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Abstract

For the 3-D linear oscillator with damping and disturbed by multiplicative

white noise, we numerically compute the unique invariant density of the associated

system obtained by projection onto the unit sphere. We show how varying feedback

gains and noise intensities affect the corresponding density and consequently the

stability properties.

1 Introduction

This paper presents a numerical study of linear feedback systems in R
d with multiplica-

tive white noise of the form

ẋ = Ax + bu + σ A1x ◦ dW (t) (1)

y = cT x (2)

where A, A1 ∈ R
d×d, b, c ∈ R

d, σW is the Wiener process with intensity σ ∈ R, and ◦

means that (1) is interpreted as a Stratonovich stochastic differential equation. Output
feedback

u = −ky, (3)

where k ∈ R is a gain parameter, yields the feedback system

dx = (A − kbcT )x dt + σ A1x ◦ dW (t) . (4)
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It is well known that basic properties of this linear stochastic differential equation can
be described by considering its projection to the unit sphere (or, more precisely, to
projective space P

d−1) and the corresponding invariant measure. In particular, this is
true for the Lyapunov exponents (given by Khasminskii’s formula). The purpose of the
present paper is to present some results illustrating the influence of the gain parameter
k and the intensity σ of the noise on the invariant measure. For a two dimensional
system, Crauel/Matsikis/Townley [6] presented asymptotic results for high gain, i.e., for
k → ∞. For dimensions d > 2 the used expansion is not readily available. For d = 3,
we will instead use a numerical approach for computation of the invariant measure on
P

2. In particular, we discuss the third order oscillators

...
x − aẍ − bẋ − cx = u + σx ◦ dW (5)

and
...
x − aẍ − bẋ − cx = u + σẋ ◦ dW, (6)

with output feedback
u = −kx.

For the induced system on projective space P
2, there is a unique invariant measure µ and

it has support equal to P
2. Using polar coordinates, we determine µ by discretisation

of this space and simulation of the resulting Markov chain. This is done with the help
of data structures provided by GAIO (Global Analysis of Invariant Objects), a program
developed by M. Dellnitz, A. Hohmann, and O.Junge [8], [9]. Then the density of the
invariant measure can be visualised (using MATLAB).

For deterministic systems it is well known that increasing the gain parameter k forces
one, some, or even all of the eigenvalues to decrease relatively to the values of the
gain. As a consequence the system will be pushed towards the eigendirection associated
with the greatest positive eigenvalue (or least negative if all the eigenvalues become
negative). A natural invariant measure for this system is a Dirac measure concentrated
in this eigendirection.
The numerical simulations illustrate that this is also true for small noise intensity. Here
the induced system on projective space will move faster and faster towards the least
stable (or most unstable) eigendirection, hence the invariant measure will peak near
this eigendirection. Increase of the noise intensity has an opposite effect: The invariant
measure spreads out on projective space. Thus for higher noise intensity higher gains are
necessary in order to obtain peaking near the least stable eigendirection (or, for smaller
gains, less noise intensity is necessary in order to spread out the invariant measure).

The contents of the paper are as follows: In section 2 we recall results on the projected
system on P

d−1, in particular, the relevant Lie algebraic conditions. We verify that they
are satisfied for (5) and (6) and indicate the parametrisation by polar coordinates.

Section 3 describes the numerical method. Section 4 illustrates this by application
to a simple second order oscillator, and Section 5 presents results for the third order
oscillators.
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2 Projecting onto the unit sphere

In this section, we first recall some general results on Lyapunov exponents, that is,
unique existence of invariant measures for the induced system on projective space and
Lie algebraic conditions from Arnold, Oeljeklaus, Pardoux [5]. Then we verify that these
Lie algebraic conditions are satisfied for the oscillators (5) and (6).

Consider a linear stochastic differential equation in R
d given by

dxt = Axt dt + Dxt ◦ dW (t)

with A, D ∈ R
d×d. Defining

s =
x

|x|
∈ S

d−1 := {y ∈ R
d, |y| = 1},

this induces a (nonlinear) stochastic differential equation on the sphere S
d−1 given by

ds = hA(s) dt + hD(s) ◦ dW (t); (7)

here hA(s) = As − (s, As)s and hD(s) = Ds − (s, Ds)s. We note that this also induces
a stochastic differential equation on projective space P

d−1 which can be obtained by
identifying opposite points on the sphere.

We cite the following theorem from [5]; see also Arnold [1], Theorem 6.2.16.

