
Uniqueness of Local Control Sets

Fritz Colonius∗ Marco Spadini†

November 21, 2002

Abstract

The local controllability behavior near an equilibrium is discussed.
If the Jacobian of the linearized system is hyperbolic, uniqueness of
local control sets is established.

1 Introduction

Local controllability properties have been studied for a long time in control
theory. In this paper we concentrate on controllability properties near an
equilibrium point x0 corresponding to a constant control value u0. We as-
sume that the linearized control system given by the Jacobians at (x0, u0)
is controllable. Thus the nonlinear system is locally controllable near the
equilibrium. This also holds if control constraints u(t) ∈ U are present and
u0 ∈ intU . Thus the equilibrium is in the interior of a maximal subset of
complete controllability, i.e., a control set, which, naturally, depends on the
control range. However, it turns out that already in this apparently simple
situation the controllability behavior can be very complicated: In Example
2.2, below, the number of control sets near the equilibrium point tends to
infinity as the control ranges decrease. The underlying philosophy of the
approach taken here is that hyperbolicity assumptions should exclude this
and instead yield “simple” behavior, just as in dynamical systems theory hy-
perbolicity implies structural stability. Here we say that a “simple” behavior
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occurs if there exists a neighborhood V of the equilibrium such that for all
control ranges small enough the control set around the equilibrium is the
unique one in V . The main result of this paper shows that hyperbolicity of
the Jacobian with respect to x does, in fact, guarantee locally uniqueness of
the subset of complete controllability; due to the local nature of the problem,
we have to consider local control sets which are defined as locally maximal
subsets of complete controllability.

The analogy to the role of hyperbolicity in dynamical systems can be
made more precise, if one considers control systems ẋ = f(x, u) as dynamical
systems or control flows where the set U of admissible control functions u
is considered as a part of the state and the dynamics on U are given by
the time-shift; compare Colonius/Kliemann [4] for a systematic exposition.
Then the control sets are characterized via the maximal limit sets as time
tends to infinity (i.e., the topologically transitive subsets of the control flow).
Thus our result shows that locally around a hyperbolic equilibrium x0 of the
nominal system (i.e., ẋ = f(x, u0)) all small control ranges yield a unique
maximal limit set. Naturally, our controllability assumption for the linearized
system implies that the eigenvalues can be shifted by feedback. In particular,
hyperbolicity can be achieved; see Remark 2.1 for a discussion in our context.

A similar relation of controllability to hyperbolicity was observed by
Grünvogel [7] in an opposite case: For singular points, i.e., equilibria which
remain fixed for all controls, the existence of control sets is connected with
the Lyapunov spectrum of the linearized system (which, in this case, is a
bilinear control system). Here hyperbolicity excludes the existence of con-
trol sets near the equilibrium, which is a one-point control set. The present
paper is an analogue of his results in the regular situation. The importance
of hyperbolicity assumptions in this context is emphasized by the results in
Colonius/Du [1] showing that hyperbolic control sets depend continuously in
the Hausdorff metric on parameters. Related work on controllability behav-
ior near equilibria is given for one-dimensional systems in Colonius/Kliemann
[3].

Section 2 recalls some basic facts on control sets. For perturbed linear
systems, Sections 3 and 4 give conditions which guarantee global uniqueness
of control sets. Section 5 uses these results to show uniqueness of local control
sets for nonlinear systems near an equilibrium.

Notation 1.1. Besides the function space L∞(R,Rd) with norm ‖ · ‖∞,
we shall consider the Sobolev space W 1,∞(R,Rd) endowed with the norm
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‖x‖W 1,∞ = ‖x‖∞+‖ẋ‖∞. Moreover, given T > 0, we will consider the corre-
sponding (Banach) subspaces of T -periodic functions L∞T (Rd) and W 1,∞

T (Rd)
respectively.

2 Preliminaries

In this section, we introduce some notions and prove preliminary results on
control sets.

Consider the system

ẋ(t) = f(x(t), u(t)), u ∈ U , (1)

where U denotes the set of all piecewise continuous functions taking values in
the compact subset U of Rm, and f : Rd×Rm → Rd is C1. We will endow U
with the topology inherited by the inclusion U ⊂ L∞(R,Rm). By UT we will
denote the subset of U consisting of all its T -periodic elements. We assume
that unique solutions ϕ(t, x0, u), t ∈ R, exist for all x0 ∈ Rd and all piecewise
continuous controls u.

System (1) is locally accessible in x ∈ Rd if for all T > 0 the positive
orbit up to time T

O+
≤T (x) := {ϕ(t, x, u), 0 < t ≤ T and u ∈ U}

and the negative orbit up to time T

O−
≤T (x) := {ϕ(t, x, u), −T ≤ t < 0 and u ∈ U} ,

have nonvoid interior. It is called locally accessible in a subset A ⊂ Rd if it
is locally accessible in every x ∈ A.

Local accessibility holds if a rank condition for the Lie algebra generated
by the vector fields f(·, u), u ∈ U , holds. In the sequel, we will consider
small perturbations of linear controllable systems. Then local accessibility
always holds (see Remark 3.1).

We now turn to the main notions discussed in this paper.

