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Abstract

A normal form for open loop control systems is provided, based on
their interpretation as skew product flows and on normal forms for nonau-
tonomous differential equations.

1 Introduction

In this paper we derive normal forms for the following families of ordinary
differential equations

ẏ(t) = f(y(t), u(t)) = f0(y(t)) +
mX
i=1

ui(t)fi(y(t)) in Rd (1)

u ∈ U = {u : R→ U ⊂ Rm, locally integrable}.
The time-dependent term u which appears affinely in the system equation, may
be interpreted as an (open loop) control or as a perturbation. We restrict our at-
tention to the behavior near a singular point y0, i.e., fi(y

0) = 0 for i = 0, 1, ...,m.
Normal forms for control systems, where the equivalence relation also allows for
feedbacks, are a classical topic in control theory. In contrast to other work, the
notion of normal forms developed here does not allow for feedbacks. Instead
the admissible transformations have to depend continuously, in a sense specified
below, on the control function u. The control system is viewed as a skew prod-
uct flow over the base space of control functions endowed with the shift. This
allows us to use recent results on normal forms for nonautonomous differential
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equations (Siegmund [6]). Then conjugacies eliminate all nonresonant terms in
the Taylor expansion without changing the other terms up to the same order.
There is also related work in the theory of random dynamical systems which
can be considered as skew product flows, with an invariant measure on the
base space; compare L. Arnold [2]. Our primary concern is the classification of
changes in the controllability behavior. In particular, in the work of Grünvogel
[4] bifurcations of control sets from a singular point have been studied. It is our
hope that the normal form theory developed here will lead to a classification of
this bifurcation behavior. Below we provide an example which illustrates this
point.
In section 2, we formulate the normal form problem in our context and state

some basic assumptions. Section 3 presents the normal form theorem and its
proof, while section 4 discusses two examples.

2 Assumptions and Problem Formulation

In this section we collect some basic assumptions and notions and pose the
normal form problem considered here.
We consider the control affine systems (1) and assume that the control range

is a compact and convex set U ⊂ Rm containing 0. We also assume that
f0, . . . , fm are Ck vector fields for a k ≥ 2, and that for all (y, u) ∈ Rd × U ,
equation (1) has a unique solution φ(t, y, u), t ∈ R, with φ(0, y, u) = y. Then
(compare [3, Chapter 4]) the following skew product flow on Rd ×U ,

Ψ : R×Rd ×U → Rd ×U , Ψt(y, u) := (θtu,φ(t, y, u)), (2)

is associated with (1); here θt : U → U is the shift (θtu)(s) = u(t+ s), s ∈ R,
and U ⊂ L∞(R,Rm) = (L1(R,R))∗ is endowed with the weak∗ topology. Then
U becomes a compact metrizable space with a corresponding metric. The flow
Ψ, called the control flow, is continuous and, for fixed u ∈ U , it is k times
continuously differentiable with respect to y.
Let y0 ∈ Rd be a singular point of (1), i.e., fi(y0) = 0 for all i = 0, . . . ,m.

Our notion of conjugacies which, naturally, depend on u is specified in the
following definition.

Definition 1 Let φ : R×Rd×U → Rd and ψ : R×Rd×U → Rd be two control
systems with singular point y0 = 0. Then φ and ψ (respectively their generators,
which are systems of the form (1)) are said to be Ck conjugate if there exists a
bundle mapping

Rd ×U 3 (x, u) 7→ (H(x, u), u) ∈ Rd ×U
which preserves the zero section {0} × U, such that
(i) x 7→ H(x, u) is a local Ck diffeomorphism (near y0 = 0) for each fixed u ∈ U
(with inverse denoted by y 7→ H(y, u)−1),
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(ii) (x, u) 7→ H(x, u) and (y, u) 7→ H(y, u)−1 are continuous,

(iii) for all t ∈ R, x ∈ Rd and u ∈ U the conjugacy
ψ(t, u,H(x, u)) = H(θtu, φ(t, x, u))

holds.

Remark 2 Definition 1 is a semi local definition in the sense that the conjugacy
is defined globally on the bundle Rd × U and is a fiberwise Ck diffeomorphism
locally in the vicinity of the zero section. One could give a more technical defi-
nition of a local conjugacy which is defined on some subset of Rd ×U .
Remark 3 The conjugacy condition is equivalent to commutativity of the dia-
gram

Rd ×U Φt−−→ Rd ×U
↓ ↓

Rd ×U Ψt−−→ Rd ×U
where the vertical errors indicate the conjugacy and Φ and Ψ are the correspond-
ing control flows.

