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Abstract. For linear flows on vector bundles, the chain recurrent
components of the induced flows on flag bundles are described and
a corresponding Morse spectrum is constructed.

1. Introduction

Smooth ergodic theory and the theory of random dynamical systems
were very successful in relating Lyapunov exponents to other local and
global characteristics of dynamical systems. An example is the Pesin
formula relating positive Lyapunov exponents to entropy. For the topo-
logical theory the situation is less satisfactory (in spite of considerable
progress). This is, among other things, due to the fact that the ’linear
algebra’ provided by the Oseledets Theorem is more efficient than the
known topological concepts of spectra. In the present paper (contin-
uous) linear flows on vector bundles are considered. They encompass,
in particular, linear differential equations with almost periodic coeffi-
cients, linearized autonomous differential equations, and bilinear and
linearized control systems; compare Sacker/Sell [8], and also [4]. We
show that the constructions used for the chain recurrent components of
linear flows in projective bundles (Salamon/Zehnder [10]) and for the
Morse spectrum ([3]) can be generalized so that they provide precise
results in higher dimensions. This is based on a classification of the
chain recurrent components for the induced flows on flag and Grass-
mann bundles providing the finest Morse decomposition. The impor-
tance of flags in this context is also emphasized by related results on
the classification of control sets and chain control sets in the theory of
Lie semigroups (San Martin and Tonelli [11], Braga Barros and San
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Martin [2]). Applications to other characteristics are left for further
work.
In Section 2 we recall some concepts from topological dynamics and

their application to linear flows on projective vector bundles together
with the Morse spectrum. In Section 3, the chain recurrent components
in flag bundles are constructed via a finest Morse decomposition. In
Section 4, this is used for the construction of a Morse spectrum.

2. Chain Transitive Components and the Morse Spectrum in
Projective Space

In this section we collect some definitions and results related to the
spectral theory of linear flows on vector bundles.
We first recall the following notions and facts from the theory of

flows on compact metric spaces (going back to the work of Conley [5];
proofs can e.g. be found in [4, Appendix B]). A set K ⊂ X is called
invariant if x ·R ⊂ K for all x ∈ K; a compact subset K ⊂ X is called
isolated invariant, if it is invariant and there exists a neighborhood N
of K, i.e., a set N with K ⊂ intN , such that x ·R ⊂ N implies x ∈ K.
Thus an invariant set K is isolated if every trajectory that remains
close to K actually belongs to K. The ω-limit set of a subset Y ⊂ X
is defined as

ω(Y ) =

½
y ∈ X,

there are tk →∞ and yk ∈ Y
such that yk · tk → y

¾
=
\
t>0

cl (Y · [t,∞)) .

Analogously, ω∗(Y ) is defined for t tending to −∞.
Definition 1. A Morse decomposition of a flow on a compact met-

ric space is a finite collection {Mi, i = 1, ..., n} of nonvoid, pairwise
disjoint, and isolated compact invariant sets such that:

(i) For all x ∈ X one has ω(x), ω∗(x) ⊂
[n

i=1
Mi.

(ii) Suppose there areMj0,Mj1 , ...,Mjl and x1, ..., xl ∈ X \
[n

i=1
Mi

with ω∗(xi) ⊂Mji−1 and ω(xi) ⊂Mji for i = 1, ..., l; thenMj0 6=Mjl.
The elements of a Morse decomposition are called Morse sets.

A Morse decomposition {M1, ...,Mn} is called finer than a Morse
decomposition {M0

1, ...,M0
n0}, if for all j ∈ {1, ..., n0} there is i ∈

{1, ..., n} with Mi ⊂M0
j. The intersection of two Morse decomposi-

tions {M1, ...,Mn} and {M0
1, ...,M0

n0} defines a Morse decomposition©Mi ∩M0
j , i, j

ª
, where only those indices i, j withMi∩M0

j 6= ∅ are
allowed. Note that, in general, intersections of infinitely many Morse
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decompositions do not define a Morse decomposition. Morse sets are
ordered via
(2.1)

Mi ¹Mk if
there areMj0 =Mi,Mj1, ...,Mjl =Mk and x1, ..., xl ∈ X
with ω∗(xk) ⊂Mjk−1 and ω(xk) ⊂Mjk for k = 1, ..., l.

We enumerate the Morse sets in such a way that Mi ¹ Mj implies
i ≤ j.
Morse decompositions can be constructed from attractors and their

complementary repellers.

Definition 2. For a flow on a compact metric space X a compact
invariant set A is an attractor if it admits a neighborhood N such
that ω(N) = A. A repeller is a compact invariant set R that has a
neighborhood N∗ with ω∗(N∗) = R.

We also allow the empty set as an attractor. A neighborhood N
as in Definition 2 is called an attractor neighborhood. Every attractor
is compact and invariant, and a repeller is an attractor for the time
reversed flow. Furthermore, if A is an attractor in X and Y ⊂ X is a
compact invariant set, then A∩Y is an attractor for the flow restricted
to Y . For an attractor A, the set A∗ = {x ∈ X, ω(x) ∩ A = ∅} is
a repeller, called the complementary repeller. Then (A,A∗) is called
an attractor-repeller pair. Note that A and A∗ are disjoint. There is
always the trivial attractor-repeller pair A = X, A∗ = ∅.
The following result characterizes Morse decompositions via attractor-

repeller sequences (it is often taken as a definition; cp. Rybakowski [7,
Definition III.1.5 and Theorem III.1.8], Salamon [9], or Salamon and
Zehnder [10]).

Theorem 1. For a flow on a compact metric space X a finite
collection of subsets {M1, ...,Mn} defines a Morse decomposition if
and only if there is a strictly increasing sequence of attractors

∅ = A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ An = X,

such that
Mn−i = Ai+1 ∩A∗i for 0 ≤ i ≤ n− 1.