Definition 2.1. A subset D of Rd with nonvoid interior is a control set of
(1) if for all x ∈ D one has

D ⊂ cl
{
ϕ(t, x, u), t > 0 and u ∈ U

}
,

and D is a maximal subset of Rd with this property.
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Note that this definition does not change if piecewise continuous controls
are replaced by locally integrable ones (cp. [4, Section 3.2]). For a point
x ∈ D, large excursions may be necessary in order to return to x. Hence we
refer to control sets also as to global control sets. A local version is introduced
next.

Definition 2.2. A subset D of Rd with nonempty interior is a local control
set if there exists a neighborhood V of cl D such that for each x, y ∈ D and
every ε > 0 there exist T > 0 and u ∈ U such that

ϕ(t, x, u) ∈ V for all t ∈ [0, T ] and d
(
ϕ(T, x, u), y

)
< ε

and for every D′ with D ⊂ D′ ⊂ V which satisfies this property, one has
D′ = D.

Thus for local control sets the maximality property of control sets is re-
placed by a local maximality property. The neighborhood V in the definition
above will also be called an isolating neighborhood of D.

Lemma 2.1. Let D be a local control set of (1), and assume that local ac-
cessibility holds in cl D. Then for every x0 ∈ intD there are T0 > 0 and a
T0-periodic control function u0 ∈ U such that ϕ(·, x0, u0) is T0-periodic and
contained in D.

Proof. Let x0 ∈ intD. By local accessibility and by boundedness of the con-
trol range U , there exists T− > 0 such that ∅ 6= intO−

≤T−
(x0) ⊂ intD. Choose

δ > 0 and a point x1 such that B(x1, δ) ⊂ intO−
≤T−

(x0). By approximate
controllability in D there exist u1 ∈ U and T1 > 0 such that ϕ(t, x0, u1) ∈ V ,
0 ≤ t ≤ T1, and x2 := ϕ(T1, x0, u1) ∈ B(x1, δ). Hence we also find u2 ∈ U and
0 < T2 < T− such that ϕ(t, x2, u2) ∈ D, 0 ≤ t ≤ T2, and ϕ(T2, x2, u2) = x0.
Concatenation of u1 and u2 and periodic continuation yields the desired piece-
wise continuous control u0 with ϕ(T1 + T2, x0, u0) = x0. By maximality in
V , this trajectory is contained in D.

Lemma 2.2. Let D be a local control set. Then
(i) D is connected;
(ii) if local accessibility holds in a neighborhood of cl intD then clD = cl intD.

Proof. (i) Assume by contradiction that there are two open subsets A, B ⊂
Rd such that A ∩ D and B ∩ D are nonvoid and disjoint and their union
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is D. Since D has nonvoid interior we may assume that there is a point
x ∈ int (A ∩D). Pick y ∈ B ∩D. Then, within an isolating neighborhood V
for D, the point y can be steered into every neighborhood of x. Hence there
are T > 0 and u ∈ U with ϕ(T, x, u) ∈ int(A∩D). It follows that every point
z = ϕ(t, y, u), t ∈ [0, T ], is in D contradicting the assumption: In fact, the
point z can be steered arbitrarily close to any point in D, without leaving V .
On the other hand let N be a neighborhood of z. By continuous dependence
on initial values, there is a neighborhood W of y such that ϕ(t,W, u) ⊂ N .
By approximate controllability in D every point in D can be steered into W
and hence into N .

(ii) Assume by contradiction that there exists x0 ∈ D \ cl intD. Let
W be a neighborhood of cl intD where local accessibility holds. Then, by
connectedness, there exists x ∈ W ∩ D \ cl intD. Then x can be steered
within an isolating neighborhood V into int D. Thus there are T > 0, u ∈ U
and an open neighborhood N ⊂ V ∩W of x with ϕ(T,N, u) ⊂ intD. For
y = ϕ(T, x, u) there are S > 0 and v ∈ U with ϕ(S, y, v) ∈ N . Because local
accessibility holds at ϕ(S, y, v), the sets {ϕ(t, x, u), 0 < t ≤ τ}, τ > 0, have
nonvoid interiors and, for τ small enough, they are contained in N . Clearly,
these sets are contained in int D. Since N is an arbitrary neighborhood of
x, it follows that x ∈ cl int D. This is a contradiction.

Proposition 2.1. Let D be a local control set, and assume that local accessi-
bility holds in a neighborhood of cl intD. Then for every x, y ∈ D there exist
a control u ∈ U and a sequence {tn} ⊂ R, tn → +∞ such that

ϕ
(
[0,∞), x, u

)
⊂ D and ϕ(tn, x, u) → y.

Proof. Suppose first that y ∈ intD. By boundedness of U there is T > 0 with
intO−

≤T (y) ⊂ D. Hence one can first steer, within V , the system from x into
intO−

≤T (y) and then to y. This trajectory is contained in D by maximality.
For a point y ∈ ∂D one can find yn ∈ intD with yn → y, since, by Lemma
2.1 (ii), cl int D = clD. Then one argues as before.

