for all t 2 R.

De�nition 4.3 A Morse decomposition of a �ow on a compact metric space
is a �nite collection fMi; i = 1; :::; ng of nonvoid, pairwise disjoint, and iso-
lated compact invariant sets such that:(i) For all x 2 X one has !(x); !�(x) �
n[
i=1

Mi. (ii) Suppose there are Mj0 ;Mj1 ; :::;Mjl and x1; :::; xl 2 X n
n[
i=1

Mi

with !�(xi) � Mji�1 and !(xi) � Mji for i = 1; :::; l; then Mj0 6=Mjl . The
elements of a Morse decomposition are called Morse sets.

Thus the Morse sets contain all limit sets and �cycles� are not allowed.
As an easy consequence of this de�nition we obtain the following equivalent
characterization.

Proposition 4.4 A �nite collection fMi; i = 1; :::; ng of nonvoid, pairwise dis-
joint, and isolated compact invariant sets is a Morse decomposition if and only
if condition (i) holds, !�(x) [ !(x) � Mi implies x 2 Mi, and the following
relation ��� is an order (satisfying re�exivity, transitivity and antisymmetry):

Mi �Mk if
there areMj0 =Mi;Mj1 ; :::Mjl =Mk and x1; :::; xl 2 X
with !�(xk) �Mjk�1 and !(xk) �Mjk for k = 1; :::; l:

(2)
We enumerate the Morse sets in such a way thatMi �Mj implies i � j.

Proof. The �no-cycle�condition (ii) in the de�nition of Morse decompositions
is equivalent to the stated property of the limit sets and the antisymmetry
property of the order ���. Transitivity is clear and re�exivity follows from
invariance of the Morse sets. The numbering is always possible, but it need not
be unique.
Note that i < j does not imply Mi � Mj and that it does not imply the

existence of x 2 X with !�(x) � Mi and !(x) � Mj . Morse decompositions
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describe the �ow via its movement from Morse sets with lower indices toward
those with higher ones.
A Morse decomposition fM1; :::;Mng is called �ner than a Morse decom-

position fM0
1; :::;M0

n0g, if for all j 2 f1; :::; n0g there is i 2 f1; :::; ng with
Mi � M0

j . The intersection of two Morse decompositions fM1; :::;Mng and
fM0

1; :::;M0
n0g de�nes a Morse decomposition�

Mi \M0
j ; i; j

	
;

where only those indices i = 1; :::; n; j = 1; :::; n0 withMi\M0
j 6= ? are allowed.

Note that, in general, intersections of in�nitely many Morse decompositions do
not de�ne a Morse decomposition. In particular, there need not exist a �nest
Morse decomposition. The intersection of all Morse decompositions for a �ow
need not be a countable set. It may form a Cantor set; see [1, p.25] (and
use Theorems 4.16 and 6.4). If there exists a �nest Morse decomposition, it is
unique.

Example 4.5 Consider the dynamical system discussed in Example 3.3. This
�ow has, e.g., the following Morse decompositions [1; 3] � f0g, f0g � f1g �
[2; 3], f0g � [1; 2] � f3g, f1g � f0g [ [2; 3], and others. It also has a unique
�nest Morse decomposition f0g � f1g � f2g � f3g.

Example 4.6 Consider the dynamical system de�ned in Example 4.2. Morse
decompositions of the associated �ow are, e.g., the setsMn := ff 1ng, [0;

1
n+1 ][

[ 1
n�1 ; 1]g for n 2 N. Note that

T
Mn = ff0g, f 1ng for n 2 Ng is not a Morse

decomposition. This system does not have a �nest Morse decomposition, since
all the individual sets f 1ng for n 2 N would have to be included as Morse sets.

Morse decompositions can be constructed from attractors and their comple-
mentary repellers. We will now de�ne these rather intricate objects.

De�nition 4.7 For a �ow on a compact metric space X a compact invariant set
A is an attractor if it admits a neighborhood N such that !(N) = A. A repeller
is a compact invariant set R that has a neighborhood N� with !�(N�) = R:

We also allow the empty set as an attractor. A neighborhood N as in Def-
inition 4.7 is called an attractor neighborhood. Every attractor is compact and
invariant, and a repeller is an attractor for the time reversed �ow. Furthermore,
if A is an attractor in X and Y � X is a compact invariant set, then A \ Y is
an attractor for the �ow restricted to Y .

Example 4.8 Consider again the dynamical system discussed in Example 3.3.
This system has, besides ? and the entire space [0; 3], three attractors, namely
f1g, [1; 2], and [1; 3]. The fact that these sets are indeed attractors follows
directly from the limit sets discussed in Example 3.3. To see that there are no
other attractors one argues as in Examples 3.3 and 4.1. Similarly, the nontrivial
repellers of this system are seen to be f0g, [2; 3], f3g, f0g[ [2; 3], and f0g[f3g.
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Example 4.9 Consider the complete metric space S1, the 1�dimensional sphere,
which we identify here with R=2�. On S1 the di¤erential equation

_x = sin2 x

de�nes a dynamical system. For this �ow, the only attractors are ? and S1: Let
A � S1 be an attractor, i.e. there exists a neighborhood N(A) with !(N) = A.
For each point x 2 S1 the limit set !(x) contains at least one of the two �xed
points 0 or �, which implies that each attractor has to contain at least one of
the �xed points. Consider the point � and let N(�) be any neighborhood. We
have [�; 0] � !(N) � A. Repeating this argument for the �xed point 0, we see
that [0; �] � A, and hence A = S1.

We note the following lemma.

Lemma 4.10 For every attractor neighborhood N of an attractor A there is a
time t� > 0 with cl (N � [t�;1)) � intN .

Proof. We may assume that N is closed. Suppose that there are tn !1 and
xn 2 N with xn � tn =2 intN . Hence we may assume that xn � tn converges to
some element x =2 intN . This contradicts the assumption !(N) = A.