For x, y ∈ X and ε, T > 0 an (ε, T )-chain from x to y is given by
a natural number n ∈ N, together with points

x0 = x, x1, ..., xn = y ∈ X and times T0, ...Tn−1 ≥ T,

such that d(xi · Ti, xi+1) < ε for i = 0, 1, ..., n− 1. A subset Y ⊂ X is
chain transitive if for all x, y ∈ Y and all ε, T > 0 there exists a (ε, T )-
chain from x to y. A point x ∈ X is chain recurrent if for all ε, T > 0
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there exists a (ε, T )-chain from x to x. The chain recurrent set R is
the set of all chain recurrent points. The connected components of the
chain recurrent set R coincide with the maximal chain transitive sub-
sets of R. Furthermore, the flow restricted to a connected component
of R is chain transitive. The connected components of R are called the
chain recurrent components. The chain recurrent set and attractors
are related in the following way.

Theorem 2. The chain recurrent set R satisfies

R =
\
{A ∪ A∗, A is an attractor} .

In particular, there exists a finest Morse decomposition {M1, ...,Mn}
if and only if the chain recurrent set R has only finitely many connected
components. In this case, the Morse sets coincide with the chain recur-
rent components of R and the flow restricted to a Morse set is chain
transitive and chain recurrent.

For the definition of vector bundles π : V → B we refer to Karoubi
[6] (or [4, Appendix B]): Locally, they are the product of an open
subset of the metric space B with a finite dimensional Hilbert space.
We always assume that the base space B is compact. A linear flow Φ
on a vector bundle π : V → B is a flow Φ on V such that for all α ∈ R
and v1, v2 ∈ V with π(v1) = π(v2) and t ∈ R one has
π (Φ(t, v1)) = π (Φ(t, v2)) , Φ(t, α(v1 + v2)) = αΦ(t, v1) + αΦ(t, v2) .

Where notationally convenient, we write instead of Φ(t, v) either Φt(v)
or Φ(t)v. The flow Φ induces flows on the base space B (correspond-
ing to transport of the fibers) and on the projective bundle PV. The
following theorem goes back to Selgrade [12].

Theorem 3 (Selgrade). Let Φ be a linear flow on a vector bundle
π : V → B with chain recurrent flow on the base space B. Then the
chain recurrent set of the induced flow PΦ on the projective bundle
PV has finitely many, linearly ordered, components {M1, ...,Ml}, and
1 ≤ l ≤ d := dim Vb, b ∈ B. Every chain recurrent component Mi

defines an invariant subbundle of V via
Vi = P−1 (Mi) = {v ∈ V, v /∈ Z implies Pv ∈ Mi}

and the following decomposition into a Whitney sum holds:

(2.2) V = V1 ⊕ ...⊕ Vl.
For points v ∈ V not in the zero section Z in V the Lyapunov

exponent or exponential growth rate of the corresponding trajectory is
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given by

(2.3) λ(v) = lim sup
t→∞

1

t
log |Φt v|

and the Lyapunov spectrum ΣLy of the linear flow Φ is the set of all
Lyapunov exponents

(2.4) ΣLy= {λ(v), v ∈ V \ Z} .
The concept of Morse spectrum is defined via (ε, T )-chains in the pro-
jective bundle. Recall that for ε, T > 0 an (ε, T )-chain ζ in PV of
Φ is given by n ∈ N, T0, ..., Tn−1 ≥ T , and p0, ..., pn in PV with
d(Φ(Ti, pi), pi+1) < ε for i = 0, ..., n − 1. Define the finite time ex-
ponential growth rate of such a chain ζ (or “chain exponent”) by

λ(ζ) =

Ã
n−1X
i=0

Ti

!−1 n−1X
i=0

(log |Φ(Ti, vi)|− log |vi|) ,

where vi ∈ P−1(pi).
Definition 3. Let Φ be a linear flow on a vector bundle π : V → B

and let L ⊂ PV be a compact invariant set for the induced flow PΦ on
PV such that PΦ | L is chain transitive. Then the Morse spectrum
over L is
ΣMo(L,Φ) =

½
λ ∈ R, there are εk → 0, T k →∞ and (εk, T k)-chains

ζk in L with λ(ζk)→ λ as k →∞
¾
.

The Morse spectrum ΣMo(Φ) of Φ is defined as the union of the Morse
spectra on the chain recurrent components in PV.
The main results on the Morse spectrum are collected in the fol-

lowing theorem.

Theorem 4. Let Φ be a linear flow on a vector bundle π : V → B
with chain recurrent flow on the base space B. Then

ΣLy(Φ) ⊂ ΣMo(Φ) =
l[

i=1

ΣMo(Mi,Φ),

whereMi ⊂ PV , i = 1, ..., l, are the chain recurrent components of the
projective flow PΦ. Furthermore, for every i = 1, ..., l,

ΣMo(Mi,Φ) = [κ
∗(Mi), κ(Mi)]

with κ∗(Mi) < κ∗(Mj) and κ(Mi) < κ(Mj) for i < j; the boundary
points κ∗(Mi), κ(Mi) are Lyapunov exponents of Φ.



6 FRITZ COLONIUS AND WOLFGANG KLIEMANN

We also note that, for a chain recurrent base space, the Morse
spectrum coincides with the Sacker-Sell spectrum; one obtains the ex-
ponentially dichotomous subbundles provided by Sacker-Sell theory by
taking in the decomposition (2.2) the sum of all subbundles with inter-
secting Morse spectral intervals.

3. Morse Decompositions on Flag Bundles

In this section we describe the chain recurrent components in the
flag bundles. The existence of the corresponding finest Morse decom-
position follows from the linear structure of the attractors. The proof
proceeds via induction on the length of the flags; in the induction step,
the argument is reduced to the one-dimensional Selgrade theorem, The-
orem 3, by constructing appropriate vector bundles.
Throughout the rest of this paper, we consider a linear flow on a

d-dimensional vector bundle π : V → B with chain transitive compact
base space B. We find associated Grassmann bundles GiV by repeat-
ing the construction for vector bundles (cp., e.g., Appendix B in [4]):
Grassmann bundles are locally trivial fiber bundles where the fibers
are Grassmannians. Recall that Grassmannians can be considered as
elements of the projective space of exterior products; a subspace is iden-
tified with the line spanned by a simple element whose entries span the
subspace. Analogously, a Grassmann bundle can be identified with a
subset of the projective bundle of an exterior product bundle ΛkV. We
consider the distance on the Grassmann bundle that is induced by the
metric on the corresponding projective bundle. We will also consider
flag bundles whose elements are sequences of subspaces Vi in a fiber Vb

V1 ⊂ V2 ⊂ ... ⊂ Vk

with dimVi = i for i ∈ k̄ = {1, ..., k} and k ≤ d. We denote the
corresponding flag bundle by

FkV =
½
Fk = (b, V1, V2, ...., Vk),

b ∈ B and Vi ⊂ Vb with Vi ⊂ Vi+1
and dimVi = i for i ∈ k̄

¾
.