Theorem : Suppose that the vector fields hA and hD induced by (7) on S
d−1 satisfy the

following hypoellipticity condition

dim LA(hA, hD)(s) = d − 1, for all s ∈ S
d−1.

Then there exists a unique invariant measure on P
d−1; it has a C∞ density and the

maximal Lyapunov exponent for (7) is constant a.s. �

Thus for the analysis of the oscillators (5) and (6) we have to verify the hypoellipticity
condition. We first pass from (5) and (6) to the state space representation

dx =





0 1 0
0 0 1
a b c − k



 x dt + σ





0 0 0
0 0 0
0 0 1



 x ◦ dW (t), (8)

dx =





0 1 0
0 0 1
a b c − k



 x dt + σ





0 0 0
0 0 0
0 1 0



 x ◦ dW (t). (9)

Recall that a, b, c and k, σ are fixed real parameters.

Define

A =





0 1 0
0 0 1
a b c − k



 , D1 =





0 0 0
0 0 0
0 0 1



 , D2 =





0 0 0
0 0 0
0 1 0



 .
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Then for j = 1, 2 the induced systems on S
2 are given by

ds = hA(s) dt + σ hDj
(s) ◦ dW (t) (10)

and the hypoellipticity condition becomes

dim LA(hA, hDj
)(s) = 2 for all s ∈ S2.

Moreover the maximal Lyapunov exponent for (8) and (9) is given by Khasminskii’s
formula as

λ =

∫

S2

(

(s, As) +
1

2
((Dj + DT

j )s, Djs) − (s, Djs)
2

)

p(s)ds, (11)

where p(s) denotes the invariant density on S
2, ds Lebesgue measure on S

2 and DT
j

corresponds to the transpose matrix of Dj. A sufficient condition for uniqueness of the
invariant measure is that the subspace generated by evaluating the corresponding linear
vector fields in R

3 have full dimensions. The following lemma shows that this is indeed
the case.

2.1 Lemma Suppose that for the systems (8) and (9) the coefficient a 6= 0.Then for

j = 1, 2 and every x ∈ R
3\{0}

dim LA{Ax, Djx}(x) = 3.

Proof: We first treat the case LA{Ax, D1x} where the vector fields Ax and D1x are
given by

Ax =





x2

x3

ax1 + bx2 + (c − k)x3



 , D1x =





0
0
x3



 . (12)

We compute the Lie bracket

[Ax, D1x] = (D1A − AD1)x =





0 0 0
0 0 −1
a b 0



x =





0
−x3

ax1 + bx2



 .

Thus for x2 6= 0 and x3 6= 0 the span is equal to R
3. We further compute

[Ax, [Ax, D1x]] = [A, [A, D1]]x = ([A, D1]A − A[A, D1])x

=





0 0 1
−2a −2b −(c − k)

−a(c − k) a − b(c − k) 2b



 x

=





x3

−2ax1 − 2bx2 − (c − k)x3

−a(c − k)x1 − (b(c − k) − a)x2 + 2bx3



 .
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If x1 = x2 = 0, then x3 6= 0, since x ∈ R
3 \ {0}. Hence (12) and the Lie bracket above

yield three independent directions. Analogously, the assertion follows if x1 = x3 = 0. It
remains to discuss the case x2 = x3 = 0, and hence x1 6= 0.

Since a 6= 0, Ax and the Lie bracket above provide two independent directions. In order
to find a third independent direction we compute

[A, [A, [A, D1]]] =





3a 3b 2(c − k)
0 −3a −4b − (c − k)2

4ab + a(c − k)2 4b2 − 2a(c − k) + b(c − k)2 0





and hence

[A, [A, [A, D1]]](x) =





−3ax1 − 3bx2 − 2(c − k)x3

3ax2 + (4b + (c − k)2)x3

−4abx1 + (−4b2 + 2a(c − k) − b(c − k)2)x2



 .

This provides a direction independent of Ax and [A, [A, D1]]x. This proves the first part
of the lemma.
We proceed in exactly the same manner for the second case involving the diffusion matrix
D2; here

Ax =





x2

x3

ax1 + bx2 + (c − k)x3



 , D2x =





0
0
x2



 .

We compute the first bracket of A and D2 as

[A, D2]x = (D2A − AD2)x =





0
−x2

−(c − k)x2 + x3



 .

