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Abstract

Let ¢(t,-,u) be the flow of a control system on a Riemannian
manifold M of constant curvature. For a given initial condition k
in the orthonormal frame bundle, that is, an orthonormal frame k
in the tangent space T, M for some zy € M, there exists a unique
decomposition ¢; = O o p; where Oy is a control flow in the group
of isometries of M and the remainder component p; fixes xg with
derivative Dpi(k) = k - s; where s; are upper triangular matrices.

AMS 2000 subject classification:
Key words: control flows, group of affine transformations, isometries, non-
linear Iwasawa decomposition.

1 Introduction

Dynamical systems in a differentiable manifold M (including deterministic,
random, stochastic and control systems) are globally described by the cor-
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responding trajectories in the group Dif(M) of global diffeomorphisms of
the manifold M. In most interesting examples and applications, the mani-
fold M has a Riemannian metric endowed with the corresponding geometric
structure: orthonormal frame bundle OM over M, Levi-Civita horizontal
lift, covariant derivative of tensors, geodesics, among other structures whose
constructions depend intrinsically on this metric. The natural motivation
to work with Riemannian manifolds is the fact that they provide a suffi-
ciently rich geometric structure where all the intuitive models that one has
in Euclidean spaces also hold locally in these spaces.

Once a differentiable manifold is endowed with a Riemannian metric, one
can distinguish the elements in the group of diffeomorphisms Dif (M) which
preserve the metric, the group /(M) of isometries of M. In general the group
Dif (M) is an infinite dimensional Lie group, while the group of isometries
I(M) is finite dimensional. This group has a rather special interest, since it
carries geometric and topological properties of M. Roughly speaking, what
we describe in this paper is a factorization of a flow ¢; (a one-parameter
family of diffeomorphisms) into a component ©; which lies in this compact,
finite dimensional subgroup of isometries I(M) and another component (the
remainder) p, which fixes a certain point on M and contains the long time
stability behavior (Lyapunov exponents) of the system. The title of the
paper is motivated by the classical Iwasawa decomposition for linear maps
which is the factorization of a matrix as a product of an orthogonal and
an upper triangular matrix, hence of an isometry and a matrix containing
the expansion/contraction terms. Under certain geometrical conditions, this
decomposition can go further, including a component in the affine transfor-
mations group.

The idea of this kind of decomposition of flows has first appeared in Liao
[13] for stochastic flows, with hypotheses on the vector fields of the systems.
A geometrical condition on the manifold M (namely: constant curvature),
instead of on the vector fields was established in Ruffino [16], with some
examples also in [17]. This paper intends to apply the same technique to
show that this decomposition also holds in the context of control flows. For
the reader’s convenience we shall recall some of the geometrical background
and the most illustrative examples which were presented in those articles.

We remark that a main interest in this kind of decomposition is the fact
that characteristic asymptotic parameters of the systems (Lyapunov expo-
nents and rotation numbers) appear separately in each of the components of
our decomposition. For details on the definitions of these asymptotic para-



meters on (random) dynamical systems we refer to the articles by Liao [12],
Ruffino [17], Arnold and Imkeller [2] and the references therein.

Section 2 provides an overview of control flows and geometric prelimi-
naries for non-expert readers (it can be skipped by those who are familiar
with the topic). Section 3 derives the nonlinear Iwazawa decomposition and
proves that the isometric part is, by itself, a control flow, with appropriate
vector fields. Section 4 characterizes the manifolds for which the required
assumptions are always satisfied. Finally, Section 5 adapts some examples in
[16] and [17] to the context of control flows in (simply connected) manifolds
of constant curvature: Euclidean spaces R", spheres, and a hyperbolic space.

2 Setup

In this section we describe some basic facts on control flows, geometry of
Riemannian manifolds, and their affine and isometric transformations.

2.1 Control Flows

We consider a control system in a complete connected d-dimensional Rie-
mannian manifold M given by a family F' of smooth vector fields F' C X (M).
We assume that the linear span of F' is a finite dimensional subspace £ C
X (M), i.e., I is contained in a finite dimensional affine subspace of X (M).
The time-dependent vector fields taking values in F' are

F={X€L(R,E), X; € FforteR}. (1)

Below we will assume that all corresponding (nonautonomous) differential
equations
& = Xz where X € F, (2)

have unique (absolutely continuous) global solutions ¢;(xg, X), t € R, with
wo(x9, X) = zo. Then system (2) defines a flow on F x M

(I)t(X7 $0) = (Qth Spt(an))v te R; (3)

here 6, is the shift on F given by (6;X) (s) = Xi1s, s € R. We call this the
associated (non-parametric) control flow (cp. also [5]). It is closely related
to control flows as considered in [4] with the shift on the space U of control
functions; here the time dependent vector fields are parametrized by the
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control functions and it has to be assumed that the system is control-affine
and the control range U is compact and convex. In fact, the time-dependent
vector fields in F (and hence the control flow (3)) can be parametrized as
follows.

