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The concept of a Morse decomposition consisting of nonautonomous sets is reviewed for
linear cocycle mappings w.r.t. to past, future and all-time convergences. In each case, the
set of accumulation points of the finite-time Lyapunov exponents corresponding to points
in a nonautonomous set is shown to be an interval. For a finest Morse decomposition, the
Morse spectrum is defined as the union of all of the above accumulation point intervals
over the different nonautonomous sets in such a finest Morse decomposition. In addition,
Morse spectrum is shown to be independent of which finest Morse decomposition is used,
when more than one exists.
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1. Introduction

Exponential growth rates for solutions of linear nonautonomous differential equa-
tions are a classical topic in the theory of dynamical systems. There are basically
two approaches: Either one starts with exponential growth rates and constructs
corresponding (generalized) versions of eigenspaces from them; this leads, e.g., to
dichotomy spectra and to Oseledet’s Theorem. Or one starts with an appropriate
generalized version of eigenspaces, and then considers the associated exponential
growth rates. In the context of linear flows on vector bundles with compact base
space, the latter approach can be based on a topological analysis of the induced
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system on projective space, where, following fundamental work by C. Conley, a
finest Morse decomposition can be constructed for systems with a chain transitive
base space. This leads to Selgrade’s Theorem, proofs of which are given, e.g., by
Salamon & Zehnder11 and Bronshtĕın1. This theorem gives a decomposition of the
vector bundle into linear subbundles, which, in the autonomous case, reduce to the
sums of generalized eigenspaces corresponding to eigenvalues with coinciding real
part. Then one can associate to each subbundle a spectral interval of generalized
Lyapunov exponents, the Morse spectrum (Colonius & Kliemann4, Grüne6). Re-
cently, San Martin & Seco12 have extended the Morse spectrum to flows on flag
bundles in the context of semi-simple Lie groups.

For nonautonomous differential equations where no compact base space is
present, these techniques are not applicable. However, nonautonomous versions
of Morse decompositions have recently been derived based on generalizations of
pullback attractors (see Rasmussen9,10, and see Palmer & Siegmund7 for attractor-
repeller pairs). The present paper shows how to define an analogous notion of Morse
spectrum in this nonautonomous context. Here the various time domains give rise
to different notions, namely past, future and all-time objects.

For the readers’ convenience, we have collected some basic notions from non-
autonomous dynamics in the ensuing Section 2. Then, in Sections 3 and 4, basic
results from Rasmussen9,10 are recalled which yield appropriate notions of attrac-
tors and repellers leading to finest Morse decompositions for the induced systems
on projective space. Section 5 presents the main results of the present paper: a non-
autonomous version of Morse spectrum with some insight into its structure. Finally,
an example is discussed.

Notation. Given a metric space (X, d), we write Uε(x0) = {x ∈ X : d(x, x0) < ε}
for the ε-neighborhood of a point x0 ∈ X. For arbitrary nonempty sets A,B ⊂ X

and x ∈ X, let d(x,A) := inf{d(x, y) : y ∈ A} be the distance of x to A and
d(A|B) := sup{d(x,B) : x ∈ A} be the Hausdorff semi-distance of A and B.

We denote by RN×N the set of all real N×N matrices. The Euclidean space RN

is equipped with the Euclidean norm ‖ · ‖, which is induced by the scalar product
〈·, ·〉, defined by 〈x, y〉 :=

∑N
i=1 xiyi. To introduce the real projective space PN−1

of RN , we say that two nonzero elements x, y ∈ RN are equivalent if there exists a
c ∈ R such that x = cy. The equivalence class of x ∈ RN is denoted by Px, and we
call the set of all equivalent classes the projective space PN−1. Equipped with the
metric dP : PN−1 × PN−1 → [