Lemma 4.11 For an attractor A, the set A� = fx 2 X; !(x) \A = ?g is a
repeller, called the complementary repeller. Then (A;A�) is called an attractor-
repeller pair.

Proof. Let N be a compact attractor neighborhood of A. Choose t� > 0 such
that cl (N � [t�;1)) � N and de�ne an open set V by

V = X n cl (N � [t�;1)):

Then X = N [ V . Furthermore V � (�1;�t�] � X n N and therefore V is a
neighborhood of !�(V ) � X nN � V . Hence !�(V ) is a repeller. Furthermore,
by invariance !�(V ) � A�. The converse inclusion follows, because A is isolated
invariant.
Note that A and A� are disjoint. There is always the trivial attractor-repeller

pair A = X; A� = ?:

Example 4.12 Consider again the dynamical system discussed in Examples
3.3 and 4.8. The nontrivial attractor-repeller pairs of this system are A1 = f1g
with A�1 = f0g [ [2; 3], A2 = [1; 2] with A�2 = f0g [ f3g, and A3 = [1; 3] with
A�3 = f0g.

A consequence of the following proposition is, in particular, that in the time
reversed system the complementary repeller of A� is A.

Proposition 4.13 If (A;A�) is an attractor-repeller pair and x =2 A[A�; then
!�(x) � A� and !(x) � A:

9



Proof. By de�nition of A� it follows that !(x) \ A 6= ?. Thus there is t0 > 0
with x � t0 2 N , where N is a neighborhood of the attractor A with !(N) = A:
Hence there cannot exist a point y 2 !(x)nA, and hence !(x) � A. Now suppose
that there is y 2 !�(x)nA�. Thus by de�nition of A� one has !(y)\A 6= ?: Using
continuous dependence on the initial value one �nds that there are tn !1 with
x�(�tn)! A, and thus for n large enough, x�(�tn) 2 N . Clearly x�(�tn)�tn ! x
and hence !(N) = A implies that x 2 A; contradicting the choice of x. Thus
!�(x) � A�.
Trajectories starting in a neighborhood of an attractor leave the neighbor-

hood in backwards time.

Lemma 4.14 For a �ow on a compact metric space X a compact invariant set
A is an attractor if and only if there exists a compact neighborhood N of A such
that x � (�1; 0] * N for all x 2 N nA.

Proof. The necessity of the condition is clear because x � (�1; 0] � N implies
x 2 !(N): Conversely, let N be a compact neighborhood of A such that x �
(�1; 0] * N for all x 2 N nA. Thus there exists a t� > 0 such that x � [�t�; 0] *
N for all x 2 N \ cl(X n N): Now choose a neighborhood V of A such that
V � [0; t�] � N . Then V � [0;1) � N and hence !(V ) = A and A is an attractor.

This implies the following characterization of attractor-repeller pairs.

Lemma 4.15 Let (x; t) 7! x � t be a �ow on a compact metric space X. Then a
pair A; A� of disjoint compact invariant sets is an attractor-repeller pair if and
only if (i) x 2 X n A� implies x � [0;1) \ N 6= ? for every neighborhood N of
A, and (ii) x 2 X nA implies x � (�1; 0] \N� 6= ? for every neighborhood N�

of A�:

Proof. Certainly, these conditions are necessary. Conversely, suppose that (i)
holds and let W be a compact neighborhood of A with W \A� = ?. Then (ii)
implies that x � (�1; 0] * W for all x 2 W n A. By Lemma 4.14 this implies
that A is an attractor. Moreover, it follows from (i) that !(x) \ A 6= ? for all
x 2 X nA�. Hence A� = fx 2 X; !(x)\A = ?g is the complementary repeller
of A.
The following result characterizes Morse decompositions via attractor-repeller

sequences (it is often taken as a de�nition; cp. Rybakowski [24, De�nition III.1.5
and Theorem III.1.8], Salamon [25], or Salamon and Zehnder [26].

Theorem 4.16 For a �ow on a compact metric space X a �nite collection of
subsets fM1; :::;Mng de�nes a Morse decomposition if and only if there is a
strictly increasing sequence of attractors

? = A0 � A1 � A2 � ::: � An = X;

such that
Mn�i = Ai+1 \A�i for 0 � i � n� 1:
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Proof. (i) Suppose that fM1; :::;Mng is a Morse decomposition. De�ne a
strictly increasing sequence of invariant sets by A0 = ? and

Ak = fx 2 X; !�(x) �Mn [ ::: [Mn�k+1g for k = 1; :::; n:

First we show that the sets Ak are closed. Clearly, the set An = X is closed.
Proceeding by induction, assume that Ak+1 is closed and consider xi 2 Ak with
xi ! x: We have to show that !�(x) � Mn [ ::: [Mn�k+1. The induction
hypothesis implies that x 2 Ak+1 and hence we have !�(x) �Mn [ :::[Mn�k.
Because !�(x) � Mj for some j 2 f1; :::; ng, either the assertion holds or
!�(x) � Mn�k. In order to see that the latter case cannot occur, let V be an
open neighborhood ofMn�k such that V \Mj = ? for j 6= n� k. There are a
sequence t� !1 and z 2Mn�k such that x�(�t�) 2 V and d(x�(�t�); z) � ��1
for all � � 1. Hence for every � there is a m� � � such that xm�

� (�t�) 2 V
and d(xm�

� (�t�); z) � 2��1. Because !(xi)[!�(xi) �Mn [ :::[Mn�k+1 for
all i, there are �� < t� < �� such that xm�

� (���) and xm�
� (��v) 2 @V and

xm�
�(�t) 2 clV for all t 2 [�� ; �� ]. Invariance ofMn�k implies that t���� !1

as � ! 1. We may assume that there is y 2 @V with xm� � (���) ! y for
� !1. Then it follows that y � [0;1) � clV and hence by the choice of V one
has !(y) � Mn�k. Because Ak+1 is closed and invariant, we have y 2 Ak+1
and so !�(y) � Mn [ ::: [Mk�n. The ordering of the Morse sets implies that
y 2Mn�k, contradicting y 2 @V .
If Ak is not an attractor, Lemma 4.14 implies that for every neighborhood N

of Ak there is x 2 N nAk with x � (�1; 0] � N: Then there is j � n�k+1 with
!�(x) � Mj : On the other hand x =2 Ak implies !�(x) *Mn [ ::: [Mn�k+1,
hence !�(x) 2 Mi for some i < n � k + 1. This contradiction implies that Ak
is an attractor.
It remains to show thatMn�i = Ai+1\A�i . Clearly,Mn�i � Ai+1: Suppose

that x 2 Mn�i n A�i . Then !(x) � Ai and therefore !(x) � Mj for some
j � n � i + 1. This contradiction proves Mn�i � Ai+1 \ A�i . If conversely,
x 2 Ai+1 \A�i , then !�(x) �Mn [ ::: [Mn�i. From x 2 A�i we conclude

!(x) \Mn [ ::: [Mn�i+1 � !(x) \Ai = ?

and hence !(x) �M1[:::[Mn�i. Now the de�nition of a Morse decomposition
implies x 2Mn�i.
(ii) Conversely, let the sets Mj ; i = 1; :::; n; be de�ned by an increasing

sequence of attractors as indicated earlier. Clearly these sets are compact and
invariant. If i < j; thenMn�i \Mn�j = Ai+1 \A�i \Aj+1 \A�j = Ai+1 \A�j �
Aj \ A�j = ?; hence the sets Mi are pairwise disjoint. It remains to prove
that for x 2 X either x � R � Mj for some j or else there are indices i < j
such that !�(x) � Mn�j and !(x) � Mn�i. There is a smallest integer i
such that !(x) � Ai, and there is a largest integer j such that !�(x) � A�j .
Clearly i > 0 and j < n. Now !(x) * Ai�1, i.e., x 2 A�i�1. Thus by invariance
x � R � A�i�1 and !(x) � A�i�1. On the other hand, !

�(x) * A�j+1 and we
claim that x � R � Aj+1. In fact, otherwise x � t =2 Aj+1 for some t 2 R. If

11



now x � t =2 A�j+1; then !�(x) � A�j+1; a contradiction, thus x � t 2 A�j+1 and so
!(x) � A�j+1; again a contradiction. Hence indeed x � R � Aj+1.
Now j � i�1; because otherwise j+1 � i�1 and thus Aj+1 � Ai�1, which

implies x �R � A�i�1\Ai�1 = ?. If j = i�1, then x �R � A�i�1\Ai =Mn�i�1.
If j > i � 1, then !(x) � A�i�1 \ Aj+1 � A�i�1 \ Ai = Mn�i+1 and !�(x) �
A�j \Aj+1 =Mn�j . This proves the claim.

Corollary 4.17 Let fMi, i = 1; :::; ng be the �nest Morse decomposition of a
�ow on a compact metric space, with order �. Then the maximal (with respect
to �) Morse sets are attractors, and the minimal Morse sets are repellers.

Proof. The results follows directly from Proposition 4.13 and Lemma 4.14.

Example 4.18 We illustrate Theorem 4.16 by looking again at Example 3.3.
For this system a strictly increasing sequence of attractors with their correspond-
ing repellers is

A0 = ; � A1 = f1g � A2 = [1; 2] � A3 = [1; 3] � A4 = [0; 3];
A�0 = [0; 3] � A�1 = f0g [ [2; 3] � A�2 = f0g [ f3g � A�3 = f0g � A�4 = ?:

The associated Morse decomposition is

M4 = A1 \A�0 = f1g;M3 = A2 \A�1 = f2g;
M2 = A3 \A�2 = f3g;M1 = A4 \A�3 = f0g.

Example 4.19 Consider the dynamical system de�ned in Example 4.9. Accord-
ing to Theorem 4.16 its only Morse decomposition is the trivial oneM = fS1g.
This can also be seen directly from De�nition 4.3 of a Morse decomposition:
The union of the Morse sets needs to contain all limit sets of individual points
x 2 S1. In this example we have

!(x) =

�
f�g for x 2 (0; �]
f0g for x 2 (�; 0].

and

!�(x) =

�
f0g for x 2 [0; �)
f�g for x 2 [�; 0).

Assume that there are two Morse setsM1 andM2, with 0 2M1 and � 2M2.
This violates the no-cycle condition (ii) of De�nition 4.3. Hence the points 0
and � are in the same Morse set and the only Morse set isM = S1.

5 Morse Decompositions and Chain Recurrence

We will now introduce the concept of chain recurrence and elaborate its relation
to Morse decompositions.
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De�nition 5.1 For x, y 2 X and "; T > 0 an ("; T )-chain from x to y is given
by a natural number n 2 N, together with points

x0 = x; x1; :::; xn = y 2 X and times T0; :::Tn�1 � T;

such that d(xi � Ti; xi+1) < " for i = 0; 1; :::; n� 1.

Note that the number n of �jumps�is not bounded. Hence one may introduce
�trivial jumps.�Furthermore, as the notation suggests, only small values of " > 0
are of interest.

De�nition 5.2 A subset Y � X is chain transitive if for all x; y 2 Y and
all "; T > 0 there exists an ("; T )-chain from x to y. A point x 2 X is chain
recurrent if for all "; T > 0 there exists an ("; T )-chain from x to x. The chain
recurrent set R is the set of all chain recurrent points.