Proposition 2.1 (i) Let F C X (M) be a compact and convex subset of the
finite dimensional subspace E C X (M) spanned by these vector fields. Then

there exist a convex and compact subset U C R™, m = dim E, and m + 1
vector fields Xo, ,,,, Xm € X(M) such that

F={Xo+ > w()X; (w) € Loo(R,R™) with u(t) € U fort € R}. (4)
i=1
(ii) Conversely, consider a control-affine system on M of the form

i = Xo(z) + Z wi () X;(x),
(u;) €U = {u € Loo(R,RY), wu(t) € U fort € R},

where m € N, Xo, ..., X,, € X(M) and U C R™ is convex and compact.
Then

F={Xo+ Y uwX; ucU} (5)
i=1
is a convex and compact subset of a finite dimensional space E C X(M) of
vector fields and

{X € Lo(R,E), Xy € F fort e R} ={Xo+ iul()Xﬂ ueuUl.

i=1

Proof: Clearly, for a compact and convex set U C R™, the set F' in
(5) is a convex and compact subset of a finite dimensional vector space in
X (M). The vector space E spanned by the vector fields Xy, X7, ..., X,, has
dimension bounded by m + 1. Conversely, let ' be a convex and compact
set generating an m—dimensional space E C X'(M). Fixing X, € F and a
base X1, ..., X, of E one finds that every element X € F can uniquely be
written as

i=1
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with coefficients u; € R. We may assume that Xy,...,X,, € F, since
is generated by F'. Clearly, the corresponding set U of coefficients forms a
convex and compact subset of R™ (with 0 € U). It remains to show that for
every X € F one can find a measurable selection u with

X=Xy + Z u;(t)X; for almost all t € R.

i=1

This follows from Filippov’s Theorem, see e.g. Aubin/Frankowska [3], The-
orem 8.2.10.
O
Remark: If F' is contained in an n-dimensional affine space, then dim £ =
n+1, therefore, in the second part of the proof, one can restrict to m, instead
of (m + 1), vector fields: just take e.g. Xy = X; in the arguments above.

This proposition shows that the nonparametric control flows are just a
concise way of writing the control flows corresponding to control-affine sys-
tems as considered, e.g., in [4]; here one uses the shift on the space U of
admissible control functions instead of the shift on the space of time de-
pendent vector fields. Nonparametric control flows inherit all properties of
control flows; in fact they can also be considered as the special case

t=u(t)r, ue€ F={u€ Lo(R,E), u(t) € F fort € R}.

Note that for a fixed control function u(-), these equations reduce to ordinary
differential equations, hence one can apply all the techniques of existence and
uniqueness of solution and differential dependence on parameters. The family
®, is a continuous skew-product flow on F x M. Note that the M—component
of ® satisfies the cocycle property

SOt-I—s(va) - ¢t<908(x7X)785X>'

When the control vector field X = X, is implicit in the context, for sake of
simplicity in the notation, we shall write simply ¢, instead of (-, X).

The non-linear Iwasawa decomposition can more precisely be described
as follows: Under certain geometrical conditions on the vector fields [13], or
if the manifold M has constant curvature (cf. Theorem 4.1), then, for an
initial condition zy € M and an initial orthonormal frame k in the tangent
space T, M, there exists a unique factorization

= O 0 py, (6)
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where ©, corresponds to a control flow in the group of isometries, p; fixes
the starting point o for all t > 0, i.e., pi(xo, X) = 20, and the derivative
in the space parameter Dp(k) = k s, where s; are upper triangular matrices.
Adding some other restrictions in the vector fields (or assuming that M is
flat, cf. Corollary 4.2) one can go further in the decomposition and factorize
the remainder p; of equation (6) to get a (dynamically) weaker remainder
(using the same notation p;):

Yt = @toqjtopta (7)

where ©; are isometries, ¥, are in the group of affine transformations of M
(hence so does ©; 0 ¥;), but now the new remainders p; are diffecomorphisms
which fix xq for allt > 0,1i.e. p;(xg) = o, and the derivative with respect to z,
the space parameter, is given by the identity Dp; = Idr, . In decomposition
(7) we have extracted the affine component from the previous remainder in
(6). Hence, in this second factorization, the dynamics of p; is reduced locally
to the identity, up to first order.

2.2 Geometric Preliminaries

We shall denote the linear frame bundle over a d-dimensional smooth man-
ifold M by GL(M). It is a principal bundle over M with structural group
Gl(d,R). A Riemannian structure on M is determined by a choice of a
subbundle of orthonormal frames OM with structural subgroup O(d,R).
We shall denote by 7 : GL(M) — M and by 7, : OM — M the projec-
tions of these frame bundles onto M. The canonical Iwasawa decomposition
given by the Gram-Schmidt orthonormalization in the elements of a frame
k = (k',..., k%) defines a projection L: k +— k* : GL(M) — OM such
that GL(M) is again a principal bundle over OM with structural group
S C GIl(d,R), the subgroup of upper triangular matrices. The principal
bundles described above factorize as m = m, o L.