An example of a local control set which is not global can be obtained in
the following situation: Suppose that x0 is a hyperbolic equilibrium of the
uncontrolled system with a homoclinic orbit. Then for small control range
one will expect a local control set around x0 which is a proper subset of a
(global) control set containing also the homoclinic orbit. An explicit example
is the Takens-Bogdanov oscillator discussed below. We also note that in the
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interior of local control sets exact controllability holds, if the system is locally
accessible.

The following example –the Takens-Bogdanov oscillator– illustrates the
differences between local and global control sets. Its properties have been
discussed by Häckl and Schneider in [8]; see also [4, Section 9.4].

Example 2.1. Consider the second order system

ẍ = λ1 + λ2x+ x2 + xẋ+ u(t), u(t) ∈ Uρ := [−ρ, ρ].

The equivalent first order system is(
ẋ
ẏ

)
=

(
y
λ1 + λ2x+ x2 + xy

)
+ u(t)

(
0
1

)
. (2)

For the parameter values λ1 = −0.2 , λ2 = −1 the uncontrolled system has a
hyperbolic equilibrium q0 = (x0, y0) with a homoclinic orbit. For small ρ > 0,
one finds around the hyperbolic equilibrium a local control set Dloc,ρ, which is
a proper subset of a global control set Dρ, which also contains the homoclinic
orbit ϕ(·, q, 0). Furthermore⋂

ρ>0

Dloc,ρ = {(x0, y0)} and
⋂
ρ>0

Dρ = {(x0, y0)} ∪ {ϕ(t, q, 0), t ∈ R}.

The next example shows, as announced in the introduction, the compli-
cated controllability behavior which may occur in the absence of hyperbolic-
ity. It is taken from Colonius/Kliemann [2].

Example 2.2. Consider a system in R of the form

ẋ = f0(x)− 3u1 + 6u2 =: f(x, u), x ∈ R,

Then, as in [2, Example 5.5], a C∞ vector field f0 can be constructed such

that the following holds: For the control range U
1
N = [− 1

N
, 1

N
]×[− 1

N
, 1

N
] there

are at least N
2

+ 2 control sets. For N →∞ the number of control sets tends
to infinity, and they cluster at x = π. Thus one obtains an ever more complex
controllability behavior near the equilibrium as the control range decreases.
The system linearized at (x0 = π, u0

1 = u0
2 = 0) is obviously controllable.

However, the Jacobian A = ∂f
∂x

(x, u)|x=π,u=0 with respect to x vanishes and
hence A is not hyperbolic (i.e., no eigenvalue is on the imaginary axis).
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We will show that the kind of degenerate behavior near an equilibrium as
discussed above cannot occur if A is hyperbolic. For controllable linearization
(A,B) with hyperbolic A we show that there exists a neighborhood of the
equilibrium containing a unique local control set provided that the control
range is small enough.

Remark 2.1. Controllability of the linearized system implies that the eigen-
values can be arbitrarily shifted by a feedback F . In particular, one can obtain
hyperbolicity by applying the preliminary feedback F resulting in the system

ẋ = f(x, F (x− x0) + v(t)).

If one keeps track of the original control constraint u(t) ∈ U , one has to
require that the new control v is restricted by a state dependent set,

v(t) ∈ U − F (x− x0).

Thus the results presented below, in particular, Theorem 5.1, do not apply to
this system (observe that also F (x− x0) ∈ U must hold).

3 Perturbed Linear Systems

In this section, we analyze the reachability behavior of systems which are
nonlinear perturbations of linear control systems. In particular, we provide
sufficient conditions for the trajectories to end in the interior of the reachable
set.

We consider control processes of the form

ẋ(t) = Ax(t) +Bu(t) + F (x(t), u(t)), u(t) ∈ U, (3)

where A ∈ Rd×d, B ∈ Rd×m, and F : Rd × Rm → Rd is a C1-function with

‖∂1F (x, u)‖ ≤M and ‖∂2F (x, u)‖ ≤M,

uniformly for some M > 0.
We denote by ϕ(·, x0, u), x0 ∈ Rd, u ∈ U , the solution of the Cauchy

problem
ẋ(t) = Ax(t) +Bu(t) + F (x(t), u(t)) , x(0) = x0. (4)
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For T > 0 consider the Banach space

C([0, T ],Rm) := {v : [0, T ] → Rm, v is continuous}

endowed with the supremum-norm. Let a piecewise continuous control func-
tion u0 with u0(t) ∈ intU for all t ∈ R be given and define a nonempty open
subset of C([0, T ],Rm) by

V(u0) := {v ∈ C([0, T ],Rm), u0(t) + v(t) ∈ intU for all t ∈ [0, T ]}.

Given x0 ∈ Rd define a C1 map Θ : V(u0) → Rd by

Θ(v) = ϕ(T, x0, u0 + v).

We want to show that, under suitable assumptions on A and B and for
M small enough, there exists a neighborhood of x1 := Θ(0) which consists
of images of Θ. This follows from the rank theorem (see e.g. Sontag [10,
Theorem 52]), if Θ′(0) is surjective.

Define a bounded linear map Γ : C([0, T ],Rm) → Rd by

Γv =

∫ T

0

e(T−s)ABv(s) ds.