Note that we do not require in this de�nition that the considered ("; T )-
chains lie in Y . It is easily seen that R is closed and invariant.

Example 5.3 Consider again the dynamical system discussed in Example 3.3.
Obviously, all �xed points are chain recurrent points: just pick any tn > 0
and any " > 0 and consider chains of the type xn = �(tn; xn�1) with x0 =
x. In this example, there are no other points with this property, which can be
seen as follows: Consider a point x 2 [0; 3] that is not a �xed point and let
� := min d(x; x�), where x� is a �xed point. Let " := 1

3� and a := lim
t!1

�(t; x).

Let T := minft > 0, d(�(t; x); a) = "g. Fix ", T and consider ("; T )�chains
starting in x: x0 = x, y1 = �(t; x) for some t � T , then d(y1; a) � ", since
convergence of �(t; x) to a is monotone. Pick x1 2 U(y1; ") the "�neighborhood
of y1. Then d(x; x1) > " and there are two possibilities: (a) x1 =2 f�(t; x),
t � 0g, in this case d(f�(t; x1), t � 0g; x) � 3". (b) x1 2 f�(t; x), t � 0g,
in this case d(�(t; x1); a)) � " for all t � T . Repeating the construction for
y2 := �(t; x1) for some t � T and x2 2 U(y2; ") we see that for all n 2 N it
holds that d(xn; x) > ", and hence there is no ("; T )�chain from x to x. The
key to this example is that trajectories starting from x �move away�and cannot
return, even using jumps of size ", to x or !�(x), because of the topology of the
state space [0; 3]. This is di¤erent in the following example.

Example 5.4 Consider the dynamical system de�ned in Example 4.9. In this
case we have R = S1: Let x 2 S1 and "; T > 0 be given, assume without loss
of generality that x 2 (0; �]. Since limt!1�(t; x) = � there is t1 > T with
d(�(t1; x); �) <

"
2 . Pick x1 2 U(�;

"
2 ) \ (�; 0). Because of limt!1�(t; x1) = 0

there is t2 > T with d(�(t2; x); 0) < "
2 . Furthermore limt!�1�(t; x) = 0 and

hence there is t3 > T with x2 := �(�t3; x) 2 U(0; "2 ). Now x = x0, x1, x2,
x3 = x is an ("; T )-chain from x to x.
In a similar way one constructs for any "; T > 0 an ("; T )-chain from x to y for
any two points x; y 2 S1, showing that this dynamical system is chain transitive,
and hence chain recurrent on S1.
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The next proposition shows that in R only the existence of a positive lower
bound for the times in ("; T )-chains is important.

Proposition 5.5 Consider y 2 R and x 2 X and let � > 0. If for every " > 0
there exists an ("; �)-chain from x to y, then for every "; T > 0 there exists an
("; T )-chain from x to y with all jump times equal to T .

Proof. We �rst claim that for every " > 0 there is an ("; 2�)-chain from x to y.
By compactness of X the map � is uniformly continuous on X � [0; 3� ]. Hence
there is � 2

�
0; "2
�
such that for all a; b 2 X and t 2 [0; 3� ]:

d(a; b) < � implies d(a � t; b � t) < "

2
:

Now let a (�; �)-chain x0 = x; x1; :::; xm = y with times �0; ::::; �m�1 � �
be given. We may assume that �i 2 [�; 2� ]. We may assume that m � 2,
because we may concatenate this chain with a chain from y to y. Thus there
are q 2 f0; 1; :::g and r 2 f2; 3g with m = 2q + r. We obtain an ("; 2�)-chain
from x to y given by points

y0 = x; y1 = x2; y2 = x4; :::; yq = x2q; yq+1 = xm = y

with times

T0 =

1X
i=0

�i; T1 =

3X
i=2

�i; :::; Tq =

mX
i=2q

�i:

This follows by the triangle inequality and the choice of �. A consequence of
this claim is that for all " > 0 and all T > 0 there is an ("; T )-chain from x to
y. It remains to show that all jump times can be adjusted to Ti = T .
Consider an ("=2; T )-chain � from x to y and a periodic ("=2; T )-chain �

given by z0 = y; z1; :::; zm = y through y. For the concatenation of � and � the
same arguments as above show that one can adjust all jump times to Ti = T
except for the last one Tn�1 2 (0; T ). Observe that there is � > 0 such that for
all z 2 X and all t 2 [0; �]

d(z;�(t; z)) < "=2 .

Thus we can shift the jump points zi to �(�; zi). Going repeatedly through the
periodic chain we can successively shift the jump points such that at the end also
the �nal time can be taken as T (cp. Szolnoki [28] for an explicit construction).

Remark 5.6 For a discrete time dynamical system given by a homeomorphism
f one de�nes "-chains by requiring that the distance d(f(xi); xi+1) < " for all i
(Easton [11]).The preceding proposition shows that the chain recurrent set of a
�ow � coincides with the chain recurrent set of the time�T map f := �(T; �); for
any T > 0:
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Theorem 5.7 The �ow restricted to a maximal (with respect to set inclusion)
chain transitive subset of the chain recurrent set R is chain transitive. In par-
ticular, the �ow restricted to R is chain recurrent.

Proof. Let y; y0 2 Y � R, where Y is a maximal chain transitive set in
R. For every p 2 N there is an (1=p; 1)-chain in X from y to y0, say with
x0 = y; x1; :::; xnp = y0 2 X and times T p0 ; :::; T

p
np�1 2 [1; 2]. De�ne Kp =Snp

i=0 fxi � [0; T
p
i ]g. By Blaschke�s theorem (Theorem 2.3), there exists a subse-

quence of Kp converging in the Hausdor¤ metric dH to some nonvoid compact
subset K � X with y; y0 2 K. We claim that for all x; z 2 K and all q 2 N
there is an (1=q; 1)-chain in K with times T q0 ; :::; T

q
nq�1 2 [1; 2] from x to z. In

particular, this implies K � Y and hence the assertion follows.
The claim is proved as follows. The �ow is uniformly continuous on the

compact set X � [0; 2]. Hence there is a number � > 0 such that

d(a; b) < � implies d(a � t; b � t) < 1

3q
for all t 2 [0; 3] :

Choosing p 2 N with p > max
�
3q; ��1

	
and dH(Kp;K) < � one can construct

a ( 1q ; 1)-chain from x to z in K as required.