Unless in quite particular examples, the Levi-Civita connection (tor-
sion free) is the most physically meaningful, hence this is the connection
we are going to consider in this paper. We recall that for a frame £ in
GL(M) a connection I' determines a direct sum decomposition of the tan-
gent space at k into horizontal and vertical subspaces which will be denoted
by TyGL(M) = HT,GL(M) & VI,GL(M). An analogous decomposition
holds in the tangent bundle TOM C T GL(M). For k € OM, we have



that HT,OM = HT,GL(M). Given a vector field X on M, we denote its
horizontal lift to GL(M) by HX (k) € T,GL(M).

The covariant derivative of a vector field X at x is a linear map denoted
by VX(x): T, M — T, M, we write VX (Y) or Vy X for a vector Y € T, M.
In terms of fibre bundles, the covariant derivative is defined as a derivative
along horizontal lift of trajectories, hence it has a purely vertical component.
Considering the right action of the structural group in the frame bundle
GL(M), via adjoint, we can associate to VX an element in the structural
group GI(d,R) of the principal bundle GL(M) given by the matrix X (k) =
ad(k~')V X, which acts on the right such that VX (k) = kX (k). Note that,
different from VX, the right action of the matrix X (k) does depend on k.

The natural lift of X to GL(M) is the unique vector field 60X in GL(M)
such that Lsx )0 = 0, where 0 is the canonical Re-valued 1-form on GL(M)
defined by 0(Hk(¢)) = ¢ for all ¢ € R This natural lift is given by:

SX(K) = SO (k) o, 0
where D, : Ty,) M — T}, (5, M is the derivative of the local 1-parameter group
of diffeomorphisms 7, associated to the vector field X. Note that it describes
the infinitesimal behavior of the linearized flow of X in an orthonormal basis
k of the space T,,M. Naturally, 6X is equivariant by the right action of
Gl(d,R) in the fibres.

Next lemma guarantees that the left action of the linearized flow is also
well defined in the subbundle OM. In fact, this is a well expected result since
the horizontal component is the same of the horizontal component in GL(M),
and, for the vertical component (in the fibre), the left action of Gi(m,R) is
well defined in the flag manifolds, see e.g. [18]. In any case, for the reader’s
convenience we shall present a proof of this simpler version which is all that
we need here.

Lemma 2.1 The projection L: GL(M) — OM is invariant for the lin-
earized flow, in the sense that, for all k € GL(M),

(Die(k))* = (Dne(k*))* (9)

Proof: This is a consequence of the commutativity of the right action of
Gl(d,R) (in particular, in this case, the action of the upper triangular matri-
ces subgroup S) on GL(M) with any other linear left actions (in particular,
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in this case, the linearized flow). In fact, consider the Iwasawa decomposition
k=k"- sy for some s(;) € S. Hence,

Dip(k* - s) = (Dnek™) - sy = (De(k))™ - 8(Dy(ay)-

Equality (9) follows by the uniqueness of the Iwasawa decomposition.
O
The vertical component VX (k) at k € 7 !(x) is given by the covariant
derivative VX (k) (see e.g. Elworthy [6], or Kobayashi and Nomizu [9]).
In terms of Lie algebra, consider the canonical Cartan decomposition of
matrices G = K & § into a skew-symmetric and upper triangular compo-
nent respectively. By projecting in each of these two components, we write

X (k) = [X (k)] + [X(k)|s. With this notation, we have the decomposition:

0X (k) = H(X) + K[X (k)] + k[X (k)]s (10)

where H(X) is the horizontal lift of X to T,OM,
The natural lift of X to the subbundle OM, denoted by (§X)* is the
projection of X onto OM, i.e. for k € OM,

(XY (K) o= S (DR [eco

Again, we have the decomposition of (§X)+(k) into horizontal and vertical
components: (6X)*(k) = HOX (k)+V(6X)*(k). In terms of the right action
of X (k), the vertical component is simply V (6X)* (k) = k[X (k)]x. In terms
of the left action of (VX) we shall denote V(6 X)* (k) = (VX (k))*k, where
(VX (k))* is a skew-symmetric map: T, M — T, M. The characterization of
(VX (k))* in terms of its left action on OM is the content of the following
lemma. Although the formula looks quite intricate, it helps to understand
the corresponding right action of X (k).

Lemma 2.2 Let k = (k*,... k%) € OM with m,(k) = x. The image of the
j-th component k? by the matriz (VX (k))* is given by

(VX (k)" K’

= VX(K) - (VX(K), k) — Z (VX (K"), k) + (VX (K), k")) k"

o<r<yj



Proof: If t € R —— V, € R? is differentiable with V, # 0 for all

t € (—¢,€), then:
i (i)
dt \ [[Vi]

where V; is the derivative of V;.