These three vectors provide us with three independent directions, as long as x2 6= 0. If
x2 = 0 and x3 6= 0, we have the two independent directions.





0
x3

ax1 + (c − k)x3



 ,





0
0
x3



 .

If x2 = x3 = 0, we only have the direction

Ax =





0
0

ax1



 .

We further compute

[A, [A, D2]]x =





x2

(c − k)x2 − 2x3

ax1 + (2b + (c − k)2)x2 − (c − k)x3
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and

[A, [A, [A, D2]]]x =





−(c − k)x2 + 3x3

−3ax1 − (4b + (c − k)2)x2

−2a(c − k)x1 − (4b(c − k) + (c − k)3)x2 + (4b + (c − k)2)x3



 ,

(13)
and, finally,

[A, [A, [A, [A, D2]]]]x =





6ax1 + (7b + (c − k)2)x2 + 2(c − k)x3

z1x1 + z2x2 − z3x3

y1x1 + y2x2 − y3x3



 , (14)

where z1 = 2a(c − k), z2 = (4b(c − k) + (c − k)3 − 3a), z3 = (8b + 2(c − k)2), y1 =
(7ab+3a(c−k)2), y2 = (−a(c−k)+8b2+6b(c−k)2+(c−k)4), y3 = (3a+4b(c−k)+(c−k)3).

If x2 = x3 = 0, then, in addition to Ax, we obtain the two independent directions (13)
and (14).

The case x2 = 0, x3 6= 0 is covered from the directions given by Ax, [A, D2]x and
[A, [A, [A, D2]]]x. This completes the proof.

�

This lemma, together with the theorem cited above shows that the induced equations on
projective space possess unique invariant measures. The C∞ densities associated with
these measures can be obtained as suitably normalised solutions of the corresponding
Fokker-Planck equations in projective space. In some cases (for d = 2) this even admits
an analytical description, see [6]. In general, one may use numerical procedures for par-
tial differential equations to solve the Fokker-Planck equation.
Below we follow another numerical approach based on discretising the state space and
then using a Monte-Carlo approach. It will be convenient to introduce angular coordi-
nates for the considered systems in S

1 and S
2.

For the stochastic differential equations (10) we get

hA(s) =





s2 − s1(s, As)
s3 − s2(s, As)

as1 + bs2 + (c − k)s3 − s3(s, As)



 ,

and

hD1
(s) = σ





−s1(s, D1s)
−s2(s, D1s)

s3 − s3(s, D1s)



 , hD2
(s) = σ





−s1(s, D2s)
−s2(s, D2s)

s2 − s3(s, D2s)



 ,

with

(s, As) = s1s2 + s2s3 + as3s1 + bs3s2 + (c − k)s2
3,

(s, D1s) = s2
3 and (s, D2s) = s3s2.
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On the unit sphere the Cartesian coordinates are s = (s1, s2, s3)
T and changing to

angular coordinates s = (cos φ sin θ, sin φ sin θ, cos θ)T with φ ∈ [0, 2π) and θ ∈ [0, π/2)
(where θ ∈ [0, π/2), since the density is periodic; the lower half of the unit sphere can
be recovered by multiplying with −1), gives

dθ = −
ds3

sin θ
, dφ =

ds2

sin θ cos φ
− cot θ tan φdθ.

These equations produce the final transformation, with respect to the angles θ and φ,
of equations (10) with j = 1, 2. Abbreviate

MA = sin2 θ cos φ sinφ + a sin θ cos φ cos θ

+ (1 + b) sin θ sin φ cos θ + (c − k) cos2 θ.

We compute for j = 1

dθ = −
(

a cos φ + b sin φ + (c − k) cot θ − cot θMA

)

dt

− σ
(

cot θ − cot θ cos2 θ
)

◦ dW (t),

dφ =
( cot θ

cos φ
− tan φMA + a cot θ sin φ

+ b
cot θ sin2 φ

cos φ
+ (c − k) cot2 θ tanφ − cot2 θ tanφMA

)

dt

− σ
(

tan φ cos2 θ − cot2 θ tanφ + cot2 θ tanφ cos2 θ
)

◦ dW (t)

and for j = 2 we similarly find

dθ = −
(

a cos φ + b sin φ + (c − k) cot θ − cot θMA

)

dt

− σ
(

sin φ − sin φ cos2 θ
)

◦ dW (t),

dφ =
( cot θ

cos φ
− tanφMA + a cot θ sin φ

+ b
cot θ sin2 φ

cos φ
+ (c − k) cot2 θ tan φ − cot2 θ tan φMA

)

dt

− σ
(sin θ sin2 φ cos θ

cos φ
−

cot θ sin2 φ

cos φ
+

sin2 φ cos3 θ

sin θ cos φ

)

◦ dW (t).