0,
√

2
]
, given by

dP(Pv,Pw) = min
{∥∥∥∥

v

‖v‖ −
w

‖w‖

∥∥∥∥ ,

∥∥∥∥
v

‖v‖ +
w

‖w‖

∥∥∥∥
}

for all 0 6= v, w ∈ RN ,

the projective space is a compact metric space. For any v ∈ PN−1, we define P−1v :={
x ∈ RN : Px = v

} ∪ {0}.
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2. Cocycles and Nonautonomous Sets

Throughout this paper, I denotes a real interval of the form (−∞, 0], [0,∞) or R,
respectively. Given a metric space (X, d), a cocycle is a mapping ϕ : I× I×X → X

with

ϕ(τ, τ, ξ) = ξ and ϕ(t, τ, ξ) = ϕ(t, s, ϕ(s, τ, ξ))

for all τ, t, s ∈ I and ξ ∈ X. The set X is called phase space, and I × X is called
extended phase space. The general solution of a nonautonomous differential equation
ẋ = f(t, x) is a cocycle if the right hand side f : R×RN → RN satisfies conditions
guaranteeing global existence and uniqueness of solutions.

A subset M of the extended phase space I×X is called nonautonomous set ; we
use the term t-fiber of M for the set M(t) := {x ∈ X : (t, x) ∈ M} (which may
be empty), t ∈ I. We call M closed or compact if all t-fibers are closed or compact,
respectively. Finally, a nonautonomous set M is called invariant (w.r.t. the cocycle
ϕ) if ϕ(t, τ, M(τ)) = M(τ + t) for all t, τ ∈ I.

In case X = RN , a cocycle ϕ is called linear if for given α, β ∈ R, we have

ϕ(t, τ, αx + βy) = αϕ(t, τ, x) + βϕ(t, τ, y) for all t, τ ∈ I and x, y ∈ RN . (2.2)

For instance, a linear cocycle is generated by a linear nonautonomous differential
equation ẋ = B(t)x, where B : I → RN×N is continuous. Given a linear cocycle
ϕ, there exists a corresponding matrix-valued function Φ : I × I → RN×N with
Φ(t, τ)x = ϕ(t, τ, x) for all t, τ ∈ R and x ∈ RN . We will also use the term lin-
ear cocycle for this function. Φ canonically induces a cocycle PΦ on PN−1 by the
definition

PΦ(t, τ)Px := P(Φ(t, τ)x) for all t, τ ∈ R and x ∈ RN

(see Colonius & Kliemann5, Lemma 5.2.1, p. 149).

3. Attractivity and Repulsivity

In this section, several notions of local attractivity and repulsivity are explained
(see also Rasmussen8). The concepts are introduced for the past (past attractivity
and repulsivity), the future (future attractivity and repulsivity) and the entire time
(all-time attractivity and repulsivity).

Throughout this section, let (X, d) be a metric space and ϕ : I× I×X → X be
a cocycle.

Note that the following notions of attractor are local forms of attractors which
have been discussed since the 1990s. For instance, a past attractor is a local form
of a pullback attractor (see, e.g., Cheban, Kloeden & Schmalfuß2), i.e., it attracts
a neighborhood of itself in the sense of pullback attraction. Moreover, a future
attractor is a local form of a forward attractor, and an all-time attractor is a local
form of a uniform attractor as discussed, e.g., in Chepyzhov & Vishik3.
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Definition 3.1 (Attractors and repellers). Let A and R be invariant and com-
pact nonautonomous sets.

(i) In case I is unbounded below, A is called a past attractor if there exists an
η > 0 such that

lim
t→∞

d
(
ϕ(τ, τ − t, Uη(A(τ − t)))

∣∣A(τ)
)

= 0 for all τ ≤ 0 , (3.1)

(ii) and R is called a past repeller if there exists an η > 0 such that

lim
t→∞

d
(
ϕ(τ − t, τ, Uη(R(τ)))

∣∣R(τ − t)
)

= 0 for all τ ≤ 0 . (3.2)

(iii) In case I is unbounded above, A is called a future attractor if there exists
an η > 0 such that

lim
t→∞

d
(
ϕ(τ + t, τ, Uη(A(τ)))