Proposition 5.8 A closed subset Y of a compact metric space X is chain tran-
sitive if it is chain recurrent and connected. Conversely, if the �ow on X is chain
transitive, then X is connected.

Proof. Suppose �rst that Y is chain recurrent and connected. Let x; y 2 Y
and �x "; T > 0. Cover Y by balls of radius "=4. By compactness there are
�nitely many points, say y1; :::; yn�1 2 Y such that for all z 2 Y there is yi
with d(z; yi) < "=4. De�ne y0 = x and yn = y. Because Y is connected the
distance between the points yi is bounded below by 3

4": Now use that by chain
recurrence of the �ow there are ("=4; T )-chains from yi to yi for i = 0; 1; :::n�1.
Appropriate concatenation of these chains leads to an ("; T )-chain from x to y.
Hence chain transitivity follows.
Conversely, let the �ow on X be chain transitive. If X is not connected, it

can be written as the disjoint union of nonvoid open sets V and W . Then these
sets are also closed, hence compact and

"0 := inf fd(v; w); v 2 V; w 2Wg > 0:

Hence for " < "0=2 there cannot exist ("; T )-chains from an element of V to an
element of W .
We obtain the following characterization of the connected components of R.

Theorem 5.9 The connected components of the chain recurrent set R coincide
with the maximal chain transitive subsets of R. Furthermore, the �ow restricted
to a connected component of R is chain transitive.
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Proof. By Theorem 5.7 we know that the �ow restricted to a maximal chain
transitive subset R0 of R is chain transitive. Hence by the second part of
Proposition 5.8 R0 is connected and thus contained in a connected component
of R. Conversely, the �rst part of Proposition 5.8 implies that every connected
component of R is chain transitive, because it is closed, chain recurrent, and
connected. Hence the �rst assertion follows. The second claim is an immediate
consequence.
The connected components of R are called the chain recurrent components.

Example 5.10 Consider again the dynamical system discussed in Examples
3.3 and 5.3. For this example, the components of the chain recurrent set, i.e.
the chain recurrent components are f0g, f1g, f2g, and f3g.

Example 5.11 An example of a �ow for which the limits sets from points
are strictly contained in the chain recurrent components can be obtained as
follows: Let M = [0; 1] � [0; 1]. Let the �ow � on M be de�ned such that
all points on the boundary are �xed points, and the orbits for points (x; y) 2
(0; 1)� (0; 1) are straight lines �(�; (x; y)) = f(z1; z2), z1 = x, z2 2 (0; 1)g with
limt!�1�(t; (x; y)) = (x;�1). For this system, each point on the boundary is
its own �- and !-limit set. The �-limit sets for points in the interior (x; y) 2
(0; 1)� (0; 1) are of the form f(x;�1)g, and the !-limit sets are f(x;+1)g. The
only chain recurrent component for this system is M = [0; 1] � [0; 1], which is
also the only Morse set.

We also note the following simple lemma, which indicates a uniform upper
bound for the total time needed to connect any two points in a chain recurrent
component.

Lemma 5.12 Let R0 be a chain recurrent component and �x "; T > 0. Then
there exists �T ("; T ) > 0 such that for all x; y 2 R0 there is an ("; T )-chain from
x to y with total length � �T ("; T ).

Proof. By assumption, one �nds for all x; y 2 R0 an ( "2 ; T )-chain from x to
y. Using continuous dependence on initial values and compactness, one �nds
�nitely many ("; T )-chains connecting every x 2 R0 with a �xed z 2 R0. One
also �nds �nitely many (modulo their endpoints) ("; T )-chains connecting z with
arbitrary elements y 2 R0. Thus one ends up with �nitely many ("; T )-chains
connecting all points in R0. The maximum of their total lengths is the desired
upper bound �T ("; T ).

6 Chain Recurrence and Attractors

We proceed to analyze the relation between chain recurrence and attractors,
leading to the main result in Theorem 6.4.
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De�nition 6.1 For Y � X de�ne the chain limit set


(Y ) =

�
z 2 X; there is y 2 Y such that for all "; T > 0

there is an ("; T )-chain from y to z

�
:

Furthermore, for "; T > 0 de�ne


(Y; "; T ) = fz 2 X; there are y 2 Y and an ("; T )-chain from y to zg :

One easily sees that !(Y ) � 
(Y ).

Proposition 6.2 For Y � X the set 
(Y ) is the intersection of all attractors
containing !(Y ).