Next we discuss the Taylor expansions and the terms which are to be elimi-
nated by conjugacies. The system linearized at y0 has the form

ẋ = A(u(t))x(t) = [A0 +
mX
i=1

ui(t)Ai]x(t) in Rd, u ∈ U , (3)

where Ai =
∂
∂yfi(y)|y=y0 denote the Jacobians at y0. We rewrite (1) in the form

ẏ = A(u(t))y(t) + F (y(t), u(t)), (4)

where

F (y(t), u(t)) = f0(y(t))−A0y(t) +
mX
i=1

ui(t)(fi(y(t))−Aiy(t))

denotes the nonlinearity.
In the following we assume that the linearized system is in block diagonal

form and that the nonlinearity is Ck-bounded. More precisely we assume

(A1) A = diag(A(1), . . . , A(n)) with n, 1 ≤ n ≤ d, blocks A(i) : U → Rdi×di ,
d1 + · · ·+ dn = d.

(A2) kDi
yF (y

0, u)k ≤M for i = 1, . . . , k, u ∈ U , with a constant M > 0.

The block diagonalization of the linearized system into the matrices A(i) cor-
responds to a decomposition of Rd into di-dimensional subspaces. Correspond-
ing to the block diagonal structure of A one can write y = (y(1), . . . , y(n)) ∈ Rd
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and F = (F (1), . . . , F (n)) with the component functions F (i) : Rd × U → Rdi .
For a multi index c = (c1, . . . , cn) ∈ Nc0 let |c| = c1 + · · · + cn denote the order
and define

Dc
yF = Dc1

y(1)
· · ·Dcn

y(n)
F and yc = y(1) · · · y(1)| {z }

c1-times

· · · y(n) · · · y(n)| {z }
cn-times

.

Now we can expand F (·, u(t)) into a Taylor-series at y0

F (y, u(t)) =
X

c∈Nn0 : 2≤|c|≤k

1

c!
Dc
yF (y

0, u(t)) · (y − y0)c + o(ky − y0kk) ,

where c! = c1! · · · cn!. For simplicity we assume without loss of generality that
y0 = 0. We are looking for a condition which ensures the existence of a Ck

conjugacy which eliminates the j-th componentDc
yF

(j)(0, u(t))·yc of a summand
in the Taylor expansion of F .
Let Φ = diag(Φ(1), . . . ,Φ(n)) denote the solution of the linearized system

(3), i.e., Φ(i)(t, u)x(i) solves the control system

ẋ(i)(t) = A(i)(u(t))x(i)(t) in Rdi , u ∈ U ,
with Φ(i)(0, u)x(i) = x(i). In order to specify the nonresonance condition, we
associate to each Φ(i) an interval λi = [ai, bi] such that for every ε > 0

kΦ(i)(s, u)−1k ≤ Ke−(ai−ε)s and kΦ(i)(s, u)k ≤ Ke(bi+ε)s for s ≥ 0, u ∈ U ,
(5)

with a K = K(ε) > 0.

Remark 4 These intervals can be obtained in the following way. Choose

λi := [minSdyn(Φ(i)),maxSdyn(Φ(i))]
with the dynamical spectrum of Φ(i) (see Sacker and Sell [5])

Sdyn(Φ(i)) := {γ ∈ R : Φ(i)γ admits no exponential dichotomy over U}.

Here Φ
(i)
γ (t, u) := e−γtΦ(i)(t, u) admits an exponential dichotomy over U if and

only if there exist a continuous family U 3 u 7→ P (u) ∈ Rd×d of projections and
positive constants K and α such that

kΦ(i)γ (t, u)P (u)Φ(i)γ (s, u)−1k ≤ Ke−α(t−s) for t ≥ s ,

kΦ(i)γ (t, u)[I − P (u)]Φ
(i)
γ (s, u)−1k ≤ Keα(t−s) for t ≤ s .