For a controllable pair (A,B) the map Γ is surjective. Since the surjective
linear maps form an open subset of the space of continuous linear maps
L(C([0, T ],Rm),Rd), there exists r = r(A,B, T ) > 0, depending on A,B, and
T , such that every H ∈L(C([0, T ],Rm),Rd) with ‖H − Γ‖ ≤ r is surjective.

Proposition 3.1. Assume that the pair (A,B) is controllable and let T > 0.
Then, there exists a constant M := M(A,B, T ) > 0, such that for every
C1 function F with ‖∂1F (x, u)‖ ≤ M and ‖∂2F (x, u)‖ ≤ M uniformly, the
following holds: For all x0 ∈ Rd and u0 ∈ intU there exists a neighborhood
V of 0 in C([0, T ],Rm) with Θ(0) = ϕ(T, x0, u0) ∈ int Θ(V ).

Proof. By the preceding remarks, we have to prove that

Θ′(0) = ∂3ϕ(T, x0, u0)

is surjective. For v ∈ C([0, T ],Rm) we put

α(t) = ∂3ϕ(t, x0, u0)v, β(t) = ∂3ψ(t, x0, u0)v,
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where ψ(t, x0, u0) is the solution of the unperturbed equation

ẋ = Ax+Bu0(t), x(0) = x0.

The chain rule implies

α(t) =

∫ t

0

[Aα(s) +Bv(s) + ∂1F (ϕ(s, x0, u0), u0(s))α(s) (5)

+ ∂2F (ϕ(s, x0, u0), u0(s))v(s)] ds

and, analogously,

β(t) =

∫ t

0

[Aβ(s) +Bv(s)] ds. (6)

Hence

|α(t)| ≤ ‖v‖∞ (‖B‖+M) +

∫ t

0

(M + ‖A‖) |α(s)| ds.

Gronwall’s inequality yields

|α(t)| ≤ ‖v‖∞ (‖B‖+M) et(‖A‖+M). (7)

Moreover, (5) and (6) imply for all t ∈ [0, T ]

|α(t)− β(t)| ≤M

(
‖v‖∞ +

∫ T

0

|α(s)| ds
)

+

∫ t

0

‖A‖ |α(s)− β(s)| ds. (8)

Plugging (7) into (8) we get

|α(t)− β(t)| ≤M ‖v‖∞ (1 + T ‖B‖+ TMeT (‖A‖+M))

+

∫ t

0

‖A‖ |α(s)− β(s)| ds (9)

≤ c(M) ‖v‖∞ +

∫ t

0

‖A‖ |α(s)− β(s)| ds,

where
c(M) := M(1 + T ‖B‖+ TMeT (‖A‖+M))

Note that the estimate (9) is independent of u0 and x0. Applying Gronwall’s
inequality we get

sup
t∈[0,T ]

|α(t)− β(t)| ≤ c(M) ‖v‖∞ eT‖A‖.
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Since c(M) → 0 as M → 0+, there exists M = M(A,B, T ) > 0 such that

|α(T )− β(T )| ≤ r ‖v‖∞ .

Recalling α(T ) = Θ′(0)v and β(T ) = Γv, we find

‖Θ′(0)− Γ‖ ≤ r

independently of u0 and x0. This yields the surjectivity of Θ′(0) for all u0

and x0.

Next we show that the constant M = M(A,B, T ) of Proposition 3.1 can
be chosen independently of T for T > 1. We shall abbreviate

MA,B = M(A,B, 1). (10)

For u ∈ C(R,Rm) and τ ∈ R, we put (ϑτu)(t) = u(t + τ), t ∈ [0, 1]. For
x0 ∈ Rd, u0 ∈ U and T > 1, define ΨT : C([0, 1],Rm) → Rd by

ΨT (v) = ϕ(T − 1, ϕ(1, x0, u0 + v), ϑ1u0).

We obtain the following corollary.

Corollary 3.1. Assume that the pair (A,B) is controllable and that F is a C1

function with ‖∂1F (x, u)‖ ≤MA,B and ‖∂2F (x, u)‖ ≤MA,B uniformly. Then
for all x0 ∈ Rd and u0 ∈ U there exists a neighborhood V of 0 ∈ C([0, 1],Rm),
such that for every T > 1 one has ϕ(T, x0, u0) ∈ int ΨT (V ).

Proof. Proposition 3.1 implies ϕ(1, x0, u0) ∈ int {ϕ(1, x0, u0 + v), v ∈ V }.
Then the assertion follows since the solution of a differential equation defines
a homeomorphism.

Observe that under the assumptions of Corollary 3.1 one has

ϕ(T, x0, u0) ∈ int {ϕ(T, x0, w), w ∈ intU}.

Here the controls w are not necessarily continuous.

Remark 3.1. Consider a nonlinear system given by

ẋ(t) = f
(
x(t), u(t)

)
, u(t) ∈ ρU,
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where ρ > 0 is given and U ⊂ Rm. Let x0 ∈ Rd be an equilibrium corre-
sponding to u0 ∈ intU such that f(x0, u0) = 0. Assume that the linearized
system

ẋ(t) = ∂1f(x0, u0)x(t) + ∂2f(x0, u0)u(t)

is controllable. Then there exists a neighborhood N of the equilibrium x0,
such that the nonlinear system is locally accessible in N . This follows, since
the accessibility rank condition which holds by assumption for the linearized
system, remains true under small variations of the involved vector fields. Also
the local controllability problem around trajectories studied in this section
can be analyzed using similar arguments (based on a Lie algebraic criterion).
We prefer the functional analytic arguments above, because they fit with the
analysis of periodic solutions given in the next section.