Thus for k = d we have the complete flag bundle FV := FdV. Fur-
thermore, observe that π : FkV → Fk−1V has a natural, locally trivial,
fiber bundle structure. Where convenient, we denote the corresponding
fibers by (FkV)Fk−1 for Fk−1 ∈ Fk−1V. With a slight abuse of notation
we also write v ∈ Fk if v ∈ Vk. We supply the flag bundles with the
metric induced by the Grassmann bundles GiV

d(Fk, F
0
k)) = max

i=1,...,k
dGi((b, Vi), (b

0, V 0
i )).
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In the following we denote the flows induced by the linear flow Φ on
the Grassmann, the flag and the exterior bundles again by Φ; by the
context it will always be clear which flow is meant.
First we will discuss how Morse decompositions in Fk and Fj , k > j,

are related.

Proposition 1. Let { jM1, ..., jMn} be a Morse decomposition in
FjV for the attractor sequence ∅ = jA0 ⊂ jA1 ⊂ ... ⊂ jAn = FjV.
Define for k > j

kAi := {(Fj, Vj+1, ..., Vk) ∈ FkV, Fj ∈ jAi}.
Then {kM1, ..., kMn} is a Morse decomposition in FkV. Conversely,
consider a Morse decomposition {kM1, ..., kMn} in FkV with attractor
sequence ∅ = kA0 ⊂ kA1 ⊂ ... ⊂ kAn. Then

jAi := {Fj ∈ FjV , there are Vj+1 ⊂ ... ⊂ Vk with (Fj , Vj+1, ..., Vk) ∈ kAi}
is an attractor sequence in FjV with Morse sets
jMi := {Fj ∈ FjV, there are Vj+1 ⊂ ... ⊂ Vk with (Fj, Vj+1, ..., Vk) ∈ kMi}.
In particular, every projection of a Morse set to FjV contains a chain
recurrent component of FjV.
Proof. Let jNi be attractor neighborhoods of jAi, i.e., one has

ω( jNi) = jAi. Then

kNi := {(Fj, Vj+1, ..., Vk) ∈ FkV, Fj ∈ jNi}
are attractor neighborhoods of kAi. The analogous construction for the
complementary repellers yields the assertion.
For the converse assertion observe that for attractor neighborhoods

kNi one obtains attractor neighborhoods of jAi as

jNi := {Fj ∈ FjV , there are Vj+1 ⊂ ... ⊂ Vk with (Fj, Vj+1, ..., Vk) ∈ kNi}.
¤

Remark 1. Observe that analogous results hold for arbitrary flag
bundles corresponding to dimensions i1 < i2 < ... < ij and k1 < k2 <
... < kj0, provided that {i1, ..., ij} ⊂ {k1, ..., kj0}.
The following first main result is a flag version of Selgrade’s Theo-

rem.

Theorem 5. Consider a linear flow Φ on a vector bundle π : V →
B and suppose that the induced flow on the compact base space B is
chain transitive.
(i) Then for every 1 ≤ k ≤ d there exists a unique finest Morse de-
composition {kMij} of the induced flow Φ on the flag bundle FkV; here
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ij ∈ {1, ..., d}k is a multiindex; and the number of chain transitive
components in the flag bundle FkV is bounded by d!/(d− k)!.
(ii) Let Mi, i ∈ {1, ..., d}k−1 be a chain recurrent component in the
flag bundle Fk−1V and consider the d− k + 1-dimensional vector bun-
dle π : W(Mi) → Mi with fibers W(Mi)Fk−1 = Vb/Vk−1 for Fk−1 =
(b, V1, ..., Vk−1) ∈Mi. Then every chain recurrent component PMij , j =
1, ..., ki ≤ k − d + 1, of the projective bundle PW(Mi) determines a
chain recurrent component kMij of FkV via
kMij = {Fk = (Fk−1, Vk) ∈ FkV, Fk−1 ∈Mi and P(Vk/Vk−1) ⊂ PMij}.
and every chain recurrent component in FkV is of this form. This
inductively determines the multiindex ij.

Proof. We proceed by induction over the dimension k. By Sel-
grade’s Theorem, Theorem 3, the assertion holds for k = 1. Now
suppose that the assertion holds for k − 1. Note first that by Propo-
sition 1 there is a Morse decomposition in FkV which projects down
to the finest Morse decomposition in Fk−1V. Thus we may restrict our
attention to attractor sequences

∅ = A0 ⊂ A1 ⊂ ... ⊂ An = FkV
with the following property: For the corresponding attractors and re-
pellers in Fk−1V one has that Fk−1Aj ∩ Fk−1Aj is a chain recurrent
component of Fk−1V. Next observe that for a fixed chain recurrent
componentM in Fk−1V, every Morse decomposition {Mj} in FkV in-
duces a Morse decomposition {Mj ∩ π−1M} of π−1M; this follows at
once from the definition of a Morse decomposition and compactness
and invariance of π−1M. For every Morse set in FkV the projection
to Fk−1V contains at least one chain recurrent component of Fk−1V.
There exists a Morse decomposition in FkV projecting down to the
finest Morse decomposition in Fk−1 and a refinement of such a Morse
decomposition in FkV yields a refinement of at least one Morse decom-
position over a chain recurrent component in Fk−1V. Hence we may
restrict our attention to Morse decompositions {Mi} of π−1M over a
fixed chain recurrent component M in Fk−1V . Such a Morse decom-
position corresponds to an attractor sequence Aj, j = 1, ..., n, in the
fiber bundle