A related way is to consider the system in projective space induced by the lin-
earized system (3). Then (see [3]) the Morse spectrum associates to each chain
recurrent component of the associated control flow (i.e., to each chain control
set) an interval λi. The unions of overlapping intervals coincide with the dy-
namical spectrum. In any case one has to check if the associated subbundles
yield a block diagonalization of the linearized system.
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3 Normal Forms

In this section we state and prove the main result of this paper, a normal form
theorem for control systems at a singular point. It shows that nonresonant terms
in the Taylor expansion can be eliminated without changing the coefficients up
to the same order.
For compact sets K1, K2 ⊂ R and integers c1, c2 ∈ Z we define the compact

set c1K1+ c2K2 := {c1k1+ c2k2 : ki ∈ Ki} and we write K1 < K2 iff maxK1 <
minK2 and similarly for K1 > K2.

Theorem 5 Consider a class of Ck control affine systems (1) satisfying as-
sumptions (A1) and (A2). Suppose that to each block an interval λi is asso-
ciated with property (5). Let c = (c1, . . . , cn) ∈ Nn0 be a multi index of order
2 ≤ |c| ≤ k and assume that the nonresonance condition

λj <
nX
i=1

ciλi or λj >
nX
i=1

ciλi

holds. Then define H(x, u) = x+h(x, u) with h = (h(1), . . . , h(n)) : Rd×U → Rd
and

h(i)(x, u) =



0 if i 6= j ,R∞
0 Φ

(j)(s, u)−1 1c!D
c
xF

(j)(0, u(s)) · [Φ(s, u)x]c ds,
if i = j and λj >

Pn
i=1 ciλi holds ,

− R 0−∞Φ(j)(s, u)−1 1c!Dc
xF

(j)(0, u(s)) · [Φ(s, u)x]c ds,
if i = j and λj <

Pn
i=1 ciλi holds

. (6)

This defines a Ck conjugacy between (4) and a class of local control affine sys-
tems

ẏ = A(u(t))y(t) +G(y(t), u(t)) (7)

which eliminates the j-th Taylor component 1
c!D

c
xF

(j)(0, u(t)) · xc belonging to
the multi index c and leaves fixed all other Taylor coefficients up to order |c|,
i.e., for all κ ∈ Nn0 with 1 ≤ |κ| ≤ |c| and all i ∈ {1, . . . , n} the identity

Dκ
xG

(i)(0, u) ≡
½

Dκ
xF

(i)(0, u), for κ 6= c or i 6= j
0, for κ = c and i = j

(8)

holds.

Proof. We follow the proof of the normal form theorem in Siegmund [6].
Let φ,ψ and Φ denote the control systems which are generated by (4), (7) and
the linearization (3), respectively. Assume that λj >

Pn
i=1 ciλi, the other case

is similar. It is easy to see that H is well-defined. Therefore choose ε with
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0 < ε < (aj −
Pn

i=1 cibi)/(|c|+ 1) and K > 0 such that (5) holds. Then

kh(j)(x, u)k ≤
Z ∞
0

K|c|+1 1
c!
Me−(aj−

Pn
i=1 cibi−(|c|+1)ε)skx(1)kc1 · · · kx(n)kcn ds

(9)

=
K|c|+1M

c!(aj −
Pn

i=1 cibi − (|c|+ 1)ε)
kx(1)kc1 · · · kx(n)kcn . (10)

We prove that the conditions of Definition 1 are satisfied for H. Obviously

Rd ×U 3 (x, u) 7→ (H(x, u), u) ∈ Rd ×U
preserves the zero section {0} × U .
(i) Lebesgues theorem implies the existence of the derivative

Dxh
(j)(x, u) =

X
i=1,...,n : ci≥1

ci
c!

Z ∞
0

Φ(j)(s, u)−1Dc
xF

(j)(0, u(s)) ·

· [Φ(1)(s, u)x(1)]c1 · · · [Φ(i)(s, u)·] · [Φ(i)(s, u)x(i)]ci−1 · · · [Φ(n)(s, u)x(n)]cn ds
and for every 0 < L < 1 we get a constant δ = δ(L,M,K, c, λ1, . . . , λn, ε) > 0
such that for u ∈ U and x ∈ Bδ(0)

kDxh(x, u)k ≤
X

i=1,...,n : ci≥1

ciK
|c|+1M

c!(aj −
Pn

i=1 cibi − (|c|+ 1)ε)
kxk|c|−1 ≤ L

and therefore kh(x, u) − h(x̄, u)k ≤ Lkx − x̄k. Then with the Neumann series
the inverse for x ∈ Bδ(0) and each fixed u ∈ U is given explicitly by