3 Numerical Approximation of the Invariant Densi-

ties

In this section we discuss a numerical method for approximating the unique invariant
density in projective space.
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We first discretise the state space by dividing it into ‘boxes’. For the projected system in
S

2 we use angular coordinates. Identifying opposite points on the sphere we obtain the
projective space P

2. For this space we use coordinates in K = [0, 2π]× [0, π
2
] which is the

upper half of the unit sphere. The computation of the invariant density on this space
is based on the discretisation of the Frobenius-Perron operator defined on the space of
probability measures on R

2. Choose a discretisation time T > 0 and define a partition
P of K into finitely many boxes Bi. Then compute the transition probabilities

pij :=
1

m(Bi)

∫

Bi

P (T, x, Bj) dx

for the ensuing discretised system averaged over the box covering. Here m(·) denotes the
Lebesgue measure. The transition matrix P := (pij) ∈ R

(N+1)×(N+1) is row stochastic.

For a convenient generation of the partition and the boxes we rely on numerical methods
in Szolnoki [16] based on subdivision techniques for the numerical analysis of dynamical
systems developed by Dellnitz, Hohmann, and Junge (see [7], [8]). For the approximation
of the dynamics on this box partition, we create a Markov chain with finitely many states
each of which symbolises one box. The transition probabilities from one state to the
other are computed by Monte Carlo simulation; here we use a stochastic Runge-Kutta
technique of order four; see, e.g., Kloeden/Platen [14].

More specifically, s2 starting points xk are picked in each box Bi. From each starting
point, the solution is approximated for all samples η̂l generating s1s2 target points
ϕ̂(T, xk, η̂l). The transition function from box Bi to Bj is then approximated by

pij =
1

m(Bi)

∫

Bi

P (T, x, ηt)dx ≈
1

s1s2

s1
∑

l

s2
∑

k

χBj

(

ϕ̂(T, xk, η̂l)
)

.

The question as to how many starting points, boxes, and sample paths of the background
process should be used depends on the properties of the system, the time length T , and
the box size—and of course on the available computing resources.

This yields the transition matrix of the Markov chain, which in its turn allows the
computation of the stationary density which is represented as a normalised eigenvector
of the discretised Frobenius-Perron operator associated with the eigenvalue one. Thus
an approximation to a fixed point of the Frobenius-Perron operator is obtained.

3.1 Remark The universally applied idea of Monte Carlo simulations goes back to
Ulam, Metropolis, and von Neumann (see [15]). Although many sophisticated variants
for different disciplines have been developed in the meanwhile, there are no general error
estimates available. So one can never be sure that the Monte Carlo simulation recognises
every relevant behaviour.

3.2 Remark For further information on results concerning the convergence of the
above approximations we refer the reader to [8], [11], [10] for the deterministic case and
to [12] for the approximation of invariant measures for random dynamical systems.
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4 Examples, 2-D case

In this section we illustrate the previous ideas for the following two dimensional stochas-
tic oscillator with noise acting in a purely skew symmetric way:

dx =

(

3 − k −4
1 −10

)

xdt + σ

(

0 −1
1 0

)

x ◦ dW (t). (15)

Specifically we will study the effects of small (σ = 10−5) and relatively big (σ = 1) noise,
on the corresponding invariant measure of (15), for different high gain values.
We adopt the values a = 3, b = −4, c = 1, d = −10 for the drift matrix (which we call A1)
because they make the origin of the unperturbed system a saddle and the corresponding
root locus is dynamically more interesting.

4.1 Remark Observe that when noise enters in this skew symmetric way the system
for the angle φ on S

1 is elliptic and so there is a unique invariant measure.

4.1 Small noise intensity

We start by plotting the root locus for the unperturbed equation (15). This is shown in
Figure 1.
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Fig.1 : Root locus for A1.