For the sake of simplicity, fix a basis in T, M and denote by A the matrix
which represents the linear transformation VX (z). Formula (11) with ¢ =0
will be used in each coordinate of

Vi v )
At 1 t t
e™(k))" = ey )
(7)) (HLtlH Ve

where each component of the orthogonalization process is given by

N OEDY

o<r<y

Vi (VW)

P A A R

(e(K7), V')

v
Ve, vy

One easily checks, by induction in j, that the derivatives satisfy:

dvy

S =AW = YD (AR R + (AR K

t=0 o<r<y

which gives, by formula (11),
i ()
dt \ |[Vi|

One sees the skew-symmetry of (VX (k))* by checking that

= A(K) = (AR, KK = 3 (CAGK") k) + (A(K), k7)) k"

=0 0<r<yj

0

< (VX(E) KR >= — < (K, VX (k) K > .

2.3 Affine Transformations and Isometries

The group of diffeomorphisms Dif (M) is generated by the exponential of its
Lie algebra which can be identified with the space of smooth, bounded deriv-
ative vector fields X' (M). This exponential of vector fields here means the



associated flow. We shall denote by A(M) the Lie subgroup of affine trans-
formations of M whose elements are given by maps ¥ € Diff (M) such that
their derivatives DW¥ preserve horizontal trajectories in T'M. This is equiv-
alent to saying that affine maps are those which preserve geodesics. Its Lie
algebra a(M) is the set of infinitesimal affine transformations characterized
by vector fields X such that the Lie derivative of the connection form w on
GL(M) satisfies Lsxw = 0. Yet, X is an infinitesimal affine transformation
if for all vectors fields Y:

VAx(Y) = R(X,Y),

where the tensor Ay = Lx — Vx and R is the curvature (see e.g. Kobayashi
and Nomizu [9, Chap. VI, Prop. 2.6]).
For a fixed k € GL(M), the linear map

X — 0X(k) (12)
is injective, see e.g. Kobayashi and Nomizu [9, Theorem VI.2.3]. We shall
denote by da(k) its image in T, GL(M).

We shall denote by I(M) the Lie group of isometries of M, I(M) C
A(M). Its Lie algebra i (M) is the space of Killing vector fields or infinitesimal
isometries, characterized by the skew-symmetry of the covariant derivative,
i.e., a vector field X is Killing if and only if

<VX(Z),W >=— < Z,VX(W) >,

for all vectors Z, W in a tangent space T,M. Note that, in this case, by
Lemma 2.2, for any orthonormal frame k we have that (VX (k))t = VX and
(6X)*1 (k) = 6X (k).
For a fixed £ € OM, the linear map
iy i(M) — T,OM
X — 60X (k) (13)

is just a restriction of the map i; defined above, hence it is also injective. We
shall denote by di(k) its image in T,OM.

Since, as we said, the dynamics can be described as trajectories in Lie
groups (of diffeomorphisms, isometries, affine transformations, etc.), when-
ever convenient, we shall change from the usual dynamical terminology into
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the Lie group terminology. For example, as we have mentioned before, vector
fields are identified with Lie algebra elements which will generate right in-
variant vector fields in the Lie group Dif (M ); furthermore, if ¢ belongs to the
connected component of the identity of Dif()), one identifies the derivative
in the space D¢ : TM — TM (which sends vector fields into vector fields in
M) with the derivative of the left action Ly : TA(M) — TA(M). In fact,
given such a ¢, there exists an element a in the Lie algebra of Dif (M) such
that ¢ = e. If b is another vector field, then D¢(b) = De®(b) = Ly(b).

3 Decompositions of Control Flows

This section describes conditions on the vector fields of the control system for
the existence of the decomposition into isometric or affine transformations.

We start with a theorem which, under certain conditions on the vector
fields X € F, factorizes the control flow ¢; of equation (2) in the form
vy = W, o p, such that ¥, is a control flow in the affine transformations
group, and the remainder p; fixes the initial point and has trivial derivatives
(identity).

Let k be an element in GL(M) which is a base for T, M, i.e. w(k) = .
We shall assume the following hypothesis on the vector fields X € F', involved
in the control system (2):

(H1) 6[DY(X)](k) € da(k), for all affine transformations ¥ € A(M).

Observe that in the finite dimensional case (classical affine control sys-
tem), this condition holds if it holds for the vector fields Xy, ..., X,, in the
representation (4). Intuitively, a vector field X satisfies hypothesis (H1) if
the associated flow carries xy and its ‘infinitesimal neighborhood’ (i.e., a
basis in T,,M) along trajectories which ‘instantaneously’ coincide with the
trajectories of an infinitesimally affine transformation.