Proof. Note that 
(Y ) =
T
";T>0 
(Y; "; T ), and for "; T > 0 de�ne N :=

cl(
(Y; "; T )). Then !(N) � 
(Y; "; T ) � intN , where the second inclusion
follows because 
(Y; "; T ) is open and contained in N . Now let z 2 !(N). Then
there are tn ! 1 and xn 2 N with xn � tn ! z. Choose n0 2 N, � > 0 and
p 2 
(Y; "; T ) with

d(p; xn0) < �; tn0 > T; and d(xn0 � tn0 ; z) <
"

2
,

d(zn0 � tn0 ; xn0 � tn0) <
"

2
for all z with d(z; xn0) < �:

By de�nition of p there is an ("; T )-chain from some y 2 Y to p and we obtain

d(p � tn0 ; z) � d(p � tn0 ; xn0 � tn0) + d(xn0 � tn0 ; z) <
"

2
+
"

2
= ":

Thus concatenation yields an ("; T )-chain from y to z.
We have shown that A := !(N) is a closed invariant set with neighborhood

N , hence an attractor. By invariance of 
(Y ) we have A = ! (cl(
(Y; "; T ))) �

(Y ) � !(Y ). Direct inspection shows that 
(Y ) = !(
(Y )) in fact equals the
intersection of these attractors containing !(Y ).
Now suppose that A is any attractor containing !(Y ). Let V be an open

neighborhood of A disjoint from A� and let t > 0 be such that clV � t � V . Let

0 < " < inf fd(y; z); y 2 V and z =2 clV � tg :

Choose T > t such that Y � T � clV � t. Then every ("; T )-chain from Y must
end in V . Therefore, if !(x) � A, then also 
(x) � A and hence 
(Y ) is the
intersection of all attractors containing !(Y ).
This proposition implies, in particular, that a chain transitive �ow has only

the trivial attractor A = X, because for every Y � X one has that 
(Y ) = X.

Example 6.3 Consider again the dynamical system discussed in Example 3.3.
For this dynamical system we have for any subset Y � [0; 3] that !(Y ) = 
(Y ).
The proof is a combination of Examples 3.3 and 5.3. But Example 5.11 shows
that strict inclusion may hold.
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We obtain the following relation between the chain recurrent set and attrac-
tors.

Theorem 6.4 The chain recurrent set R satis�es

R =
\
fA [A�; A is an attractorg :

In particular, there exists a �nest Morse decomposition fM1; :::;Mng if and
only if the chain recurrent set R has only �nitely many connected components.
In this case, the Morse sets coincide with the chain recurrent components of R
and the �ow restricted to every Morse set is chain transitive and chain recurrent.

Proof. If A is an attractor and x 2 X, either !(x) � A or !(x) � A�. If x 2 R,
then, by Proposition 6.2, x is contained in every attractor, which contains !(x).
Hence x 2 A [ A�. Conversely, if x is in the intersection, then x is in every
attractor containing !(x). Hence x 2 
(x), that is x 2 R.
If there exists a �nest Morse decomposition, then the �ow restricted to a corre-
sponding Morse set must be chain transitive, hence the Morse sets are connected
components of R. Conversely, the connected components Mi of R de�ne a
Morse decomposition, because they are isolated invariant sets ordered by (2).
In fact, this is the �nest Morse decomposition: Using the characterization of
Morse decompositions via increasing attractor sequences, one sees that a �ner
Morse decomposition would imply the existence of an attractor A such that
A \Mi is a proper subset of Mi for some i, and hence this would be an at-
tractor of the �ow restricted toMi. This contradicts chain transitivity ofMi.

Remark 6.5 There are at most countably many attractors, cp. [1, Chapter 3,
Proposition 8] or [22, Lemma 9.1.7.].

Finally, we show chain transitivity of the �ow restricted to a limit set.

Proposition 6.6 If the �ow is topologically transitive, then it is chain transi-
tive. In other words, a �ow restricted to an !-limit set !(x) with x 2 X is chain
transitive.

Proof. Because !-limit sets are connected, it su¢ ces by Proposition 5.8 to show
that the �ow restricted to !(x) is chain recurrent. De�ne a �ow (y; t) 7! y � t
on [�1; 1] by the equation _y = 1� y2. On X� [�1; 1] de�ne a �ow by (x; y) 7!
(x � t; y � t). Then Z = cl ((x; 0) � R) is a compact invariant set. By Theorem 6.4
the chain recurrent set contains all !-limit sets, and hence the chain recurrent
set of the �ow restricted to Z is

R(Z) = !�(x)� f�1g [ !(x)� f1g:

By Theorem 5.7 the �ow restricted toR(Z) is chain recurrent and the connected
components ofR(Z) are chain transitive. Hence the �ow restricted to !(x)�f1g
and thus the �ow restricted to !(x) are chain recurrent.
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7 Ergodic Theory for Chains

In this section we explain how the classical construction of invariant measures
as occupation measures along trajectories can be generalized to the construction
along chains.
Standard references for the ergodic theory of �ows are Katok and Hasselblatt

[15], Mañé [16], and Nemytskii and Stepanov [18]; see also Pollicott [21]. Recall
that a �-algebra on a set X is a family A of subsets of X such that X 2 A, the
complement of every A 2 A is again in A, and countable unions of elements in
A are in A; in particular, this implies that �nite intersections of elements in A
are in A. For a metric space X the Borel �-algebra is the smallest �-algebra
containing all open (and hence all closed) subsets of X; the elements of this
�-algebra are called Borel sets. A map � : A ! R is a measure on a �-algebra
A, if for every countable family (Ai)i2N of pairwise disjoint sets Ai 2 A

�(
1[
i=1

Ai) =
1X
i=1

�(Ai):

A probability measure is a measure with �(X) = 1 and �(A) � 0 for all A. For
a �ow � on a metric space X an invariant measure � is a probability measure
on the Borel �-algebra of X such that

�(A) = �(��tA) := �(fx 2 X; �t(x) 2 Ag)

for all t 2 R and all Borel sets A. It su¢ ces to require this condition for all open
(or all closed) subsets A � X. In the following, let X be a compact metric space.
Then the probability measures coincide with the Radon probability measures,
that is the continuous linear functionals � from the space of continuous functions
C(X) to R with �(�X) = 1 where �X(x) = 1 for all x 2 X; and �(f) � 0 for all
f 2 C(X) with f(x) � 0. The support supp(�) of a measure � is the smallest
closed subset K of X such that �(f) = 0 if f vanishes on K. An invariant
measure is called ergodic if