The root locus shows that for 0 < k ≤ 9 there are two real eigenvalues λ1 ≈ −9.69
and λ2 ≈ 2.69, which become complex for 9 < k < 17 and eventually for k ≥ 17 one
converges to minus infinity and the other to d = −10. Thus the origin will change from
being a saddle, to a stable spiral, and eventually will become a stable node.
The latter arguments imply that the invariant measure of (15) for 0 < k ≤ 9 will almost
be a Dirac measure concentrated in the eigendirection corresponding to λ2; this is shown
in Figure 2. (Here and in the following figures we plot the different values of the density

as distances from the unit circle S
1). For 9 < k < 17 the density assumes positive values

in a wider area, since the solution becomes a spiral and thus visits some areas of S
1
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more often (Figure 3). However, since noise is small, high gain forces the density to
concentrate more in one ‘box’. This is seen in Figure 3 where only one big peak appears.
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Fig.2: σ = 10−5 and k = 9 Fig.3: σ = 10−5 and k = 10

For k = 20, the measure returns to being almost Dirac, Figure 4. Increasing k fur-
ther, noise gradually loses its effect and the measure approximates a Dirac measure
concentrated on the north pole, Figure 5.
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Fig.4: σ = 10−5 and k = 20 Fig.5: σ = 10−5 and k = 50

4.2 Noise intensity σ = 1

In this subsection we treat again equation (15), but we increase the noise intensity to
one. The smoothing effect of noise can be viewed in the following two figures which were
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made using the same configuration as for Figures 3 and 5, with the exception that noise
intensity was increased.
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Fig.6: σ = 1 and k = 10 Fig.7: σ = 1 and k = 50

Observe how the density from peaking at one point in Figure 3, ‘spreads out’ in two big
peaks in Figure 6. The same happens between Figures 5 and 7 where the peak from
having value almost one for σ = 10−5 becomes much smaller and spreads uniformly on
the surface of S

1.

5 Examples, 3-D case

We now study the combined effect of noise intensity and high gain on the density of
the third order linear oscillators (5) and (9). For both equations the drift matrices A
coincide. We begin with the root locus of the drift matrix A. Then we study (5) and
(9) considering different noise intensities and gains k.

Note: In contrast to the 2-D case where we plotted the different density values as dis-

tances from the surface of S
1, here we use colour to plot them on S

2. So in the figures

that follow we use different colour intensities, with red being the highest, to plot the

density values on S
2.

5.1 Small noise intensity

The root locus for the drift matrix

A =





0 1 0
0 0 1
−5 2 3 − k
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is plotted in Figure 8.
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Fig.8 : Root locus for A.

In particular, for k = 0 we get three real eigenvalues λ1 = 3.1284, λ2 = −1.3301 and
λ3 = 1.2016. The red line indicates that λ2 will remain real for all subsequent values of
k and will move gradually towards minus infinity. On the other hand, when k ≈ 0.77
the eigenvalues λ1 and λ3 become complex and stay complex for all greater values of k.
Next we study equation (5) given by

dx =





0 1 0
0 0 1
−5 2 3 − k



 x dt + σ





0 0 0
0 0 0
0 0 1



 x ◦ dW (t). (16)

Thus for k = 0 we get an ‘almost’ Dirac measure concentrated in the eigendirection
associated with λ1; this can be seen in Figure 9. For k > 0.77 the solution of the
unperturbed system becomes an unstable spiral and so the peak flattens in Figure 10.

Fig.9: σ = 10−6 and k = 0 Fig.10: σ = 10−6 and k = 1
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Increasing now k to values higher than one forces the solution to oscillate faster since the
imaginary parts of λ1 and λ3 increase. Therefore the density becomes a ‘ring’ around
S

2 as can be seen in Figures 11 and 12.

Fig.11: σ = 10−6 and k = 3 Fig.12: σ = 10−6 and k = 10

For k > 10 the density will keep on being a ‘ring’ and eventually become the equator.
Observe, however, that for higher values of k the noise affects the system less and so the
density concentrates (peaks) more. This is seen in Figure 12 where the red highlighted
area assumes values close to 0.04, in comparison with 0.03 in Figure 11.

5.2 Higher Noise Intensity

We now increase the noise intensity to σ = 1 and compare with the small noise case.
Observe in Figures 13, 14, 15, and 16 how the density spreads out in comparison with
the small intensity case. The peaks for example in Figures 11 and 12 disappear.

13



Fig.13: σ = 1 and k = 0 Fig.14: σ = 1 and k = 1

Fig.15: σ = 1 and k = 3 Fig.16: σ = 1 and k = 10

Before closing this subsection we present two more figures, one for σ = 5 and one for
σ = 20, where the smoothing effect of higher noise intensity becomes more visible.