4 Global Uniqueness for Perturbations of

Linear Systems

In this section we prove a ‘global’ uniqueness result for control sets under the
assumptions that A is hyperbolic, (A,B) is controllable and F has bounded
partial derivatives. See [5] for examples where the number of control sets
varies dramatically when a ‘small’ nonzero term is added to a linear control
process; cp. also Paice/Wirth [9].

We start with the following result about periodic solutions of linear dif-
ferential equations.

Lemma 4.1. Let A be hyperbolic. Then there exists a constant KA > 0,
depending only on A, such that for all T > 0 and y ∈ L∞T (Rd), the (unique)
T -periodic solution ξ of

ẋ = Ax+ y, (11)

satisfies ‖ξ‖W 1,∞ < KA ‖y‖∞.

Proof. Since A is hyperbolic, for any T -periodic y one finds the unique T -
periodic solution of (11)

ξ(t) = etA(1− eTA)−1

∫ T

0

e(T−s)Ay(s) ds+

∫ t

0

e(t−s)Ay(s) ds.
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It remains to show the boundedness assertion. First we claim that for every
y ∈ L∞(Rd) there exists an essentially bounded solution of (11). In fact, it
is readily proven that the following inequalities hold:∥∥etA(I − P )e−sA

∥∥ ≤ Ke−a(t−s) for t ≥ s,∥∥etAPe−sA
∥∥ ≤ Le−b(s−t) for s ≥ t,

where K,L, a, b are positive constants and P is the projection onto the direct
sum of all the generalized eigenspaces corresponding to the eigenvalues of A
having negative real part. Thus

ξ(t) =

∫ t

−∞
etA(I − P )e−sAy(s) ds−

∫ ∞

t

etAPe−sAy(s) ds.

is an essentially bounded solution. Since 0 is the only essentially bounded
solution of ẋ − Ax = 0, the linear mapping Γ : W 1,∞(R,Rd) → L∞(R,Rd)
which takes x into ẋ−Ax is injective. It is obviously continuous and, by the
claim, also surjective. Hence, by the open mapping theorem, KA := ‖Γ−1‖ <
+∞; i.e., for every essentially bounded y, the solution ξ of ẋ = Ax+y satisfies
‖ξ‖W 1,∞ ≤ KA ‖y‖∞.

Remark 4.1. One could prove Lemma 4.1 following with only minor changes
the proof of Theorem 3.1 in [5]. However, due to is greater simplicity and
better insight into the problem, we prefer, as suggested by Prof. M. Furi
(Florence), the arguments presented above which were inspired by Coppel [6].

Corollary 4.1. Let A be hyperbolic and c be a positive given number. For
any given T -periodic function y ∈ L∞T (Rd), let ξ denote the unique T -periodic
solution of

ξ̇ = cAξ + y. (12)

Then, it holds ‖ξ‖∞ ≤ KA

c
‖y‖∞, where KA is the constant –depending only

on A– given in Lemma 4.1.

Proof. Denote by x the unique cT -periodic solution of the following equation

ẋ(t) = Ax(t) +
1

c
y

(
t

c

)
.

Then, ξ(t) := x(ct) is the (obviously unique) T -periodic solution to (12).
Since by Lemma 4.1, ‖x‖W 1,∞ ≤ KA

c
‖y‖∞, one has

‖ξ‖∞ = ‖x‖∞ ≤ ‖x‖W 1,∞ ≤ KA

c
‖y‖∞
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as claimed.

A crucial step towards uniqueness of control sets is the following result:

Lemma 4.2. For system (3) there exists a constant KA > 0, depending only
on A, such that the following holds. Assume

‖∂1F (x, u)‖ ≤ min

{
1,

1

2KA

}
, uniformly. (13)

Then for every T > 0 equation (3) has a unique T -periodic solution x(·, u)
for u ∈ UT , and the map UT → W 1,∞

T (Rd) given by u 7→ x(·, u) is continuous.
If, additionally, U contains the origin of Rm in its interior, one has for every
u ∈ UT

sup
t∈[0,T ]

|x(t, u)| ≤

2KA

[
cU

(
‖B‖+ sup

(v,p)∈U×Rd

‖∂2F (p, v)‖

)
+ |F (0, 0)|

]
, (14)

where cU := max{|v| : v ∈ U}.

Proof. We write the T -periodic problem for (3) in the form:

Lx− Āx− B̄u− F̄ (x, u) = 0 (15)

where we put

L : W 1,∞
T (Rd) → L∞T (Rd) with (Lx)(t) = ẋ(t),

Ā : W 1,∞
T (Rd) → L∞T (Rd) with (Āx)(t) = Ax(t),

B̄ : L∞T (Rm) → L∞T (Rd) with (B̄u)(t) = Bu(t),

F̄ : W 1,∞
T (Rd)× UT → L∞T (Rd) with F̄

(
x, u)(t) = F (x(t), u(t)

)
.