Theorem 3.1 Suppose all vector fields X € F of the control system (2)
satisfy the hypothesis (H1) for a certain frame k € GL(M), with xo = 7(k).
Then, the associated control flow p; factorizes uniquely as:

Pt = ‘Iftopt,

where Wy is a control flow in the group of affine transformations A(M), and
the remainder p; satisfies py(ro) = xo and Dp; = Id(r, ary for allt > 0.
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Proof: Since the linear map #; of equation (12) is injective, by hypothesis
(H1), for each X € F we can uniquely define the infinitesimal affine transfor-
mation X* which satisfies §X*(k) = 6X (k). Hence, by the comments after
Lemma 2.1, one obviously sees that

X%zo) = X(29) and VX(xg) = VX(x0). (14)

Let U, be the solution of the following equation in the Lie group A(M), with
\1/0 = IdM )
U, = U, [DV;H(X,)]%, t € R with X € F. (15)

where the elements | - |* in the Lie algebra a(M) act on the right in A(M).
We recall that, in the Lie algebra terminology, X; here means X;(¥;), the
right invariant vector field evaluated at W,.

Equation (15) is obviously a control system in A(M) and the solution W,
generates a control flow on A(M): Indeed, it is generated by the convex and
compact set of vector fields on A(M)

U U[DU (X)), X €F.

which is contained in the finite dimensional vector space obtained by con-
sidering all X € E. Using that W,¥; ' = Id,; one easily finds the control
system for the inverse ¥; ' in A(M):

Ut = —[DU;HX))*0 Y, t e R with X € F.

We define p, = ¥; ' o ¢,. Again, in the context of the Lie group, we have the
following equation for p; in the Lie group of diffeomorphisms of M:

pr = D\I’;l (Sot) + (qul)SOt
= DU (Xe(r)) — [DTTH(X)]" T
= {D\Ijt_l(Xt) - [Dlllt_l(Xt)]a} (pr)- (16)

In the last line we use the right invariance of the X and the fact that
DU (Xi(p1)) = Ly-1(R,, X:(¥,)), which yields (by commutativity of right
and left action) to DW; '(X;(¥;)) (p;). That is, it is a direct application of
the formula L,(X)(h) = Ly(X (g 'h)) for right invariant vector fields in a
Lie group (with L, = DU~ h=p,, g=T1).

By definition of X* (equation (14)) and equation (16) we have that, not
only p(z9) = 0 but also that §{DV¥; ' X, — [DU;'(X,)]*}(p:) = 0, hence the
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derivative of the linearization < Dp;(u) = 0. This establishes the properties
of each component of the factorization of ¢, = ¥, o p, stated in the theorem.

For uniqueness, suppose that ¥} o p; = W, o p;, where U, and p; also
satisfy the properties stated. This implies that ¥, 'W/(z) = z¢ for all ¢ > 0.
Besides, the derivative D, (¥, 'W}) = Id, hence the natural lift to GL(M)
satisfies the differential equation 4 D(¥;'W}) = 0 . Since the map i; is
injective, it follows that W, ' o W/ = Id,,.

O

Remark. We emphasize that the affine transformation system ¥, does
depend on the choice of the initial frame k.

Remark. Observe that, in general, p; is not a control system in Diff (M)
since the vector fields involved in the equation do not depend exclusively
on X; and on the point p;. On the other hand, the control flow ¥, may
be considered as a skew product flow in F x A(M). This follows at once
from its definition. Then (W, p;) is a skew product flow in the fiber bundle
F x A(M) x M — A(M) x M with base flow U;. In the linear case, this
is well known and was used, e.g., by Johnson, Palmer and Sell [[7] in their
proof of the Oseledets theorem for linear flows on vector bundles.

For the next theorem, fix an element & € OM. We shall assume the
following hypothesis on the vector fields X € F' of the system:

(H2) [6(DO(X))(k)]* € di(k) for every isometry © € I(M).

Intuitively, a vector field X satisfies hypothesis (H2) if the associated flow
carries xy and its ‘infinitesimal neighborhood’ (i.e., an orthonormal basis in
T.,M) along trajectories which ‘instantaneously’ coincide with trajectories
of a Killing vector field (infinitesimal isometry). That is, a vector field X
violates (H2), if there is no isometry rotating the ‘infinitesimal neighborhood’
of xy into the same direction as the flow induced by X.

The nonlinear Iwasawa decomposition is described in the following theo-
rem.

Theorem 3.2 Suppose that for a certain frame k € OM with xo = m,(k),

all vector fields X € F of the control system (2) satisfy hypothesis (H2).

Then for the associated control flow @; one has the unique decomposition
= O 0 py,

where ©; generates a control flow in the group of isometries 1(M), pi(xg) =
xo and Dy,pi(k) = ks; for all t > 0, where s; lies in the group of upper
triangular matrices.
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Proof: The first part of the proof proceeds similarly to the proof of Theorem
3.1, changing the group A(M) to I(M): Since the linear map iy of equation
(13) is injective, for each X € F, we can take X', the unique infinitesimal
isometry which satisfies 6 X*(u) = (6X)*(u). Analogously to equation (14),
we have that:

X¥(wo) = X(z0) and VX'(k) = (VX (k))"k. (17)

We define the following system in the group I(M), with initial condition
@0 =1d M- ) ‘
9, = 6,[DO; (X))’ (18)

Note that the equation above is a control system in I(M) and the solution
©, generates a control flow on /(M): Indeed, it is generated by the convex
and compact set of vector fields on I (M)

0+ 0[P X)), X cF.
The control system for the inverse ©; ! in I(M) is given by:
O;! = —[DO;HX)]'O; !, t € R with X € F.