∣∣A(τ + t)
)

= 0 for all τ ≥ 0 , (3.3)

(iv) and R is called a future repeller if there exists an η > 0 such that

lim
t→∞

d
(
ϕ(τ, τ + t, Uη(R(τ + t)))

∣∣R(τ)
)

= 0 for all τ ≥ 0 . (3.4)

(v) In case I = R, A is called an all-time attractor if A is both a past and
future attractor, i.e., there exists an η > 0 such that (3.1) and (3.3) hold,

(vi) and R is called an all-time repeller if R is both a past and future repeller,
i.e., there exists an η > 0 such that (3.2) and (3.4) hold.

Remark 3.1.

(i) The notion of an all-time attractor and all-time repeller is slightly different
from the concept used in Rasmussen8,10, where uniform attraction and
repulsion is required, respectively.

(ii) The notions of future attractivity and repulsivity can be derived from the
concept of past attractivity and repulsivity via time reversal. A past at-
tractor (repeller, respectively) corresponds to a future repeller (attractor,
respectively) of the system under time reversal.

(iii) The Hausdorff semi-distance d in Definition 3.1 can equivalently be replaced
by the Hausdorff distance dH , which for nonempty sets A,B ⊂ X is defined
by dH(A,B) := max{d(A|B), d(B|A)}.

(iv) Every invariant and compact nonautonomous set of the differential equation
ẋ = x is a past repeller. Therefore, past repellers are not uniquely deter-
mined in general, in contrast to past attractors (see Rasmussen8, Proposi-
tion 2.37).

Example 3.1. We consider the linear nonautonomous differential equation

ẋ = a(t)x

with a continuous function a : R→ R, . Then every invariant and compact nonau-
tonomous set M ⊂ R× R is a
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• past attractor if and only if limt→−∞
∫ 0

t
a(s) ds = −∞ ,

• past repeller if and only if limt→−∞
∫ 0

t
a(s) ds = ∞ ,

• future attractor if and only if limt→∞
∫ t

0
a(s) ds = −∞ ,

• future repeller if and only if limt→∞
∫ t

0
a(s) ds = ∞ ,

• all-time attractor if and only if limt→∞maxτ∈{0,−t}
∫ τ+t

τ
a(s) ds = −∞ ,

• all-time repeller if and only if limt→∞minτ∈{0,−t}
∫ τ+t

τ
a(s) ds = ∞ .

All relations follow from the representation ϕ(t, τ, ξ) = ξ exp
( ∫ t

τ
a(s) ds

)
, which

implies d(ϕ(t, τ, Uη({0}))|{0}) = η exp
( ∫ t

τ
a(s) ds

)
. Then let t tend to ∞ in case of

the future, or τ tend to −∞ in case of the past, or both limits in case of the entire
time.

4. Morse Decomposition

This section is devoted to a summary of the basic results from Rasmussen9,10 con-
cerning the existence of finest nonautonomous Morse decompositions of the projec-
tive flow associated with a linear cocycle. Note that concerning the case of all-time
Morse decompositions, the results from Rasmussen10 need to be adapted, since
the definitions of all-time attractivity and repulsivity are not the same (cf. Re-
mark 3.1 (i)). This will be done in a forthcoming paper.

The first step towards a Morse decomposition is the construction of attractor-
repeller pairs.

Theorem 4.1 (Attractor-repeller pairs). Let Φ : I× I×RN → RN be a linear
cocycle with induced cocycle PΦ on projective space. Then the following statements
are fulfilled:

(i) Let I be unbounded below and R be a past repeller of PΦ, i.e., there exists
an η > 0 such that (3.2) holds. Then the nonautonomous set R∗, defined
by

R∗(τ) :=
⋂

t∗≥0

⋃

t≥t∗
PΦ(τ, τ − t)

(
PN−1 \ Uη(R(τ − t))

)
for all τ ∈ I , (4.1)

is a past attractor, which is maximal outside R in the following sense: Any
past attractor A ) R∗ has nonempty intersection with R. We call (R∗, R)
a past attractor-repeller pair.