H(x, u)−1 = x− h(x, u) + r(x, u) with r(x, u) =
∞X
i=2

(−h)i(x, u),

where (−h)i+1(x, u) = (−h)i(h(x, u), u). Hence Bδ(0) 3 x 7→ H(x, u) is a
homeomorphism. Now Proposition 2.5.6 in Abraham, Marsden and Ratiu [1,
pp. 119-121] implies that this map is a Ck diffeomorphism for a smaller δ > 0
with inverse Bδ0(0) 3 x 7→ H(x, u)−1 ∈ Bδ(0) for a 0 < δ0 < δ independent of
u ∈ U .
(ii) We first show that (x, u) 7→ H(x, u) is continuous. Arguing for each

component separately the proof of this claim reduces to the verification that
h(j) is continuous and this follows with Lebesgues theorem from (9), since the
integrand is continuous for almost all s ∈ (0,∞).
To prove the continuity of (x, u) 7→ H(x, u)−1 we use the estimate kh(x, u)−

h(x̄, u)k ≤ Lkx− x̄k for x, x̄ ∈ Bδ(0) and u ∈ U to get
kH(x, u)−H(x̄, u)k ≤ (1 + L)kx− x̄k .

Moreover ky−ȳk−Lky−ȳk ≤ ky−ȳk−kh(y, u)−h(ȳ, u)k ≤ kH(y, u)−H(ȳ, u)k
implies with y = H(x, u)−1, ȳ = H(x̄, u)−1 for x, x̄ ∈ Bδ0(0) and u ∈ U

kH(x, u)−1 −H(x̄, u)−1k ≤ 1

1− L
kx− x̄k .
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Now choose (x, u), (x0, u0) ∈ Bδ0(0)×U . Then

kH(x, u)−1 −H(x0, u0)−1k ≤ 1

1− L
kx− x0k+ kH(x0, u)−1 −H(x0, u0)−1k .

To estimate the second summand consider for all u ∈ U the identity
x0 = H(H(x0, u)−1, u) = H(x0, u)−1 + h(H(x0, u)−1, u) .

We get

H(x0, u)−1 −H(x0, u0)−1 = −h(H(x0, u)−1, u) + h(H(x0, u0)−1, u0)

and

kH(x0, u)−1 −H(x0, u0)−1k ≤ LkH(x0, u)−1 −H(x0, u0)−1k
+ kh(H(x0, u0)−1, u)− h(H(x0, u0)−1, u0)k .

Solving for kH(x0, u)−1−H(x0, u0)−1k the claim follows from the continuity of
h.
(iii) We define ψ(t, x, u) := H(φ(t,H(x, u)−1, u), θtu) for t ∈ R, x ∈ Bδ0(0),

and u ∈ U . Then φ and ψ are Ck conjugate via H and moreover

ψ(t, x, u) = φ(t,H(x, u)−1, u) + o(kxk|c|−1) . (11)

We have to show that ψ solves a control affine system (7) which satisfies (8).
Since H(i)(x, u) = x for i 6= j, we get ψ(i)(t, x, u) = φ(i)(t,H(x, u)−1, u) and
therefore

d

dt
ψ(i)(t, x, u) = A(i)(u(t))ψ(i)(t, x, u) + F (i)(φ(t,H(x, u)−1, u), u(t))

for almost all t ∈ R. Now F (i) is nonlinear in x and with (11) ψ(i) solves

ẋ(i)(t) = A(i)(u(t))x(i)(t) + F (i)(x(t), u(t)) +R(i)(x(t), u(t))

with R(i)(x, u) = o(kxk|c|). It is a little bit more complicated to construct the
equation for ψ(j)(t, x, u) = φ(j)(t,H(x, u)−1, u)+h(j)(φ(j)(t,H(x, u)−1, u), θtu).
Treating the two summands separately we get with (11)

d

dt
φ(j)(t,H(x, u)−1, u) = A(j)(u(t))[ψ(j)(t, x, u)− h(j)(φ(t,H(x, u)−1, u), θtu)]

+ F (j)(ψ(j)(t, x, u), u(t)) + o(kxk|c|)

for almost all t ∈ R. To compute the derivative of the second summand
we use a simple transformation of the integral in h(j), Lebesgues theorem to
differentiate and the formulas ddt [Φ(s − t, θtu)] = −Φ(s − t, θtu)A(u(t)) and
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d
dt [Φ(s− t, θtu)

−1] = A(u(t))Φ(s− t, θtu). We get

d

dt
h(j)(φ(t,H(x, u)−1, u), θtu)