By Lemma 4.1,
(
L− Ā

)
x = y implies ‖x‖W 1,∞ ≤ KA ‖y‖∞ and hence∥∥∥(L− Ā

)−1
∥∥∥ ≤ KA.

Let Φ : UT ×W 1,∞
T (Rd) → W 1,∞

T (Rd), be given by

Φ(u, x) =
(
L− Ā

)−1 (
B̄u+ F̄ (x, u)

)
.
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Then equation (15) is equivalent to

Φ(u, x) = x. (16)

Let us show that equation (16) admits exactly one solution for every u ∈ UT .
Since

‖Φ(u, x1)− Φ(u, x2)‖W 1,∞ ≤
∥∥∥(L− Ā

)−1
∥∥∥∥∥F̄ (x1, u)− F̄ (x2, u)

∥∥
∞

≤ KA sup
(p,v)∈Rd×U

‖∂1F (p, v)‖ ‖x1 − x2‖W 1,∞

≤ 1

2
‖x1 − x2‖W 1,∞

for every u ∈ UT , the map Φ(u, ·) is a contraction. Then the Banach contrac-
tion theorem yields the existence of a unique fixed point which we denote by
x(·, u). Furthermore, for fixed T > 0, the solution x(·, u) depends continu-
ously on u ∈ UT (see e.g. [11, Proposition 1.2]). To prove the last assertion,
notice that for a fixed point x of Φ(u, ·) one has

‖x‖W 1,∞ ≤ ‖Φ(u, x)− Φ(u, 0)‖W 1,∞

+ ‖Φ(u, 0)− Φ(0, 0)‖W 1,∞ + ‖Φ(0, 0)‖W 1,∞ ≤ 1

2
‖x‖W 1,∞

+
∥∥(L− Ā)−1

∥∥(cU ‖B‖+
∥∥F̄ (0, u)− F̄ (0, 0)

∥∥
∞ + ‖F̄ (0, 0)‖W 1,∞

)
≤ 1

2
‖x‖W 1,∞ +KA

[
cU

(
‖B‖+ sup

(p,v)∈Rd×U

‖∂2F (p, v)‖

)
+ |F (0, 0)|

]

This implies inequality (14).

Define (recall (10))

M#
A,B = min

{
1,

1

2KA

, MA,B

}
. (17)

The lemma above yields a bound on the control sets.

Corollary 4.2. Let A, B and F be as in Lemma 4.2, assume that U contains
the origin of Rm in its interior, and that

‖∂1F (x, u)‖ ≤M#
A,B, and ‖∂2F (x, u)‖ ≤M#

A,B,
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for all (x, u) ∈ Rd × U . Then for every control set of (3) its interior is
contained in the ball of Rd centered at the origin and having radius

2KA

[
cU
(
‖B‖+M#

A,B

)
+ |F (0, 0)|

]
.

This ball contains all control sets if local accessibility holds in a neighborhood
of its closure.

Proof. Assume that there exist a point p outside the 2KA

[
cU
(
‖B‖+M#

A,B

)
+

|F (0, 0)|
]
-ball centered at the origin, but belonging to the interior of a control

set. Then, by Lemma 2.1 there exists a periodic solution of (3) whose image
contains p. This contradicts inequality (14). This shows that the interior of
the control sets is contained in the ball. Local accessibility implies by Lemma
2.2 that cl D = cl intD, hence also the last assertion follows.

Lemma 4.3. Let U have nonempty interior. Assume that A is hyperbolic,
that the pair (A,B) is controllable and that F is a C1 map with

‖∂1F (x, u)‖ ≤M#
A,B, and ‖∂2F (x, u)‖ ≤M#

A,B,

for all (x, u) ∈ Rd ×U . Then, given T > 0 and u0 ∈ intUT , equation (3) has
a unique T -periodic solution. Furthermore this solution is contained in the
interior of a control set of (3).

Proof. Observe that a T -periodic function is also nT -periodic, n ∈ N. Hence,
without loss of generality, we can assume T > 1. Lemma 4.2 yields the
existence of a unique T -periodic solution of (3) for u0 ∈ intUT . Fix u0 ∈
intUT and let x0 be the starting point of the unique periodic T -periodic
solution of (3). From Corollary 3.1 it follows that there exists a neighborhood
V of x0 in Rd such that for any q ∈ V there exists w ∈ intUT such that
q = ϕ(T, x0, w). Considering the time reversed system and reducing V , if
necessary, we can assume that every point in V can be steered to every other
point of V . Hence V is contained in the interior of a control set. Take now
any point q ∈ ϕ([0, T ], x0, u0) and let t0 ∈ [0, T ] be such that q = ϕ(t0, x0, u0).
By the continuity of ϕ(t0, ·, u0) there exists a neighborhood W of q such that

ϕ(t0, ·, u0)
−1(W ) ⊂ V.

Analogously, by the continuity of the time reversed system, shrinking W if
necessary, we can assume that

ϕ(t0,W, u0) ⊂ V.