π−1M = {Fk = (Fk−1, Vk) ∈ FkV, Fk−1 ∈M}.
Now consider the vector bundle π :W(M)→M with fibers

(3.1) (W(M))Fk−1 = Vb/Vk−1 for Fk−1 = (b, V1, ..., Vk−1) ∈M.
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This is a vector bundle of dimension d− k + 1, since it is obtained as
a quotient bundle of V →M modulo the k− 1-dimensional sub-vector
bundle with fibers Vk−1 over Fk−1 = (b, V1, ..., Vk−1). Note that this is
a subbundle, since its fibers have constant dimension and it is closed.
Next we show that an attractor A in π−1M yields an attractor Â in the
projective bundle PW(M). In fact, letN be an attractor neighborhood
of A with A = ω(N) where

ω(N) = {Fk ∈ π−1M, there are tj →∞ and F j
k ∈ N with Φ(tj , F j

k )→ Fk}.
Consider the subsets Â and N̂ in PW(M) with fibers over Fk−1 =
(b, V1, ..., Vk−1) given by

ÂFk−1 = P{v + Vk−1, there is Fk = (Fk−1, Vk) ∈ A with v ∈ Vk}
and

N̂Fk−1 = P{v + Vk−1, there is Fk = (Fk−1, Vk) ∈ N with v ∈ Vk}.
Then N̂ is a neighborhood of Â and ω(N̂) = Â and hence N̂ is
an attractor neighborhood of Â. In fact, the neighborhood property
follows easily in the projective bundle with fibers PVb over Fk−1 =
(b, V1, ..., Vk−1) ∈ M and remains true in W(M), since the projec-
tion is open. To see the limit property, consider P(v + Vk−1) ∈ ÂFk−1
with Fk = (Fk−1, Vk) ∈ A and v ∈ Vk. Since ω(N) = A, there are
tj → ∞ and F j

k = (F j
k−1, V

j
k ) ∈ N with Φ(tj, F j

k ) → Fk. Then also
Φ(tj , V j

k−1) → Vk−1 and Φ(tj , V j
k ) → Vk. This implies that there are

vj ∈ V j
k with

P(vj + V j
k−1)→ P(v + Vk−1).

Thus Â ⊂ ω(N̂). Conversely, consider a point P(v + Vk−1) ∈ ω(N̂).
Thus there are tj →∞ and vj , V j

k−1 with (F
j
k−1, V

j
k ) ∈ N andΦ(tj ,P(vj+

V j
k−1))→ P(v+Vk−1). Since ω(N) = A, it follows by compactness that
there is Vk such that for a subsequenceΦ(tj , F

j
k )→ Fk = (Fk−1, Vk) ∈ A

with v ∈ Vk. Hence P(v + Vk−1) ∈ Â.
For the vector bundle W(M), Theorem 3 implies that there exists

a finest Morse decomposition in the projective bundle, since the base
space M is chain transitive. By the construction it follows that a
refinement of a Morse decomposition in π−1M yields a refinement of
the corresponding Morse decomposition in PW(M); hence there exists
a finest Morse decomposition in π−1M as claimed. ¤
Remark 2. The proof of this theorem shows, that the projections

of the chain recurrent components in flags FkV to flags FjV with j < k
yield the chain recurrent components in FjV.
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The result above also allows us to describe the chain recurrent com-
ponents on the Grassmann bundles.

Proposition 2. There exists a finest Morse decomposition on ev-
ery Grassmann bundle GkV. Its Morse sets which are the chain re-
current components are given by the projection of the chain recurrent
components from the complete flag bundle.

Proof. LetM ⊂ FV be a chain recurrent component. Then
{Vk ∈ GkV, there is (V1, ..., Vk, Vk+1, ..., Vd) ∈M}

is obviously chain transitive in GkV . Now consider a Morse decomposi-
tion {FM1, ..., FMld} in FV with attractor sequence ∅ = FA0 ⊂ FA1 ⊂
... ⊂ FAn. We claim that

GkAi := {Vk ∈ GkV , there are Vj such that (V1, ..., Vk, Vk+1, ..., Vd) ∈ FAi}
is an attractor sequence in GkV with Morse sets
GkMi := {Vk ∈ GkV, there are Vj such that (V1, ..., Vk, Vk+1, ..., Vd) ∈ FMi}.
In fact, for attractor neighborhoods FNi of FAi one obtains attractor
neighborhoods of GkAi as

Ni := {Vk ∈ GkV, there are Vj with (Fj, Vj+1, ..., Vk) ∈ FNi}.
The same arguments applied to the complementary repellers proves the
claim. This shows that the projections of the chain recurrent compo-
nents of the complete flag to a Grassmann bundle yield chain recurrent
sets which belong to a Morse decomposition. Hence the finest Morse
decomposition on the Grassmann bundle is given by the projection
from the complete flag bundle. ¤

Remark 3. For every linear flow on a chain recurrent compact base
space one obtains a tree in the following way: Above the root B, the
nodes at level 1 are the chain recurrent components in G1V. The nodes
at level k are the chain recurrent components Mij in the flag bundles
FkV and there is an edge from the nodeMij ⊂ Fk−1 toMil ⊂ FkV if
Mil projects down toMij . This is equivalent to il = (ij,m) for some
m ∈ {1, ..., kij}.
The chain recurrent components on Grassmann or flag bundles need

not be linearly ordered. However, one obtains a unique maximal (and,
via time reversal, minimal) element.

Corollary 1. On every flag bundle there is a unique maximal
chain recurrent component.
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Proof. This is seen inductively: For k = 1, this is part of Sel-
grade’s Theorem. Suppose thatM is a maximal chain recurrent com-
ponent in Fk−1V . Then there exists, again by Selgrade’s Theorem,
a unique maximal chain recurrent component in the projective vector
bundle PW(M). One can easily see that this corresponds to a maximal
chain recurrent component in FkV. ¤

Remark 4. It also follows that the chain recurrent components on
the complete flag bundle project down to the chain recurrent components
on arbitrary flag bundles.