=
d

dt

Z ∞
t

Φ(j)(s− t, θtu)
−1 1

c!
Dc
xF

(j)(0, u(s)) · [Φ(s− t, θtu)φ(t,H(x, u)
−1, u)]c ds

= − 1
c!
Dc
xF

(j)(0, u(s)) · φ(t,H(x, u)−1, u)c +A(j)(u(t))h(j)
¡
φ(t,H(x, u)−1, u), θtu

¢
−Dxh

(j)
¡
A(u(t)) · φ(t,H(x, u)−1, u), θtu

¢
+Dxh

(j)
¡
A(u(t)) · φ(t,H(x, u)−1, u) + F (φ(t,H(x, u)−1, u), u(t)), θtu

¢
for almost all t ∈ R. Adding the derivatives of the two summands and using
(11) ψ(j) solves

ẋ(j)(t) = A(j)(u(t))x(j)(t) + F (j)(x(t), u(t))

− 1

c!
Dc
xF

(j)(0, u(s)) · x(t)c +R(j)(x(t), u(t))

with R(j)(x, u) = o(kxkc) and the theorem is proved.

4 Examples

We consider examples to demonstrate our normal form theorem, Theorem 5.
The first example illustrates the elimination of a nonresonant monomial, the
second example has a resonant term and the sign determines the qualitative
behavior of the control system. The control functions u may vary in [−ρ, ρ] for
some ρ > 0.
(a) Let p ∈ N and consider the system

ẋ = x3 + ux

ẏ = xyp − y.

The linearization at 0 is decoupled and the spectral intervals of the first and sec-
ond equation are λ1 = [−ρ, ρ] and λ2 = {−1}, respectively. The nonresonance
condition for the elimination of the monomial xyp in the y-equation is

λ2 < λ1 + pλ2 or λ2 > λ1 + pλ2

and this is equivalent to p < 1 − ρ (which is impossible) or p > 1 + ρ. If the
latter holds, Theorem 5 yields the transformation H(x, y, u) = (x, y)+h(x, y, u)
with h = (h(1), h(2)), h(1)(x, y, u) = 0 and

h(2)(x, y, u) =

Z ∞
0

Φ(2)(s, u)−1 ·Φ(1)(s, u)x · [Φ(2)(s, u)y]p ds
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which transforms the system into

ẋ = x3 + ux

ẏ = −y + o(k(x, y)kp+1).
(b) Let α ∈ R and consider the two equations

ẋ = x3 + (α+ u)x and ẋ = −x3 + (α+ u)x.

The spectrum of the linearization ẋ = (α+u)x is the interval λ = [α−ρ, α+ρ].
Thus, for both equations, one has for all control functions u that for α < −ρ
the origin is stable and for α > ρ it is unstable.

If 0 6∈ λ and ρ < |α|
2 then the nonresonance condition λ < 3λ or λ > 3λ is

satisfied and the monomials ±x3 can be eliminated with Theorem 5.
If 0 ∈ λ, the nonresonance condition is not satisfied and Theorem 5 yields

no C3 transformation which eliminates x3 and −x3, respectively.
We remark that these two families of control systems have qualitatively

different behaviors. Recall from [3] that a control set is a maximal subset of
approximate controllability. The origin is a singular point and hence it is a
trivial control set. The control sets with nonvoid interiors correspond to the
maximal ω-limit sets of the control flow (2). One obtains easily (compare also
[3, pp. 337-338]) that for the first equation one has

• for α < −ρ there are the two control setsDα
1 = (−

√
α+ ρ,−√α− ρ), Dα

2 =
(−√α+ ρ,

√
α+ ρ);

• for −ρ ≤ α ≤ ρ there are two control sets Dα
1 = (−

√
α+ ρ, 0) and Dα

2 =
(0,
√
α+ ρ).

Observe that these control sets are variant, i.e., there are trajectories leaving
them in finite time.
On the other hand, for the second equation one has

• for −ρ ≤ α ≤ ρ there are the two control sets Dα
1 = [−√α+ ρ, 0) and

Dα
2 = (0,

√
α+ ρ);

• for ρ < α there are the two control sets Dα
1 = [−

√
α+ ρ,−√α− ρ], Dα

2 =
[−√α+ ρ,

√
α+ ρ].

Observe that these control sets are invariant, i.e., no trajectory leaves them
in finite time.
Thus these equations present singular pitchfork bifurcations of control sets;

they are subcritical and supercritical, respectively, .
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