15



Hence, every point ofW can be driven to every other point ofW and henceW
is contained in a control set. The assertion now follows from the compactness
of ϕ([0, T ], x0, u0).

Remark 4.2. Assume, in addition to the hypotheses of Lemma 4.3, that U
contains 0 in its interior and that F (0, 0) = 0. Then the origin of Rd is
contained in the interior of a control set. In fact, the origin can be regarded
as a 1-periodic solution of (3).

We are now in a position to state and prove the main result of this section.

Theorem 4.1. Let U be compact and convex with nonempty interior. As-
sume that the pair (A,B) in (3) is controllable and A is hyperbolic. Let F be
a C1 function with

‖∂1F (x, u)‖ ≤M#
A,B, and ‖∂2F (x, u)‖ ≤M#

A,B,

for all (x, u) ∈ Rd × U , and assume that the system (3) is locally accessi-
ble. Then it admits exactly one control set D. Its interior is contained in
the 2KA

[
cU
(
‖B‖ + M#

A,B

)
+ |F (0, 0)|

]
-ball of Rd centered at the origin. If

F (0, 0) = 0, then the origin is an element of the interior of D.

Proof. Let T > 1 and u0 ∈ intUT . Lemma 4.2 guarantees the existence of a
T -periodic solution of (3), whose image is, by Lemma 4.3, contained in the
interior of a control set. This proves the existence of at least one control
set. In order to prove the uniqueness assertion consider control sets D0 and
D1. Then, by Lemma 2.1, there exists ui ∈ intUTi

, i ∈ {0, 1}, such that the
corresponding Ti-periodic trajectory of (3) is contained in the interior of Di.
Naturally, we can assume that T0, T1 > 1. Put Tλ = λT1 + (1 − λ)T0 and
define

vλ(t) = λu1(tT1) + (1− λ)u0(tT0).

These functions are 1-periodic and, since U is assumed convex, vλ ∈ intU1.
Consider the differential equation

ẏ(τ) = Tλ

[
Ay(τ) +Bvλ(τ) + F

(
y(τ), vλ(τ)

)]
. (18)

We claim that, for any λ ∈ [0, 1], this equation has a unique 1-periodic
solution yλ and that the map [0, 1] → L∞1 (Rd) given by λ 7→ yλ is continuous.
To prove the claim we proceed similarly to the first part of the proof to
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Lemma 4.2: The existence of 1-periodic solutions to (18) is equivalent to the
existence of solutions to the equation

Lx− TλĀx− TλB̄u− TλF̄ (x, u) = 0 (19)

where L, Ā, B̄ and F̄ are as in Lemma 4.2, with T = 1. By Lemma 4.1,
L − TλĀ is invertible for any λ ∈ [0, 1]. Considering (L − TλĀ)−1 as a map
L∞1 (Rd) → L∞1 (Rd), Corollary 4.1 yields∥∥∥(L− TλĀ

)−1
∥∥∥ ≤ KA

Tλ

.

Let Ψ : [0, 1]× L∞1 (Rd) → L∞1 (Rd), be given by

Ψ(λ, x) =
(
L− TλĀ

)−1 (
TλB̄vλ + TλF̄ (x, vλ)

)
.

Then equation (19) for u = vλ is equivalent to

Ψ(λ, x) = x. (20)

Notice that any fixed point of Ψ(λ, ·) actually belongs to W 1,∞
1 (Rd). Let

us show that equation (20) admits exactly one solution for every λ ∈ [0, 1].
Since for every λ ∈ [0, 1]

‖Ψ(λ, x1)−Ψ(λ, x2)‖∞ ≤
∥∥∥(L− TλĀ

)−1
∥∥∥ Tλ

∥∥F̄ (x1, vλ)− F̄ (x2, vλ)
∥∥
∞

≤ KA

Tλ

Tλ sup
(p,v)∈Rd×U

‖∂1F (p, v)‖ ‖x1 − x2‖∞

≤ 1

2
‖x1 − x2‖∞ ,

the map Ψ(λ, ·) is a contraction uniformly in λ. Then the claim follows as in
Lemma 4.2.

Set uλ(t) = vλ(t/Tλ). By Lemma 4.3, the equation

ẋ(t) = Ax(t) +Buλ(t) + F (x(t), uλ(t)),

admits a unique Tλ-periodic solution xλ, and the image of xλ and hence every
xλ(0) is contained in the interior of a control set. By a time transformation,
one has xλ(t) = yλ(t/Tλ) for all t.

By the claim, the map λ 7→ yλ is continuous, so the map [0, 1] → Rd,
given by λ 7→ yλ(0) = xλ(0) is continuous as well. Thus {xλ(0), λ ∈ [0, 1]}
is connected and therefore contained in the interior of a single control set. It
also meets D0 and D1; consequently, D0 = D1.
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5 Uniqueness of Local Control Sets

Consider the following control process:

ẋ(t) = f(x(t), u(t)), u(t) ∈ ρU, (21)

where ρ > 0 is given and U ⊂ Rm is compact, convex and contains the origin
in its interior. We consider the behavior near an isolated equilibrium x0 of
the nonlinear system; more precisely we assume that there exists x0 ∈ Rd

such that f(x0, 0) = 0 and that ∂1f(x0, 0) is hyperbolic.
In the next theorem we will find conditions ensuring that there exists

δ0 > 0 such that, for every small control range, the ball B(p0, δ0) contains a
unique local control set of (21).