(ii) Let I be unbounded above and A be a future attractor of PΦ, i.e., there exists
an η > 0 such that (3.3) holds. Then the nonautonomous set A∗, defined
by

A∗(τ) :=
⋂

t∗≥0

⋃

t≥t∗
PΦ(τ, τ + t)

(
PN−1 \ Uη(A(τ + t))

)
for all τ ∈ I , (4.2)

is a future repeller, which is maximal outside A in the following sense: Any
future repeller R ) A∗ has nonempty intersection with A. We call (A,A∗)
a future attractor-repeller pair.
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(iii) Let I = R and A be an all-time attractor of PΦ. Then the nonautonomous
set A∗, defined by (4.2) is an all-time repeller, which is maximal outside A

in the following sense: Any all-time repeller R ) A∗ has nonempty inter-
section with A. We call (A,A∗) an all-time attractor-repeller pair.

(iv) Let I = R and R be an all-time repeller of PΦ. Then the nonautonomous
set R∗, defined by (4.1) is an all-time attractor, which is maximal outside
R in the following sense: Any all-time attractor A ) R∗ has nonempty
intersection with R. We call (R∗, R) an all-time attractor-repeller pair.

Proof. See Rasmussen9, Theorem 4.3, for the past and future case and a forth-
coming paper for the entire time (cf. also Rasmussen10, Theorem 3.2).

Remark 4.1.

(i) In general, there is no formalism to obtain a past repeller from a past at-
tractor and to get a future attractor from a future repeller (see Rasmussen9,
Example 4.4).

(ii) For an all-time attractor A, the relation (A∗)∗ = A is fulfilled, and an all-
time repeller R fulfills (R∗)∗ = R (cf. a forthcoming paper or Rasmussen10,
Theorem 3.2).

(iii) In Palmer & Siegmund7, so-called generalized attractor-repeller pairs are
introduced, which consist of two invariant nonautonomous sets A and R

of Φ whose fibers are linear subspaces of RN fulfilling the following three
conditions:

(a) A(t)⊕R(t) = RN for all t ∈ R ,
(b) given τ ∈ R, 0 6= ξ ∈ A(τ) and 0 6= η ∈ R(τ), we have

‖Φ(t, τ)η‖
‖Φ(t, τ)ξ‖ → 0 as t →∞ and

‖Φ(t, τ)ξ‖
‖Φ(t, τ)η‖ → 0 as t → −∞ ,

(c) the angle between A(t) and R(t) is bounded below by a positive num-
ber.

It is easy to see that each all-time attractor-repeller pair forms a generalized
attractor-repeller pair.

The notion of an attractor-repeller pair is generalized by the following definition.

Definition 4.1 (Morse decompositions). A set {M1, M2, . . . , Mn} of nonau-
tonomous sets, the so-called Morse sets, is called past (future, all-time, respectively)
Morse decomposition of PΦ if the representation

Mi = Ai ∩Ri−1 for all i ∈ {1, . . . , n}
is fulfilled with past (future, all-time, respectively) attractor-repeller pairs (Ai, Ri),
i ∈ {0, . . . , n}, fulfilling

∅ = A0 ( A1 ( · · · ( An = I× PN−1
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and

I× PN−1 = R0 ) R1 ) · · · ) Rn = ∅ .

The following theorem shows that Morse decompositions are crucial for the
dynamical behavior of the nonautonomous dynamical system.

Theorem 4.2 (Dynamical properties). The following statements are fulfilled:

(i) Convergence in forward time. Let {M1, . . . ,Mn} be a future (all-time, re-
spectively) Morse decomposition of PΦ. Then for all (τ, x) ∈ I×PN−1, there
exists an i ∈ {1, . . . , n} with

lim
t→∞

dP
(
PΦ(τ + t, τ)x,Mi(τ + t)

)
= 0 .