Remark 5. In Salamon/Zehnder [10], the proof of Selgrade’s the-
orem is based on the fact that attractors in the projective bundle define
subbundles, i.e., the intersection with a fiber is linear and has constant
dimension. An analogous construction for flag bundles shows that also
the intersection of an attractor with a fiber W(M)Fk−1 is linear and
has constant dimension. This may be used to give a direct proof of
Theorem 5, without taking recourse to the one-dimensional theorem.

Next we describe the relation of the chain recurrent components in
the flag bundles to the chain recurrent components in projective space
by constructing an appropriate Morse decomposition.

Theorem 6. Let Φ be a linear flow on a vector bundle π : V → B
with chain transitive compact base space B and dimension d. Let Vi
with dimension di, i = 1, ..., l, be the subbundles which project down to
the finest Morse decomposition of the projective flow PΦ : PV → B,
according to Selgrade’s Theorem. Define for 1 ≤ k ≤ d the index set

I(k) := {(k1, k2, ..., kl), k1 + k2 + ...+ kl = k and 0 ≤ ki ≤ di}.
Then a Morse decomposition in the Grassmann bundle GkV → B is
given by the sets

N k
k1,...,kl

= Gk1V1 ⊕ ...⊕GklVl, (k1, ..., kl) ∈ I(k),

with the interpretation that on the right hand side we have in every fiber
Vb over b ∈ B the sum of arbitrary ki-dimensional subspaces of Vi,b. In
particular, every chain recurrent component of GkV is contained in one
of these Morse sets.

Remark 6. We can also write

N k
k1,...,kl

= {(b, V ) ∈ GkV , b ∈ B and dim ((b, V ) ∩ Vi) = ki for i = 1, ...l}
= {(b, V ) ∈ GkV, V =

L
i

Vi with Vi ⊂ Vi,b and dimVi = ki}.
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Proof. It is clear that the N k
k1,...,kl

are nonvoid, pairwise disjoint
and isolated compact invariant sets. First we show that every ω-limit
set is contained in a set of the type N k

k1,...,kl
with (k1, ..., kl) ∈ I(k).

The assertion is clear for k = 1, by Selgrade’s Theorem. Suppose that
it holds for all dimensions less than k and consider for an element
(b,W ) ∈ GkV the ω-limit set ω(b,W ). Let the k-dimensional subspace
W be spanned by w1, ..., wk, i.e.,

W = span{w1, ...wk},
and consider a sequence tn → ∞ such that ΦtnW converges to some
element W+ ∈ GkVb+. Define

U = span{w1, ..., wk−1} ∈ Gk−1V.
Passing, if necessary, to a subsequence, we may assume that ΦtnU con-
verges to an element U+ ∈ Gk−1Vb+. Using the induction hypothesis,
we find

U+ ∈ N k−1
k1,...,kl

= Gk1V1 ⊕ ...⊕GklVl;
here (k1, ...kl) ∈ I(k − 1). Furthermore, we may assume that the se-
quences

Φtnw
k

|Φtnw
k| , n ∈ N,

converge. It is clear, that its distance to one of the subbundles Vr, r ∈
{1, ..., l) converges to 0. Hence ΦtnW converges to the set

N k
k1,...,kr+1,...,kl

.

Since this is an isolated compact invariant set, it contains the ω-limit
set ω(b,W ). Similarly, one sees that every ω∗-limit set is contained in
a set of this type.
It remains to prove the no-cycle condition. First we introduce a (lex-

icographic) order on I(k) and hence on
©N k

k1,...,kl
, (k1, ..., kl) ∈ I(k)

ª
.

For elements of I(k) define (k01, ..., k
0
l) ≺ (k1, ..., kl) if there exists t ∈

{1, ..., l} such that
k0l ≤ kl, k

0
l−1 ≤ kl−1, ..., k0t−1 ≤ kt−1, k0t < kt.

We claim that for all (b,W ) ∈ GkV the implication
if ω∗(b,W ) ⊂ N k

k01,...,k
0
l
and ω(b,W ) ⊂ N k

k1,...,kl
, then N k

k01,...,k
0
l
≺ N k

k1,...,kl

holds. Then the no-cycle property (ii) in the definition of a Morse
decomposition is verified and the theorem is proven.
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First observe that the assertion holds for k = 1, again by Selgrade’s
Theorem. Now suppose that it holds for all dimensions less than k and
consider (b,W ) ∈ GkV with

ω∗(b,W ) ⊂ N k
k01,...,k

0
l
and ω(b,W ) ⊂ N k

k1...,kl
.

As before, let the k-dimensional subspace W be spanned by w1, ..., wk,
and consider sequences t±n → ∞ such that Φt±nW converges to some
element W± ∈ GkVb±. Define

U = span{w1, ..., wk−1} ∈ Gk−1V.
Passing, if necessary, to a subsequence, we may assume that Φt±nU
converges to an element U± ∈ Gk−1Vb± . As earlier, we find

U− ∈ N k−1
k01,...,k

0
l
= Gk01V1 ⊕ ...⊕Gk0lVl and

U+ ∈ N k−1
k1,...,kl

= Gk1V1 ⊕ ...⊕GklVl,
where (k1, ...kl), (k01, ...k

0
l) ∈ I(k−1). The induction hypothesis implies

that (k01, ..., k
0
l) ¹ (k1, ..., kl). Furthermore, we may assume that the

sequences
Φt±nw

k¯̄
Φt±nw

k
¯̄ , n ∈ N,

converge. It is clear, that for n → ±∞ its distance to one of the
subbundles Vr±, r± ∈ {1, ..., l) tends to 0 and r− ≤ r+. Thus W− ∈
N k

k01,...k
0
r−+1,...,k

0
l
andW+ ∈ N k

k1,...kr++1,...,kl
. Clearly, (k01, ..., k

0
r−+1, ..., k

0
l) ¹

(k1, ..., kr+ + 1, ..., kl). Furthermore, if here equality holds, then (b,W )
is in the corresponding Morse set. Thus the assertion holds. ¤
Remark 7. For autonomous differential equations ẋ = Ax in Rd

one can show that the Morse decomposition constructed above is the
finest one. In general, this may not be the case.