We define p, = ©; o ;. Again, in the context of the Lie group, we have the
following equation for p; in the Lie group of diffecomorphisms of M (by the
same arguments as for equation (16) ):

pr= DO (&) + (67 )
= DO, (Xi(pr) — (DO (X))'O; " 1
= {D6; (X)) — [DO; (X)]'} (pe)- (19)
By the first part of equation (17) and equation (19) we have that p.(zo) =

0. Moreover, by the decomposition of formula (10) and the second part of
equation (17) we have that, for a given k € OM,

§{DO; (X,) — [DO;M(X)]'} (k) =k [DO;(X,)]5,

where [DO; '(X;)]3 on the right hand side are upper triangular matrices.
As mentioned before, the canonical lift of a vector field gives the infinitesi-
mal behavior of the linearized flow acting on a basis, that is, by definition
(equation (8)) :
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%Dpt(k) = Dpy(k) [DO; 1 (X})]3.

Since the Lie algebra element on the right hand side is upper triangular and
Dpo(k) = k, one can write Dp;(k) = k s, where s; are upper triangular
matrices which solve the following left invariant differential equation in the
Lie group of upper triangular matrices:

$ = s [DO; (X053,
S = Id.

This establishes the derivative property of the remainder p;. For the unique-
ness of the decomposition, one checks that it follows easily from the fact that
the map i, is injective, analogous to uniqueness in Theorem 3.1.
O
Note that in Theorem 3.2, again, the decomposition depends on the initial
orthonormal frame £ € OM and the flow ©, may be viewed as a skew product
flow on F x I(M). Now, juxtaposing the decompositions established by
Theorems 3.1 and 3.2, we have the following factorization of ; into three
components.

Corollary 3.3 Suppose all vector fields X € F in the control system (2) sat-
isfy conditions (H1) and (H2) for a certain frame k € OM , with xo = m,(k).
Then, for the associated control flow ¢;, one has the unique decomposition

@t:@toq’topu

where each of the components ©,, ¥, p; have the properties stated in Theo-
rems 3.1 and 3.2. Moreover ©, o W, corresponds to a control system in the
group of affine transformations.

Proof: By Theorem 3.1, let ¢, = ¥} o p; be the unique decomposition
where ¥} is a control system in the group of affine transformations A(M),
pi(xo) = xo and Dp; = Idr, ar for all t > 0.

By Theorem 3.2, let ¢; = O, o p; be the unique decomposition where
O, is the control system in the group of isometries I(M) with p(x¢) = x¢
and D, p,(k) = k s, for a certain family s} in the group of upper triangular
matrices.
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Take the process ©; and p; of the statement of this corollary as defined
above. Define the process ¥, = ©;'W,. These assignments define the de-
composition.

It only remains to prove that there exists a family on the group of upper
triangular matrices such that DW,(k) = k s;. By the properties above, DW} =
Dy, hence

DU, (k) = DO; ' o DW,(k) = DO; ' o Dy, (k)
= Dpi(k) =k s.

Thus the upper triangular matrix family s; of the statement is given by
s. This confirms the expected fact that although, in general W, is different
from W}, they have the same derivative behavior (which carries the Lyapunov
information of the system).

O

4 Conditions on the Manifold

This section characterizes Riemannian manifolds such that every vector field
satisfies hypotheses (H1) and (H2), respectively, and hence the corresponding
decompositions hold. These manifolds are precisely Riemannian manifolds
with constant curvature (simply connected or quotients of them) for the
isometric decomposition and flat space for the affine transformations decom-
position. In particular, the three-factor decomposition of Corollary 3.3 exists
for every control system if and only if M is a flat space. More precisely, we
have the following result.

Theorem 4.1 If M is simply connected with constant curvature (or its quo-
tient by discrete groups), then for every control system (2) and every ortho-
normal frame kg € OM , the control flow admits a unique non-linear Iwasawa
decomposition o, = O 0 p,. Conversely, if every control flow on M admits
this decomposition, then the space M has constant curvature.

Proof: If M has constant curvature and is simply connected one checks
directly that the dimension of Z(M) is bounded above by d(d + 1)/2. Hence
the linear map iy defined in equation (13) is bijective. Therefore, hypothesis
(H2) is always satisfied for any set of vector fields.
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Conversely, assume that for all vector field X and for every orthonor-
mal frame k € OM, the corresponding flow 7, has the non-linear Iwasawa
decomposition 17, = ©; o p;,. Then, the trajectory k; in OM induced by 7,
satisfies

k, == [Dn(k)]* = [DO, o Dp,(k)]* = DO,(k).