(ii) Convergence in backward time. Let {M1, . . . , Mn} be a past (all-time, re-
spectively) Morse decomposition of PΦ. Then for all (τ, x) ∈ I×PN−1, there
exists an i ∈ {1, . . . , n} with

lim
t→∞

dP
(
PΦ(τ − t, τ)x,Mi(τ − t)

)
= 0 .

Proof. See Rasmussen9, Theorem 8.5, and Rasmussen10, Theorem 4.4.

Further convergence results for Morse decompositions can be found in Ras-
mussen9, Theorem 5.6.

We conclude this section by stating a result concerning finest Morse decompo-
sitions, which is an analog to the Theorem of Selgrade (see Selgrade13).

Theorem 4.3 (Finest Morse decomposition). There exists a finest past (fu-
ture, all-time, respectively) Morse decomposition {M1, . . . ,Mn} of PΦ, i.e., the
number of Morse sets of every past (future, all-time, respectively) Morse decompo-
sition is bounded by n. Moreover, we have n ≤ N and the decomposition

P−1M1(t)⊕ · · · ⊕ P−1Mn(t) = RN for all t ∈ I .

Proof. See Rasmussen9, Theorem 8.7, for the past and future case and a forth-
coming paper for the entire time (cf. also Rasmussen10, Theorem 5.1).

Remark 4.2. A finest Morse decomposition for the past and future is not uniquely
determined, but one obtains that the Morse sets of two finest Morse decompositions
are converging to each other in Hausdorff distance when time tends to the past or
future, respectively.

5. Morse Spectrum

In this section, we introduce Morse spectra for a linear cocycle Φ : I× I→ RN×N .
Fundamental for what follows is the definition of a finite-time exponential growth
rate.



June 16, 2008 17:3 WSPC/INSTRUCTION FILE morsespectrum

8 F. Colonius, P. E. Kloeden & M. Rasmussen

Definition 5.1 (Finite-time exponential growth rate). For any (τ, ξ) ∈ I ×
RN , ξ 6= 0, and T > 0 with τ + T ∈ I, we define the finite-time exponential growth
rate by

λT (τ, ξ) :=
1
T

ln
‖Φ(τ + T, τ)ξ‖

‖ξ‖ .

Using this concept, we study limits of growth rates which are attained from
initial values (τ, ξ) within a fixed linear and invariant nonautonomous set.

Definition 5.2. Let M ⊂ I × RN be an invariant nonautonomous set such that
the fibers of M , i.e., the sets M(t) for t ∈ I, are linear subspaces of RN .

(i) If I is unbounded below, the past spectrum of Φ over M is defined by

Σ−(M) :=
{

µ ∈ R : there exist sequences Tk →∞ and (τk, ξk) ∈ M

with τk, τk + Tk ≤ 0 and lim
k→∞

λTk(τk, ξk) = µ
}

.

(ii) If I is unbounded above, the future spectrum of Φ over M is defined by

Σ+(M) :=
{

µ ∈ R : there exist sequences Tk →∞ and (τk, ξk) ∈ M

with τk, τk + Tk ≥ 0 and lim
k→∞

λTk(τk, ξk) = µ
}

.

(iii) If I = R, the all-time spectrum of Φ over M is defined by

Σ±(M) :=
{

µ ∈ R : there exist sequences Tk →∞ and (τk, ξk) ∈ M

with lim
k→∞

λTk(τk, ξk) = µ
}

.

Note that the conditions τk + Tk ≤ 0 and Tk → ∞ in (i) imply that τk → −∞
when k → ∞. The limits in (i) can thus be seen as pullback limits, whereas we
obtain forward limits in (ii) and arbitrary limits in (iii).

In the following, we allow ±∞ as boundary points of intervals, e.g., [−∞,∞] :=
(−∞,∞) ∪ {−∞,∞} and [∞,∞] := {∞}.