4. The Spectrum

In this section we define a Morse spectrum on flag bundles. We
will show that for every chain recurrent component in the complete
flag FV one obtains exactly d intervals of Morse exponents; the jth
interval corresponds to the chain exponents of j-dimensional subspaces
in the considered flags. Thus the total spectrum consists of at most d!
times d intervals. Furthermore the intervals are contained in the sums
of one-dimensional growth rates.
Let Φ : R× V → V be a linear flow on a vector bundle π : V → B.

For the induced flow on the complete flag bundle FV let the chain
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recurrent components be given byMi ⊂ FV, i ∈ I. For ε, T > 0 an
(ε, T )-chain ζ of Φ in FV is given by
n ∈ N, T0, ..., Tn−1 ≥ T, F 0 = (V 0

1 , ..., V
0
d ), ..., F

n = (V n
1 , ..., V

n
d ) ∈ FV

with d(Φ(Ti, F
i
1), F

i+1) < ε for i = 0, ..., n− 1. Define the flag of expo-
nential growth rates of ζ by

Λk(ζ) =

Ã
n−1X
i=0

Ti

!−1Ãn−1X
i=0

log
¯̄
Φ(T i, V i

k )
¯̄− log ¯̄V i

k

¯̄!
, k = 1, ..., d,

where norms are taken for elements in the exterior product spaces ΛkV
which project down to V i

k identified with the corresponding element in
PΛkV.
Definition 4. Let L ⊂ FV be a compact invariant set for the

induced flow Φ on FV and assume that Φ|L is chain transitive. Then
the Morse (flag) spectrum over L is defined as
ΣMo(L,Φ)

=

½
(Λ1, ...,Λd) ∈ Rd, there are εk → 0, T k →∞ and (εk, T k) -
chains ζk in L with (Λ1(ζk), ...,Λd(ζ

k))→k→∞ (Λ1, ...,Λd)

¾
.

Furthermore, the Morse spectrum of the linear flow on the flag bundle
FV is defined as

ΣMo(Φ) =
[

ΣMo(M,Φ),

where the union is taken over all chain recurrent components M in
FV.
We also abbreviate

Σk
Mo(L,Φ) = {Λk, there is (Λ1, ...,Λk, ...,Λd) ∈ ΣMo(L,Φ)}

First we show that it is actually sufficient to consider periodic chains
in the definition of the Morse spectrum, i.e., the exponents of chains
from a point to itself. This property will be used frequently. The proof
is based on [4], Lemma B.2.23, which gives a uniform upper bound for
the time needed to connect two points in a chain recurrent component.

Proposition 3. For a linear flow Φ on a vector bundle let L ⊂ FV
be a compact invariant set of the induced flow Φ on FV such that Φ| L
is chain transitive. Then the Morse spectrum of Φ over L satisfies
ΣMo(L,Φ)

=

½
Λ = (Λ1, ...,Λd) ∈ Rd, there are εk → 0, T k →∞ and periodic

(εk, T k)-chains ζk in Lwith (Λ1(ζk), ...,Λd(ζ
k))→k→∞ (Λ1, ...,Λd)

¾
.
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Proof. Let Λ ∈ ΣMo(L,Φ) and fix ε, T > 0. It suffices to prove
that for every δ > 0 there exists a periodic (ε, T )-chain ζ with |Λ− Λ(ζ)| <
δ (here we take the Euclidean norm inRd). By [4], Lemma B.2.23, there
exists T̄ (ε, T ) > 0 such that for all p, p0 ∈ L there is a (ε, T )-chain from
p to p0 with total time ≤ T̄ (ε, T ). For T 0 > T choose an (ε, T 0)-chain
ζ 0 with |Λ− λ(ζ 0)| < δ

2
given by, say, (V 0

1 , ...V
0
d ), ..., (V

n
1 , ...V

n
d ) ∈ FV

with |Vi| = 1 and times T 0, ..., T n−1 > T 0. Then for all j = 1, ..., d

Λj(ζ
0) =

Ã
n−1X
i=0

Ti

!−1 n−1X
i=0

log
¯̄
Φ(T i, V i

j )
¯̄
.

Concatenate this with an (ε, T )-chain ξ from (V n
1 , ...V

n
d ) to (V

0
1 , ...V

0
d )

with points (W 0
1 , ...,W

0
d ) = (V

n
1 , ..., V

n
d ), ..., (W

m
1 , ...,Wm

d ) = (V
0
1 , ..., V

0
d )

with
¯̄
W i

j

¯̄
= 1, and times S0, ..., Sm−1 > T, and total time

Pm−1
i=0 Si ≤

T̄ (ε, T ). This yields a periodic (ε, T )-chain ξ ◦ ζ 0 with chain exponents

Λj(ξ◦ζ 0) =
Ã

n−1X
i=0

Ti +
m−1X
i=0

Si

!−1 "n−1X
i=0

log
¯̄
Φ(T i, V i

j )
¯̄
+

m−1X
i=0

log
¯̄
Φ(Si,W i

j )
¯̄#

.

Choosing T 0 large enough one obtains for all j

|Λj(ζ)− Λj(ξ ◦ ζ 0)| < δ

2
,

which yields the assertion. ¤
The following result describes the behavior of the spectrum under

time reversal. We omit the proof, since it is completely analogous to
the one-dimensional case; compare [4, Proposition 5.3.4].

Proposition 4. For a linear flow Φ on a vector bundle π : V → B
let the corresponding time reversed flow Φ∗ be defined by

Φ∗(t, v) = Φ(−t, v), t ∈ R, v ∈ V.
Then R(Φ) = R(PΦ∗) in FV and ΣMo(L,Φ∗) = −ΣMo(L,Φ) for every
compact invariant set L ⊂ FV such that Φ| L is chain transitive.
Next we will show that the Morse spectrum over a chain transitive

set in FV is an interval. The proof is based on a “mixing” of exponents
near the extremal values of the spectrum.