We recall that

@ (DOu1) 1m0 = (5X)" () (20)

For any fixed k € GL(M), the linear map X — T,GL(M) given by X
0 X (k) is surjective because it concerns only local behavior of X on M. Hence,
the projection of its image by L: T,GL(M) — T,,1 OM is also surjective. In
other words, if now k& € OM, then X — (§X)*(k) is surjective. If there
exists the decomposition, equality (20) shows that the dimension of Z(M)
equals d(d 4+ 1)/2 which implies that M has constant curvature (see, e.g.
Klingenberg [8], Ratcliffe [14] or Kobayashi and Nomizu [9, Thm. VI.3.3]).
O
As a particular case of the theorem above, we have the following condi-
tions on M which guarantee that every system on it will have a flow which
factorizes into the three components stated in Corollary 3.3.

Corollary 4.2 If M is flat, simply connected (or its quotient by discrete
groups) then for every control system (2) and every orthonormal frame k €
OM, the associated flow ¢; has a unique decomposition ¢ = O, 0 W, 0 p; as
described in Corollary 3.3. Conversely, if every flow ¢, has this decomposition
then M 1is flat.

Proof: If M is flat and simply connected, then a direct check shows that
the dimensions of the groups i(M) and A(M) are d(d + 1)/2 and d(d + 1)
respectively. This implies that the injective maps i; and iy are bijective,
hence hypotheses (H1) and (H2) are satisfied for any set of vector fields on
M.

Conversely, assume that for all vector fields X and for every orthonormal
frame k € OM the corresponding flow 7, has the decomposition 7, = ©,0¥,0
p with the properties asserted. Then, the trajectory k; in GL(M) induced
by 7, satisfies

k = DW,(k),
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where U; = ©, o ¥;. We recall that

& (DW(R)) o = 5X (). (21)
Again, for a fixed k € GL(M), the linear map X +— 0X(k) is surjective
because it concerns only local structure of X on M. Hence, equality (21)
implies that the dimension of the group of affine transformations A(M ) equals
d(d+1), which implies that M is flat (see, e.g. Klingenberg [8] or Kobayashi
and Nomizu [9, Thm. VI.2.3]).

O

5 Examples

In the original paper by Liao [13], where the kind of decomposition we are
extending here was first proposed, his decomposition is illustrated by working
out one example in the sphere S™. The results in the above section enlarge the
class of examples to many well known manifolds including projective spaces,
hyperbolic manifolds, flat torus and many other non-compact manifolds. In
this section we shall describe calculations on all the three possible simply-
connected cases. We shall concentrate mainly on the isometric part ©; since
this is the component which carries more intuitive motivation. Note that this
is the component which presents the angular behavior (matrix of rotation,
see e.g. [17], [2]), while ¥, presents the stability behavior (see [13] or [12])
The control system O, in the group of isometries presented in Theorem
3.2 becomes well defined by equation (18). In this section we shall give a
description of the calculation of the vector fields X involved in this equation
in each one of the three possibilities of simply connected manifolds with
constant curvature. In the case of flat spaces, the coefficients X * of equation

(15) for the system ¥} = ©; o ¥; (Theorem 3.1) will also be described.

5.1 Flat spaces

We recall that the group A(RY) of affine transformations in R? (or any of
its quotient space by discrete subgroup) can be represented as a subgroup of
Gl(d+1,R):

A(RY) = Lo with ¢ € GIl(d,R) and v is a column vector p .
vg
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It acts on the left in R? through its natural embedding on R%*! given by = —
(1,2). The group of isometries is the subgroup of A(M) where g € O(n,R).
Given a vector field X, assume that the initial condition z( is the origin and
that k is an orthonormal frame in the tangent space at xy. One can easily
compute the vector fields X® € a(R?) and X’ € i(R?) using the properties
established in equations (14) and (17):

X(z) = X(0) + (DoX)z

and
X' () = X(0) + (Do X (k)"
We shall fix k to be the canonical basis {ey,...,eqs} of R Then the matrix
(Do X (k))* is simply the skew-symmetric component (DyX ).
In terms of the Lie algebra action of a(R?), the vector fields X¢ and X°
are given by the action of the elements

. (1 0 (1 0
X_(X D0X>andX_(X(D0X),C>’

Let ¢; be the flow associated with the vector field X. One checks by inspec-
tion and by uniqueness that the component ¥V}, = ©, o ¥, in the group of
affine transformations (Theorem 3.1) and the component ©; (Theorem 3.2)
which solve equations (15) and (18), respectively, are given by:

%:(; w&o)””:(é<m;%)’ (22)

and

= (o ot ) -

where Doy = (Dow;)* - (Do;)* is the canonical Iwasawa decomposition of
the derivative Dy;.

We are representing both the isometries and the affine transformations as
subgroups of the Lie group of matrices GI(n+1,R). Recall that in the group
of matrices the differential of left or right action coincides with the product
of matrices itself, i.e., DL;h = gh for g, h € Gl(n+1,R. Hence one sees that
equation (15) is given simply by:

(1 0
‘I’t_(X D0X>'
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Note that, in general, though the X corresponds to the first two elements
of the Taylor series of a vector field X, the factor ¥, presents a strong non-
linear behavior (in time) due to the fact that the coefficients of equation (15)
are non-autonomous.