With these definitions, the past (future, all-time, respectively) spectrum of a
linear and invariant nonautonomous set turns out to be a closed interval.

Theorem 5.1. Let M ⊂ I×RN be an invariant nonautonomous set such that the
fibers of M are linear subspaces of RN , and let Σ(M) := Σ−(M), Σ+(M), Σ±(M)
be the past (future, all-time, respectively) spectrum of Φ over M , respectively. Then
Σ(M) is nonempty, closed and connected, i.e., there exist −∞ ≤ σ∗ ≤ σ∗ ≤ ∞ such
that

Σ(M) = [σ∗, σ∗] .

Proof. The closedness of the spectrum follows directly from the definition via the
limits, and the spectrum is nonempty, since the limes superior of the sequence
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λTk(τk, ξk) for given arbitrary sequences Tk → ∞ and (τk, ξk) ∈ M belongs to
Σ(M). We now choose s−, s+ ∈ Σ(M) with s− < s+, and let s ∈ (s−, s+). Then
there exist sequences T−k , T+

k →∞ and (τ−k , ξ−k ), (τ+
k , ξ+

k ) ∈ M such that

lim
k→∞

λT−k (τ−k , ξ−k ) = s− and lim
k→∞

λT+
k (τ+

k , ξ+
k ) = s+ .

We can assume that both λT+
k (τ+

k , ξ+
k ) > s and λT−k (τ−k , ξ−k ) < s is fulfilled for all

k ∈ N. Given k ∈ N, the function

c 7→ λcT+
k +(1−c)T−k (cτ+

k + (1− c)τ−k , cξ+
k + (1− c)ξ−k ) , c ∈ [0, 1] ,

is continuous, and hence, there exists a ck ∈ [0, 1] such that

λckT+
k +(1−ck)T−k (ckτ+

k + (1− ck)τ−k , ckξ+
k + (1− ck)ξ−k ) = s .

This implies s ∈ Σ(M).

The following notion of Morse spectrum relies on finest Morse decompositions. In
the case of the past and future, a finest Morse decomposition is not uniquely deter-
mined (see Remark 4.2), but the following lemma says that the kind of nonunique-
ness does not affect the spectra over the Morse sets.

Lemma 5.1. Let M := {M1, . . . ,Mn} and M̃ := {M̃1, . . . , M̃n} be finest future
Morse decompositions of PΦ. Then for all i ∈ {1, . . . , n}, we have

Σ+(P−1Mi) = Σ+(P−1M̃i) .

A similar statement is fulfilled for finest past Morse decompositions.

Proof. Let ∅ = A0 ( A1 ( · · · ( An = I× PN−1 and ∅ = Ã0 ( Ã1 ( · · · ( Ãn =
I × PN−1 be the future attractor sequences leading to M and M̃, respectively.
Note that we have A∗j = Ã∗j for j ∈ {1, . . . , n} (see Rasmussen9, Theorem 8.7). Let
i ∈ {1, . . . , n} and µ ∈ Σ+(P−1Mi), i.e., there exist sequences Tk →∞ and (τk, ξk) ∈
P−1Mi with τk, τk + Tk ≥ 0 and limk→∞ λTk(τk, ξk) = µ. We denote the projection
on P−1M̃i(t) with null space P−1M̃1(t)⊕· · ·⊕P−1M̃i−1(t)⊕P−1M̃i+1(t)⊕P−1M̃n(t)
by P (t), t ∈ I, and we define

ξ̃k := P (τk)ξk and ηk := ξk − ξ̃k for all k ∈ N .