Theorem 7. For a linear flow Φ on a vector bundle π : V → B
let L ⊂ FV be closed and invariant such that Φ|L is chain transitive.
Define for k ∈ {1, ..., d}

κ∗k(L) = infΣk
Mo(L,Φ), κk(L) = supΣk

Mo(L,Φ).
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Then for every k one has

Σk
Mo(L,Φ) = [κ∗k(L), κk(L)] .

Proof. It suffices to show that for all λ ∈ [κ∗k(L), κk(L)], all δ > 0,
and all ε, T > 0 there is a periodic (ε, T )-chain ζ in L with
(4.1) |Λk(ζ)− λ| < δ.

Then closedness of the Morse spectrum will yield the result. For fixed
δ > 0 and ε, T > 0, there are periodic (ε, T )-chains in L with

Λk(ζ
∗) < κ∗k(L) + δ and Λk(ζ) > κk(L)− δ.

Denote the initial points of ζ∗ and ζ by F 0∗ and F 0, respectively. By
chain transitivity there are (ε, T )-chains ζ1 from F 0∗ to F 0 and ζ2
from F 0 to F 0∗, both in L. For m ∈ N let ζ∗m and ζm be the m-
fold concatenation of ζ∗, and of ζ, respectively. Then for m,n ∈ N the
concatenation ζm,n = ζ2◦ζm◦ζ1◦ζn is a periodic (ε, T )-chain in L. Note
that the exponents of concatenated chains are convex combinations of
the corresponding exponents. Hence for every λ ∈ [Λk(ζ

∗),Λk(ζ)] one
finds numbers m,n ∈ N such that |Λj(ζ

m,n)− λ| < δ. This proves
(4.1). ¤
Next we will discuss the relation of the Morse spectrum to the

growth rates on Grassmann bundles. We already know by Proposition
2 that the chain recurrent components in the Grassmann bundles are
the projections of the chain recurrent components in the flag bundle.
It is also clear that every kth-interval of the flag spectrum is contained
in the corresponding interval for the Grassmannian bundle. We prove
the following theorem supplying an ergodicity result for the extremal
growth rates.

Theorem 8. For every chain recurrent component M ⊂ FV and
every k = 1, ..., d there exist ergodic measures µ(M) and µ∗(M) onM
such that

κk(M) := supΣk
Mo(M,Φ) = lim

t→±∞
1

t
log |Φ(t, V )|

for Gkµ(M)-almost all V ∈ GkV, and

κ∗k(M) := infΣk
Mo(M,Φ) = lim

t→±∞
1

t
log |Φ(t, V )|

for Gkµ
∗(M)-almost all V ∈ GkV. Furthermore, for all j < k one has

that

lim
t→±∞

1

t
log |Φ(t, V )|
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exist and are constant for Gjµ
∗(M)-almost all and Gjµ

∗(M)-almost
all V ∈ GjV, respectively.
Proof. This is proven using the corresponding result for the one-

dimensional spectrum: The linear flow Φ is cohomologous to a subflow
of a smooth linear flow Ψ. Then for j = 1, ..., d, the flows ΛjΦ are
cohomologous to subflows of ΛjΨ and these are also smooth linear
flows. Hence we may assume that all the flows induced byΦ are smooth.
Thus for the flow on FV the jth exponential growth rates in the chains
are actually integrals. Now one finds ergodic invariant measures with
support inM for which the boundary points of the kth spectrum are
attained as limits of growth rates. Then the first assertion holds. By
ergodicity of these measures all jth growth rates are also limits and
constant over the support ofM. The ergodic measures µ∗(M), µ(M)
induce ergodic measures µ∗(M, B), µ(M, B) on the base space B. The
Multiplicative Ergodic Theorem of Oseledets (compare Arnold [1]),
implies that the Lyapunov exponents

λ1, ..., λd and λ∗1, ..., λ
∗
d

corresponding to these measures are constant almost everywhere. Their
sums give the growth rates of the volume elements. Hence one has for
all k and Gkµ(M)-almost all V ∈ GkV a representation

lim
t→±∞

1

t
log |Φ(t, V )| = λi1 + ... + λik ;

similarly for µ∗(M). ¤

The following theorem collects the previous results on the structure
of the Morse spectrum.

Theorem 9. Let Φ be a linear flow on a vector bundle π : V → B
with chain transitive base space B and dimension d. Then the Morse
spectrum on the complete flag FV is given by

ΣMo(Φ) =
[

ΣMo(Mi),

whereMi ⊂ FV, i ∈ {1, ..., d}d!, are the chain recurrent components of
the induced flow Φ on FV. Furthermore, for every i the k-spectrum is
an interval,

Σk
Mo(Mi) =

[
[κ∗k(Mi), κ(Mi)]

The boundary points κ∗k(Mi), κk(Mi) are sums of regular Lyapunov
exponents of Φ.
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Next we relate the Morse spectrum on flags to the one-dimensional
spectrum on the projective bundle. One will expect that the spectral
values of k-dimensional subspaces can be represented as the sum of
k one-dimensional spectral values. This is, in particular, provided by
the following theorem which relates the spectrum of a chain recurrent
component to the Morse set Nk1,...,kd as defined in Theorem 6.

Theorem 10. LetM be a chain recurrent component in the com-
plete flag FV and consider the Morse set

N k
k1,...,kl

= Gk1V1 ⊕ ...⊕GklVl, (k1, ..., kl) ∈ I(k),

containing the projection to the Grassmann bundle GkM according to
Theorem 6. Then the kth interval of the Morse spectrum ofM satisfies

Σk
Mo(M) ⊂

ikX
l=i1

ΣMo(Vil).