14



Fig.17: σ = 5 and k = 10 Fig.18: σ = 20 and k = 10

Clearly the more σ increases while k remains the same, the density flattens more around
the sphere in a uniform manner.

5.3 Different diffusions

Finally, we study what happens to the density function when we switch from equation (8)
to equation (9). We use the same drift matrix A for the calculations and noise intensity
σ = 5.

Fig.19: σ = 1 and k = 0 Fig.20: σ = 1 and k = 1

We see that although the quantitative behaviour of the density remains the same, as can
be easily seen between Figures 13,14 and 19,20, nevertheless qualitatively the density
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finds a new area of concentration, Figures 15,16 and 21,22. This lead us to believe that
different mixing of noise alters significantly the properties of the invariant measure when
high gain is not big enough to counterbalance the effect of the noise.

Fig.21: σ = 1 and k = 3 Fig.22: σ = 1 and k = 10

5.4 Application to Lyapunov exponents

Using the measures we calculated in the previous section, we now compute the Lyapunov
exponents λD1

and λD2
from equation (11) as functions of high gain and noise intensity.

Specifically we plot λD1,D2
for 0 ≤ k ≤ 10 and for noise intensities σ = 10−6 and σ = 1.

We start by computing for equation (8) the maximal Lyapunov exponent (11) with
respect to the angles (φ, θ) on P

2. This gives

λD1
=

∫ 2π

0

∫ π
2

0

(
1

2
sin 2φ sin2 θ +

1

2
sin 2θ(sin φ + a cos φ + b sin φ) + (c − k) cos2 θ+

σ2(cos2 θ sin2 θ) p(φ, θ)dφdθ.

Using equation (11) but with different diffusion D2, we recover the following integral
whose solution gives the greatest Lyapunov exponent of equation (9) :

λD2
=

∫ 2π

0

∫ π
2

0

(
1

2
sin 2φ sin2 θ +

1

2
sin 2θ(sin φ + a cos φ + b sin φ) + (c − k) cos2 θ+

σ2

2
(sin2 φ sin2 θ − 2 cos2 θ sin2 φ sin2 θ)) p(φ, θ)dφdθ.

In the following figures blue colour corresponds to λD1
and λD2

and red to the real parts
A, the drift matrix of equations (8) and (9). Both exponents are plotted as k is being
increased with a step of 1 from zero to ten.
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Fig.23: λD1
, σ = 10−6 Fig.24: λD1

, σ = 1

Clearly when σ is small λD1
(and λD2

) matches the deterministic exponent, Figure 23.
Increasing the noise intensity has a destabilising effect on the system as can be viewed in
Figure 24, where λD1

instead of converging fast towards zero is forced to remain positive
for a longer period. λD2

assumes smaller values than the deterministic maximal exponent
since the diffusion part coming from D2 in the Khasminskii formula contributes negative
values. So when noise enters with diffusion D2 stabilises in contrast to D1.
Nevertheless both λD1

and λD2
converge to the deterministic exponent as greater k. This

is expected, as the invariant measure converges to its deterministic counterpart while k
increases.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

High Gain :  k

E
x
p

o
n

e
n

ts
 :

  
λ

k
, 

  
λ

D
2

Lyapunov exponent for diffusion matrix D
2

λ
D

2

λ
k

σ=1

Fig.25: λD2
, σ = 1

17



6 Acknowledgements

We would like to thank Hans Crauel, Technical University of Ilmenau and Stuart Town-
ley, University of Exeter, for their various comments and suggestions. Iakovos Matsikis
was supported by CTS (European, Control Training Site) in the form of a fellowship.

References

[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.

[2] L. Arnold, H. Crauel, and V. Wihstutz, Stabilisation of linear systems by noise,
SIAM J. Control Optimisation 21 (1983), pp. 451–461.

[3] L. Arnold, A. Eizenberg, and V. Wihstutz, Large noise asymptotics of invariant
measures, with applications to Lyapunov exponents, Stochastics Stochastics Rep. 59
(1996), pp. 71–142.

[4] L. Arnold, W. Kliemann, and E. Oeljeklaus, Lyapunov exponents of linear stochastic
systems, in L- Arnold, V. Wihstutz, editors, Lyapunov Exponents, Proceedings,

Bremen 1984, Springer-Verlag 1986, pp. 85–125.

[5] L. Arnold, E. Oeljeklaus, and E. Pardoux, Almost sure and moment stability for
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