We have Mi(t), M̃i(t) ⊂ A∗i−1(t) = Ã∗i−1(t) = P(P−1M̃i(t)⊕· · ·⊕P−1M̃n(t)) for t ∈ I
(note that the last equality follows from the proof of Rasmussen9, Theorem 8.7),
and this implies

ηk ∈ P−1M̃i+1(τk)⊕ · · · ⊕ P−1M̃n(τk) for all k ∈ N , (5.8)

since P (τk)ηk = 0. Let Q(t), t ∈ I, denote the projection on P−1M̃1(t) ⊕ · · · ⊕
P−1M̃i(t) with null space P−1M̃i+1(t)⊕ · · · ⊕ P−1M̃n(t). By (5.8), we have

ξ̃k = P (τk)ξk = Q(τk)ξk for all k ∈ N . (5.9)
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Moreover, the projected null space of Q, i.e., the set P(P−1M̃i+1 ⊕ · · · ⊕ P−1M̃n) =
P(P−1Mi+1 ⊕ · · · ⊕ P−1Mn), is a future repeller, and the projected range of Q,
i.e., the set P(P−1M1 ⊕ · · · ⊕ P−1Mi), is the corresponding future attractor. This
means that the projected range and null space of Q(t) are separated uniformly for
all t ∈ I (see Rasmussen8, Theorem 3.5 (i)), and hence, we have a K1 > 1 such
that ‖Q(τ)ξ‖ ≤ K1‖ξ‖ for all τ ∈ I and ξ ∈ RN . Furthermore, the set P−1Mi(t)
is also separated from the projected null space of Q uniformly in t ∈ I, which is
given by P(P−1M̃i+1 ⊕ · · · ⊕ P−1M̃n)(t) = P(P−1Mi+1 ⊕ · · · ⊕ P−1Mn)(t) (note
that P(P−1M1 ⊕ · · · ⊕ P−1Mi) and P(P−1M̃i+1 ⊕ · · · ⊕ P−1M̃n) = P(P−1Mi+1 ⊕
· · ·⊕P−1Mn) are a future attractor-repeller pair), and thus, there exists a constant
K2 > 1 with

‖P (τ)ξ‖ (∗)
= ‖Q(τ)ξ‖ ≥ 1

K2
‖ξ‖ for all (τ, ξ) ∈ P−1Mi .

Note that (∗) follows as in (5.9), where (τk, ξk) ∈ P−1Mi. We obtain

λTk(τk, ξ̃k) =
1
Tk

ln
(‖Φ(τk + Tk, τk)P (τk)ξk‖

‖P (τk)ξk‖
)

=
1
Tk

ln
(‖P (τk + Tk)Φ(τk + Tk, τk)ξk‖

‖P (τk)ξk‖
)

≤ 1
Tk

ln
(

K1K2
‖Φ(τk + Tk, τk)ξk‖

‖ξk‖
)

(we again used the fact that Q(t) and P (t) coincide on P−1Mi(t)). In addition, we
have

λTk(τk, ξ̃k) =
1
Tk

ln
(‖P (τk + Tk)Φ(τk + Tk, τk)ξk‖

‖P (τk)ξk‖
)

≥ 1
Tk

ln
(‖Φ(τk + Tk, τk)ξk‖

K1K2‖ξk‖
)

,

and we obtain µ ∈ Σ+(M̃i). This finishes the proof of this lemma.

The following definition of a Morse spectrum builds upon finest Morse decom-
positions. In fact, the Morse spectrum is defined as the union of the spectra of the
corresponding Morse sets.

Definition 5.3 (Morse spectrum). Let {M1, . . . ,Mn} be a finest past (future,
all-time, respectively) Morse decomposition of PΦ from Theorem 4.3. Then the past
(future, all-time, respectively) Morse spectrum of Φ is defined by

Σ(Φ) :=
n⋃

i=1

Σ
(
P−1Mi

)
,

where Σ(Mi) denotes the past (future, all-time) spectrum of Φ over Mi, i = 1, . . . , n.