Proof. For an ergodic measure µ on N k
k1,...,kl

the projection to B
is ergodic and hence the bundle V can be written as the direct sum
of measurable subbundles Vj(µ) consisting of points where the Lya-
punov exponents λj(µ) are attained as limits; furthermore for every
k-dimensional subspace V the volume growth rate is the sum of k Lya-
punov exponents. On the other hand, every Oseledets bundle Vj(µ)
is contained in a bundle Vi; see [4, Corollary 5.5.17]. Hence the (Os-
eledets) Lyapunov exponents are elements of the Morse spectrum of
a corresponding bundle Vi. For the Lyapunov exponents in GkM,
these bundles must be the Vil, il = i1, ..., ik, and they occur with the
multiplicity of the Lyapunov exponents. Applying this to the ergodic
measures µ and µ∗ where the supremum and infimum, respectively, of
Σk

Mo(M), are attained, yields the assertion. ¤
Another consequence of the ergodic presentation result in Theorem

8 is the following result on the spectrum over chain recurrent com-
ponents in Grassmann bundles. It shows that the Morse spectrum of
chain recurrent components in Grassmann bundles is well defined.

Corollary 2. LetMi andMj be chain recurrent components in
the flag bundle FV such that their projections to the Grassmann bundle
GkV coincide. Then

[κ∗k(Mi), κk(Mi)] = [κ
∗
k(Mj), κk(Mj)] .

Proof. By Theorem 8, κk(Mi) is attained in an ergodic invariant
measure µ with Lyapunov exponents λ1(µ), ..., λd(µ) and correspond-
ing Oseledets subspaces V1, ..., Vl, l ≤ d. Then for b in the support of
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the measure µ projected to B consider an element in the correspond-
ing fiber of Mj. Since GkMj = GkMi, the corresponding growth
rates must coincide yielding κk(Mi) ≤ κk(Mj). Exchanging i and j
and applying analogous arguments to the lower bounds of the spectral
intervals one concludes the proof. ¤

Remark 8. In the same vein one sees that the Morse spectrum
defind over subflag bundles coincides with the restriction of the Morse
spectrum on the complete flag bundle.

Finally, we mention the relation of the Morse spectrum to singular
values. Recall that for a linear map A on a Hilbert spaceH the singular
values σk are given by the eigenvalues σ2k of A

∗A ordered such that
σ1 ≥ ... ≥ σd and the singular value function is

ωk(A) = σ1(A) ... σk(A).

Then (Temam [13, Chapter V, Proposition 1.4]) ωk is the norm of the
operator ΛkA induced by A on the exterior product ΛkH and

ωk(A) =
°°ΛkA

°° = sup{kAx1 ∧ ... ∧Axkk , kx1 ∧ ... ∧ xkk = 1}.
Writing the cocycle maps on the fibers as

Φ(t, b) := Φt | Vb : Vb → Vb·t.
we define the supremal uniform growth rate of the kth singular value
function as

Ωk = lim sup
t→∞

1

t
sup
b∈B

logωk(Φ(t, b)).

The relation to the Morse spectrum is described in the following corol-
lary.

Corollary 3. For a linear flow Φ on a vector bundle π : V → B
the supremal growth rate in the Grassmann bundle GkV and the supre-
mal uniform growth rate of the kth singular value function coincide,
i.e.,

supΣk
Mo(V, ,Φ) := sup

V ∈GkV
lim sup
t→∞

1

t
log |ΦtV | = Ωk.

Proof. This follows, as in the one-dimensional case (see, e.g.,
[4, Proposition 5.4.15 and Lemma 5.2.7]), from Fenichel’s Uniformity
Lemma, now applied in the exterior product bundle. ¤

We conclude this paper with a simple example illustrating the chain
recurrent components in the flag bundle and the Morse spectrum.
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Example 1. Consider the autonomous differential equation

ẋ = Ax

with

A =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −2

 .

In projective space P3 = G1 one obtains three (linearly ordered) chain
recurrent components. In G2 there are the four chain recurrent compo-
nents (here ei denote the canonical base vectors of R4)

M1,2 = {span{e1, x}, x ∈ span{e2, e3}};
M1,4 = span{e1, e4} (equilibrium);
M2,3 = span{e2, e3} (equilibrium);
M2,4 = {span{x, e4}, x ∈ span{e2, e3}}.

In the order defined in (2.1)M2,3 andM1,4 are not comparable, and

M2,4 ¹M2,3 ¹M1,2 andM2,4 ¹M1,4 ¹M1,2.

For the matrix

A0 =


1 0 0 0
0 −1 0 0
0 0 −2 0
0 0 0 −2


one also obtains three chain recurrent components in G1 and the four
chain recurrent components in G2 given by

M0
1,2 = span{e1, e2} (equilibrium);

M0
1,3 = {span{e1, x}, x ∈ span{e3, e4}};

M0
2,3 = {span{e2, x}, x ∈ span{e3, e4}};

M0
3,4 = span{e3, e4} (equilibrium),

and

M0
3,4 ¹M0

2,3 ¹M0
1,3 ¹M0

1,2.

One see that these two equations, which are topologically (but not C1-)
conjugate, can be distinguished topologically, if their extensions to the
Grassmann manifold are considered. This example can modified to a
linear flow with nontrivial base flow. For matrices A1, ..., Am ∈ Rd×d,
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a set U ⊂ Rm with 0 ∈ U and a parameter ρ ≥ 0 consider a bilinear
control system given by

(4.2) ẋ = Ax+ ρ
mX
i=1

ui(t)Aix,

with u = (ui) ∈ U = {u ∈ L∞(R,Rm), u(t) ∈ U for almost all t ∈ R}.
If U ⊂ Rm is compact and convex, the map

Φ : R× U × Rd → Rd, Φ(t, u, x0) = (u(t+ ·), x(t, u, x0))
is a linear flow (the control flow) over the compact metrizable and chain
transitive base space U endowed with the weak∗ topology; here the flow
on U is the shift, and x(t, x0, u) denotes the solution of (4.2) with ini-
tial value x0 at t = 0 and control function u. The chain recurrent set
and the Morse spectrum depend upper semicontinuously on the param-
eter ρ ≥ 0. Hence the chain recurrent components and the eigenvalues
for ẋ = Ax blow up to chain recurrent components and Morse spec-
tral intervals, respectively, for the corresponding control flow over the
base space U ; for small ρ > 0 the structures in the chain recurrent
components and the Morse spectrum are retained. For larger ρ-values,
some of the chain recurrent components may merge yielding less Morse
spectral intervals.
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