�(A�(��tA)) = 0 for all t 2 R implies �(A) = 0 or �(A) = 1;

where for subsets A; B � X the symmetric di¤erence is denoted by A�B =
A nB [B nA. The set of invariant measures is convex and weakly compact and
the extremal points are the ergodic measures; see [16, Proposition II.2.5] or [15,
Lemma 4.1.10].
A classical construction due to Krylov-Bogolyubov yields invariant measures

as occupation measures along trajectories. Given x 2 X and T > 0 de�ne a
continuous linear functional L on C(X) by

Lf :=
1

T

Z T

0

f(�tx) dt:

This de�nes a Radon probability measure � on X. For every sequence Tk !1
a subsequence of the corresponding measures �k converges weakly to a Radon
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probability measure �x on X. This measure is in fact invariant for the �ow �
(see, e.g., [18, Theorem VI.9.05]), and hence the setM� of invariant measures
is nonempty. This construction can be generalized to obtain invariant measures
via chains.
Let � be an ("; T )-chain in X given by n 2 N; Ti � T; xi 2 X; i = 0; 1; :::; n.

Then a continuous linear functional L� on C(X) is de�ned by

L�f =

 
n�1X
i=0

Ti

!�1 n�1X
i=0

Z Ti

0

f(�txi) dt:

For i = 0; :::; n� 1, the map

f 7! 1

Ti

Z Ti

0

f(�txi) dt

de�nes a Radon probability measure �i on X. The measure � corresponding to
L� is a convex combination of the �i, hence also a Radon probability measure.
Now consider for "k ! 0; T k ! 1 a sequence of ("k; T k)-chains �k, given by
nk 2 N; T ki � T k; and xki 2 X for i = 0; :::; nk � 1; k 2 N. De�ne Lk for �k
as earlier with corresponding measure �k. As k ! 1; a subsequence of (�k)
denoted again by (�k), converges weakly to a Radon probability measure � on
X, i.e., we have for all f 2 C(X)

lim
k!1

0@nk�1X
i=0

T ki

1A�1
nk�1X
i=0

Z Tki

0

f(�tx
k
i ) dt =

Z
X

f d�: (3)

Theorem 7.1 Let � : R�X �! X be a continuous dynamical system on the
compact state space X. Then the measure � de�ned in (3) is invariant under
the �ow, that is, for all f 2 C(X) it holds thatZ

X

f(x) d� =

Z
X

f(�� (x)) d� for all � 2 R:

Proof. This assertion is�as in the standard Krylov-Bogolyubov construction�
seen as follows: For � 2 R and all i; k�����

Z Tki

0

f(�t+�x
k
i ) dt�

Z Tki

0

f(�tx
k
i ) dt

�����
�
�����
Z Tki

�

f(�tx
k
i ) dt+

Z Tki +�

Tki

f(�tx
k
i ) dt�

Z Tki

0

f(�tx
k
i ) dt

�����
� 2� max jf(x)j .

Hence for all � > 0 and all T k > T > 0 large enough, one has�������
0@nk�1X

i=0

T ki

1A�1
nk�1X
i=0

(Z Tki

0

�
f(�t+�x

k
i )� f(�txki )

�
dt

)������� < �;
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proving the assertion.

Remark 7.2 Further relations between ergodic limits and limits along chains
are explored in Colonius et al. [6].

8 Chain Recurrence for Families of Dynamical
Systems

In general limit sets, Morse sets and chain recurrent components do not de-
pend continuously on system parameters, see, e.g., bifurcation scenarios like the
pitchfork or Hopf bifurcation, or the discussions and results on control �ows in
[7]. However, an upper semicontinuity holds for chain transitive sets, which will
be made precise in this section.
Consider a family of dynamical systems on a compact metric space X de-

pending on a parameter � 2 A � Rk of the form

� : A� R�X �! R�X (4)

where A is a (path) connected set and � is continuous in all components. We
need some properties of set valued maps � de�ned on a metric space A with
nonvoid value sets in a metric space X; compare, e.g., Castaing and Valadier
[5], Aubin and Frankowska [2], or Warga [29].

De�nition 8.1 A set valued map � : A ! X is lower semicontinuous at
�0 2 A if for all " > 0 there is � > 0 such that d(�; �0) < � implies that
supx2�(�0) d(x; �(�)) < ". It is called upper semicontinuous at �0 2 A, if for all
" > 0 there is � > 0 such that d(�; �0) < � implies that supx2�(�) d(x; �(�0)) <
".

Note that � is upper and lower semicontinuous if and only if it is continuous
with respect to the Hausdor¤metric (1). Furthermore, if � has compact values,
lower semicontinuity is equivalent to

�(�0) � lim inf
�!�0

�(�) :=

�
x 2 X; for all �k ! � in A

there are xk 2 �(�k) with xk ! x

�
:

Upper semicontinuity is equivalent to

�(�0) � lim sup
�!�0

�(�) :=

�
x 2 X; there are �k ! � in A
and xk 2 �(�k) with xk ! x

�
:

The following theorem shows that maximal (with respect to set inclusion) chain
transitive subsets Y � X depend upper semicontinuously on � 2 A.

Theorem 8.2 Consider the parameter dependent system (4). For a sequence
�k ! �0 in A consider maximal chain transitive sets E�k � X of (4)�k . Then
there exists a maximal chain transitive set E�0 of (4)�0 such that

lim sup �k!�0E
�k := fx 2 X; there are x�k 2 E�k with x�k ! xg � E�0 .
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Of course, the set on the left-hand side of this inclusion may be empty, in which
case the statement is trivial.