Theorem 5.1. Let f : Rd × Rm → Rd be C1. Consider an equilibrium x0 ∈
Rd such that f(x0, 0) = 0 and assume that the pair

(
∂1f(x0, 0), ∂2f(x0, 0)

)
is

controllable and the operator ∂1f(x0, 0) is hyperbolic.
Then there exist ρ0 > 0 and δ0 > 0 such that, for all 0 < ρ < ρ0, the ball

B(x0, δ0) contains exactly one local control set Dρ for (21).

Proof. Without loss of generality we can assume x0 = 0. By Remark 3.1 we
can choose δ0 small enough such that local accessibility holds in the 2δ0-ball
around the origin. The proof proceeds via a cutting-off technique. For any
δ > 0, let σδ : [0,∞) → R be a C1 function such that for r ∈ [0,∞)

σδ(r) =

{
1 if 0 ≤ r ≤ δ,

0 if r ≥ 2δ,

and 0 ≤ σδ(r) ≤ 1, |σ′δ(r)| ≤ 1
δ
. For instance, we can take

σδ(r) =


0 if r ≥ 2δ,

1 + cos
(

π
δ
(r − δ)

)
2

if r ∈ [δ, 2δ],

1 if r ∈ [0, δ].

Then, putting

A = ∂1f(0, 0), B = ∂2f(0, 0), Fδ(p, v) = σδ

(
|p|2 + |v|2

)
(f(p, v)−Ap−Bv),
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one has that

[∂1Fδ(p, v)] η

=


0 if |p|2 + |v|2 ≥ 2δ

2〈p, η〉σ′δ
(
|p|2 + |v|2

) (
f(p, v)− Ap−Bv

)
+σδ

(
|p|2 + |v|2

) (
∂1f(p, v)η − Aη

) if δ ≤ |p|2 + |v|2 ≤ 2δ

∂1f(p, v)η − Aη if 0 ≤ |p|2 + |v|2 ≤ δ.

An analogous formula holds for ∂2Fδ(p, v). Hence, using the fact that f is C1

and the definitions of A and B, one has ‖∂1Fδ(p, v)‖ → 0 and ‖∂2Fδ(p, v)‖ →
0 as δ → 0. Therefore, taking δ1 small enough, we can assume

‖∂1Fδ1(p, v)‖ ≤M#
A,B and ‖∂2Fδ1(p, v)‖ ≤M#

A,B,

where M#
A,B is as in (17). Consider now the control process

ẋ(t) = Ax(t) +Bu(t) + Fδ1

(
x(t), u(t)

)
, u(t) ∈ ρU. (22)

Put δ0 = δ1/
√

2 and notice that (22) coincides with (21) when (x, u) ∈
B(0, δ0)×B(0, δ0). By assumption, (A,B) is controllable and A is hyperbolic.
From Theorem 4.1 it follows that (22) has a unique control set Dρ and that

it is contained in the ball of radius 2ρcUKA

(
‖B‖+M#

A,B

)
centered at the

origin of Rd; here cU = sup {|v| : v ∈ U}. Hence, taking

ρ0 ≤ min

 δ0
cU
,

δ0

2cUKA

(
‖B‖+M#

A,B

)
 ,

one has that Dρ is contained in B(0, δ0) when ρ ≤ ρ0. Since (21) and (22)
coincide in B(0, δ0), D

ρ is a local control set for (21). In fact, from the
uniqueness of the control set of (22) it follows that only one local control set
of (21) can be contained in B(0, δ0).

Finally, we discuss the implications of this result for bifurcation questions.
Consider a parameter-dependent family of control systems

ẋ(t) = f(x(t), u(t), α), u(t) ∈ ρU, (23)
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where α ∈ R, ρ > 0 and U ⊂ Rm is bounded, convex and contains the
origin in its interior. We consider the behavior near an equilibrium of the
uncontrolled system with α = α0 and show that under the assumptions of
Theorem 5.1 no “bifurcation” of local control sets can occur.

Theorem 5.2. Let f : Rd × Rm × R → Rd be a continuous map which
is C1 with respect to the first two variables. Consider a continuous family
of equilibria xα ∈ Rd such that f(xα, 0, α) = 0 and assume that for α =
α0 the pair

(
∂1f(xα0 , 0, α0), ∂2f(xα0 , 0, α0)

)
is controllable and the operator

∂1f(xα0 , 0, α0) is hyperbolic.
Then there exist ε0 > 0, ρ0 > 0 and δ0 > 0 such that, for all |α− α0| < ε0

and all 0 < ρ < ρ0, the ball B(xα0 , δ0) contains exactly one local control set
for (23) with parameter value α.

Proof. The assumptions on f in Theorem 5.1 are satisfied for all α near α0.
Hence the assertion of Theorem 5.1 holds for all |α− α0| < ε0 and all 0 <
ρ < ρ0 in a ball B(xα0 , δ0).
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