The following theorem says that the Morse spectra contain all Lyapunov expo-
nents of the system.
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Theorem 5.2 (Lyapunov exponents are contained in the Morse spec-
trum). Let (τ, ξ) ∈ I× RN such that

µ = lim
k→∞

1
Tk

ln ‖Φ(τ + Tk, τ)ξ‖

for some µ ∈ R and some sequence {Tk}k∈N with limk→∞ Tk = ∞. Then µ ∈
Σ+(Φ) ⊂ Σ±(Φ). Moreover, let (τ, ξ) ∈ I× RN such that

µ = lim
k→∞

1
Tk

ln ‖Φ(τ − Tk, τ)ξ‖

for some µ ∈ R and some sequence {Tk}k∈N with limk→∞ Tk = ∞. Then −µ ∈
Σ−(Φ) ⊂ Σ±(Φ).

Proof. Let {M1, . . . , Mn} be some finest future Morse decomposition. We write
ξ = m1+· · ·+mn with mi ∈ P−1Mi(τ), i ∈ {1, . . . , n}, and we choose j ∈ {1, . . . , n}
minimal with mj 6= 0. Then Rasmussen8, Proposition 3.19, implies that

lim
k→∞

‖Φ(τ + Tk, τ)mi‖
‖Φ(τ + Tk, τ)mj‖ = 0 for all i ∈ {j + 1, . . . , n} (5.14)

(note that P(P−1M1 ⊕ · · · ⊕ P−1Mj) is a future attractor). In addition, we obtain

‖Φ(τ + Tk, τ)ξ‖ ≤
n∑

i=j

‖Φ(τ + Tk, τ)mi‖

= ‖Φ(τ + Tk, τ)mj‖
n∑

i=j

‖Φ(τ + Tk, τ)mi‖
‖Φ(τ + Tk, τ)mj‖

= ‖Φ(τ + Tk, τ)mj‖

1 +

n∑

i=j+1

‖Φ(τ + Tk, τ)mi‖
‖Φ(τ + Tk, τ)mj‖




and

‖Φ(τ + Tk, τ)ξ‖ ≥
∣∣∣∣∣∣
‖Φ(τ + Tk, τ)mj‖ −

∥∥∥∥∥∥

n∑

i=j+1

Φ(τ + Tk, τ)mi

∥∥∥∥∥∥

∣∣∣∣∣∣

= ‖Φ(τ + Tk, τ)mj‖
∣∣∣∣∣∣
1−

∥∥∥∥∥∥

n∑

i=j+1

Φ(τ + Tk, τ)mi

‖Φ(τ + Tk, τ)mj‖

∥∥∥∥∥∥

∣∣∣∣∣∣
.

Hence, (5.14) implies that

µ = lim
k→∞

1
Tk

ln ‖Φ(τ + Tk, τ)ξ‖ = lim
k→∞

1
Tk

ln ‖Φ(τ + Tk, τ)mj‖

= lim
k→∞

1
Tk

ln
‖Φ(τ + Tk, τ)mj‖

‖mj‖ .

The second statement of this theorem can be proved similarly.
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6. An Example

The following example shows that the intervals of the Morse spectrum need not be
disjoint. It is a modification of Salamon & Zehnder11, Example 2.14.

Example 6.1. Consider the differential equation

ẋ = cos(ζ(t))x , ẏ = (α + cos(ζ(t))y , (6.1)

where α > 0 is a parameter and ζ(t) is the solution of ζ̇(t) = sin ζ(t), ζ(0) = π/2.
Then ζ(t), ζ̇(t) > 0 for all t ∈ R and ζ(t) → 0 for t → −∞ and ζ(t) → π for
t → +∞. The sets

V1 := R× R× {0} and V2 := R× {0} × R
are invariant nonautonomous sets with linear fibers. For the projectivized flow, the
set M1(t) := PV1(t) is an all-time attractor and M2(t) := PV2(t) is its complemen-
tary repeller. They form a finest all-time Morse decomposition. It follows from (6.1)
that

Σ±(M1) = [−1, 1] and Σ±(M2) = [α− 1, α + 1] .

Hence, for α ∈ (0, 2], these spectral intervals intersect.
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