Linear control systems

Consider the following linear control system:
z(t) = Az(t) + Bu(t)

where A is an d x d-matrix, B is a fixed vector in RY, z(t) € R? and
u(t) € U C R™. Let us fix the initial condition xy = 0 and the orthonormal
frame bundle ky = (ey,...,eq), the canonical basis. The affine transforma-
tion decomposition is obvious: the vector fields A(x) and B are in the affine
transformation Lie algebra, hence the solution flow ¢, already lives in A(R?).

For the Iwasawa decomposition, the projection of each vector field in the
Lie algebra of isometries provides the equation for the isometric component
of the flow, see equation (18). Hence the isometric component is the flow
(rotations and translations) associated to the control system

@(t) = Atz(t) + Bu(t),

where A is the skew-symmetric matrix such that Atk = d(ezttk)L li=0-

If A is skew-symmetric, the decomposition is trivial because the original
system already lives in the group of isometries of R,

Bilinear control systems

Consider the following bilinear control system:

B(t) = Aoz (t) + Y wi(t) Az (t),
i=1

where the A; are d x d-matrices, z(t) € R? and (u;(t)) € U C R™. Again,
the affine transformation decomposition is obvious: the vector fields A;x are
in the affine transformation Lie algebra, hence the solution flow ¢, already
lives in A(RY).

For the Iwasawa decomposition, let us fix the initial condition zy = 0 and
the orthonormal frame bundle ky = (ey,...,eq), the canonical basis. Then,
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the isometric component ©, (pure rotations) is the flow associated to the
following system:

i(t) = At (t) + Z u; (1) Atz ().

5.2 Spheres S¢

Let X be a vector field in the sphere S?. Assume that the starting point
is the north pole N = (0,0,...,1) € S¢ and that the orthonormal frame is
the canonical basis k = (ey,...,eq). One way to calculate X* is finding the
element A in the Lie algebra of skew-symmetric matrices so(d + 1) whose
vector field A induced in S? satisfies equations (17), i.e.:

A(edJrl) = X<N)7

and
di a _ L
E[e kli=o = (VX (k)) k.
Hence,
_ [ (VX(N))x X(N)
a=( T 0 ),

where X (N)' is the transpose of the column vector X (N).

To complement this description of the vector X?, we would suggest the
reader to see the calculations in Liao [13] in terms of the partial derivatives of
the components of X. In that (rather analytical) description, however, one
misses the geometrical insight which our description (in terms of the action
of the skew-symmetry matrix A) tries to provide.

North-south flow: Let S? — {N} be parametrized by the stereographic
projection 7 from R? which intersects S? in the equator. The north-south
flow is given by the projection on S? of the linear exponential contraction
on R?, precisely: ¢;(p) = mo e ir~1(p). It is associated to the vector field
X(z) = m.(—e3), where 7, is the orthogonal projection into the tangent
space T,,S%. For a point (x,y,2) € S?, one checks that the flow is given by

1
cosh(t) — zsinh(t)

oi(x,y,2) = (x,y, zcosh(t) — sinh(t)) .
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Let xg = e; and k = (eg,e3). For these initial conditions we have the
decomposition: ¢; = 6, o p, where

sech(t) 0 tanh(t)
0, = 0 1 0
—tanh(¢) 0 sech(t)
and, using the double-angle formulas sinh(2¢) = 2sinh(#) cosh(t) and cosh(2t) =
2 cosh?(t) — 1, we find

Pt
B 21 — 2 1 y 2(z cosh(t) + (z — 1) sinh(?))
~ \cosh(2t) — zsinh(2t) +1 =" cosh(t) — zsinh(¢)" cosh(2t) — zsinh(2t) + 1
Hence, the derivative of p; at (1,0,0) is
sech?(t) 0 0
D(1’070)pt = 0 SeCh(t) 0

tanh(t) 0 sech(t)
One sees that
D(1,0,0)Pt (k?) =k 54,

where s; are the upper triangular matrices

e ( sec(})l " secg(t) ) '

5.3 Hyperbolic spaces

This example has already been worked out in [17], where we deal with the
hyperboloid H"™ in R"*! with the metric invariant by the Lorentz group
O(1,n). In this case, a global parametrization centered at N = (1,0,...,0) €
H™ is given by the graph of the map z! = \/ 1+ Z?;l (x7)2. We just recall
the formula which states that given a vector field X (z) = ay(z) 01 + ... +
any1(x) Opy1 wWith respect to the coordinates above, then, at the point N =

(1,0,...,0) € H" and an orthonormal frame k in Ty M we have:
0 az(N) ani1(N)
: az(N)
X'(k) =
(£) : [0;a](k)+
an+1(N)
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Note that, if & is the canonical basis in T M, then ([0;a;](k))* is simply
[(0;a:)]x-
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