Proof. Pick y1; y2 in lim sup �k!�0E
�k . We have to show that y1 and y2 are in

some chain transitive set of (4)�0 . Let "; T > 0:We will construct an ("; T )-chain
from y1 to y2: For i = 1; 2, one has yi = limk!1 x

i
k with x

i
k 2 E�k ; k 2 N:

For all k 2 N there are ( "3 ; T )-chains from x1k to x
2
k; i.e., there are nk 2 N,

zk0 ; :::; z
k
nk
2 X and tk0 ; :::; t

k
nk�1 � T with z

k
0 = x

1
k; z

k
nk
= x2k and

d(��
k

(tkj ; z
k
j ); z

k
j+1) <

"

3
for j = 0; 1; :::; nk � 1. (5)

Using compactness of X and continuity of the family �� one �nds k0 2 N such
that for all k � k0; all z 2 X; and all 0 � t � 2T

d(��0(t; z);��k(t; z)) <
"

3
. (6)

We may choose k0 so large that we also have for k � k0

d(��0(T; y1);��k(T; x1k)) <
"

3
(7)

and
d(x2k; y

2) <
"

3
. (8)

In the following, we will �x k � k0 and drop the index k everywhere except in
�k: De�ne an ("; T )-chain for �k from y1 to y2 in the following way. The points
are

y0;0 = y
1; y0;1 = �

�k(T; x1); and for j = 1; 2; :::; n� 1
yj;i = �

�k(iT; zj); i = 0; 1; :::; ij ; and yn = y2,
(9)

where ij 2 N is such that (ij + 1)T � tj < (ij + 2)T ; and the times are

t0;0 = T; and for j = 1; 2; :::; n� 1
tj;i = T ; i = 0; 1; :::; ij � 1; tj;ij = tj � ijT .

(10)

In fact, this is an ("; T )-chain from y1 to y2 with 1+
Pn�1

j=1 ij jumps of size less
than ":

d(��0(t0;0; y0;0); y0;1) = d(�
�0(T; y1);��k(T; x1)) < "

by (7); for i = 0; 1; :::; ij � 1; j = 1; :::; n� 1

d(��0(tj;i; yj;i); yj;i+1)

= d(��0(T;��k(iT; zj));�
�k((i+ 1)T; zj))

= d(��0(T;��k(iT; zj));�
�k(T;��k(iT; zj)))

< "
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by (6); for i = ij ; j = 0; 1; :::; n� 1

d(��0(tj;ij ; yj;ij ); yj+1;0)

= d(��0(tj � ijT;��k(ijT; zj)); zj+1)
� d(��0(tj � ijT;��k(ijT; zj));��k(tj � ijT;��k(ijT; zj)))
+ d(��k(tj ; zj); zj+1)

< "

by (6) and (5). Finally, for j = n� 1 and i = ij = in�1

d(��0(tj;i; yj;i); yj+1)

= d(��0(tn�1 � in�1T; yn�1;in�1); yn)
= d(��0(tn�1 � in�1T;��k(in�1T; zn�1)); y2)
� d(��0(tn�1 � in�1T;��k(in�1T; zn�1));
��k(tn�1 � in�1T;��k(in�1T; zn�1)))
+ d(��k(tn�1; zn�1); x

2) + d(x2; y2)

<
"

3
+
"

3
+
"

3
= "

by (6), (5), and (8).
In speci�c situations, stronger results are valid. One such situation is given

by a one-parameter family (4)� with � 2 A � R and an increasing family of
chain transitive sets. This situation is common in the theory of control �ows,
compare, e.g., [7]. Indeed, the following, more general result holds.

Proposition 8.3 Let � be a set valued map de�ned on a real interval [��; ��),
0 � �� < �� � 1, with compact values in a compact metric space X and
suppose that � is monotonically increasing, that is,

�(�) � �(�0) if � � �0:

Then � is continuous (with respect to the Hausdor¤ metric) at all but at most
countably many points �0 2 [��; ��).

Proof. Let fxn; n 2 Ng be a countable dense subset of X. Then for every
n 2 N the map � 7! cn(�) := d(xn;�(�)) is monotonically decreasing, hence it
has at most countably many points �mn ; m 2 N, of discontinuity (see Natanson
[17] or Hewitt and Stromberg [13]). Thus it is su¢ cient to show that every point
�0 of discontinuity of � is also a point of discontinuity for some cn. Then the
countable set f�mn ; n;m 2 Ng contains all points of discontinuity of �. Let �rst
� > �0 and consider

dH(�(�);�(�0)) = sup
x2�(�)

d(x;�(�0)):

If lim�k&�0 dH(�(�k);�(�0)) =: 3"0 > 0, then there is for all k large enough a
point yk 2 �(�k) � �(�m) for m � k with d(yk;�(�0)) � 3"0. Every cluster
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point y of this sequence satis�es y 2 �(�k) for all k and d(y;�(�0)) � 3"0. Then
there is a point xn with cn(�0) = d(xn;�(�0)) � 2"0 and d(xn; y) � "0; hence
cn(�k) = d(xn;�(�k)) � "0 for all k. Thus cn is discontinuous at � = �0. For
�k % �0 one argues similarly.

Remark 8.4 Proposition 8.3 is known as Scherbina�s Lemma; see Pilyugin [20,
Lemma 4.1.3] and Scherbina [27]. Scherbina�s Lemma [20] states that increas-
ing, compact-valued mappings de�ned on [0;1) are continuous with respect to
the Hausdor¤ metric at all but countably many ��values.

Remark 8.5 The preceding elementary proof is based on the classical fact that
real-valued monotonically increasing maps have at most countably many points
of discontinuity (Carathéodory [4], § 158, p.154), which, in turn, is based on
the elementary fact that an uncountable sum of positive numbers cannot be �nite
([23], p. 38). See, however, [4], § 156, for an example of a function g : R �! R,
for which these points of discontinuity are everywhere dense. Now suppose,
without loss of generality, that there is a dense set of points where g is not right
continuous. Then the set valued function

�(�) := [0; g(�)]

has a dense set of points of discontinuity.
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