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Abstract
Let '(t; �; u) be the �ow of a control system on a Riemannian

manifold M of constant curvature. For a given initial condition k
in the orthonormal frame bundle, that is, an orthonormal frame k
in the tangent space Tx0M for some x0 2 M , there exists a unique
decomposition 't = �t � �t where �t is a control �ow in the group
of isometries of M and the remainder component �t �xes x0 with
derivative D�t(k) = k � st where st are upper triangular matrices.

AMS 2000 subject classi�cation:
Key words: control �ows, group of a¢ ne transformations, isometries, non-
linear Iwasawa decomposition.

1 Introduction

Dynamical systems in a di¤erentiable manifold M (including deterministic,
random, stochastic and control systems) are globally described by the cor-

1



responding trajectories in the group Dif(M) of global di¤eomorphisms of
the manifold M . In most interesting examples and applications, the mani-
fold M has a Riemannian metric endowed with the corresponding geometric
structure: orthonormal frame bundle OM over M , Levi-Civita horizontal
lift, covariant derivative of tensors, geodesics, among other structures whose
constructions depend intrinsically on this metric. The natural motivation
to work with Riemannian manifolds is the fact that they provide a su¢ -
ciently rich geometric structure where all the intuitive models that one has
in Euclidean spaces also hold locally in these spaces.
Once a di¤erentiable manifold is endowed with a Riemannian metric, one

can distinguish the elements in the group of di¤eomorphisms Dif(M) which
preserve the metric, the group I(M) of isometries ofM . In general the group
Dif(M) is an in�nite dimensional Lie group, while the group of isometries
I(M) is �nite dimensional. This group has a rather special interest, since it
carries geometric and topological properties of M . Roughly speaking, what
we describe in this paper is a factorization of a �ow 't (a one-parameter
family of di¤eomorphisms) into a component �t which lies in this compact,
�nite dimensional subgroup of isometries I(M) and another component (the
remainder) �t which �xes a certain point on M and contains the long time
stability behavior (Lyapunov exponents) of the system. The title of the
paper is motivated by the classical Iwasawa decomposition for linear maps
which is the factorization of a matrix as a product of an orthogonal and
an upper triangular matrix, hence of an isometry and a matrix containing
the expansion/contraction terms. Under certain geometrical conditions, this
decomposition can go further, including a component in the a¢ ne transfor-
mations group.
The idea of this kind of decomposition of �ows has �rst appeared in Liao

[13] for stochastic �ows, with hypotheses on the vector �elds of the systems.
A geometrical condition on the manifold M (namely: constant curvature),
instead of on the vector �elds was established in Ru¢ no [16], with some
examples also in [17]. This paper intends to apply the same technique to
show that this decomposition also holds in the context of control �ows. For
the reader�s convenience we shall recall some of the geometrical background
and the most illustrative examples which were presented in those articles.
We remark that a main interest in this kind of decomposition is the fact

that characteristic asymptotic parameters of the systems (Lyapunov expo-
nents and rotation numbers) appear separately in each of the components of
our decomposition. For details on the de�nitions of these asymptotic para-
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meters on (random) dynamical systems we refer to the articles by Liao [12],
Ru¢ no [17], Arnold and Imkeller [2] and the references therein.
Section 2 provides an overview of control �ows and geometric prelimi-

naries for non-expert readers (it can be skipped by those who are familiar
with the topic). Section 3 derives the nonlinear Iwazawa decomposition and
proves that the isometric part is, by itself, a control �ow, with appropriate
vector �elds. Section 4 characterizes the manifolds for which the required
assumptions are always satis�ed. Finally, Section 5 adapts some examples in
[16] and [17] to the context of control �ows in (simply connected) manifolds
of constant curvature: Euclidean spaces Rn, spheres, and a hyperbolic space.

2 Setup

In this section we describe some basic facts on control �ows, geometry of
Riemannian manifolds, and their a¢ ne and isometric transformations.

2.1 Control Flows

We consider a control system in a complete connected d-dimensional Rie-
mannian manifoldM given by a family F of smooth vector �elds F � X (M).
We assume that the linear span of F is a �nite dimensional subspace E �
X (M), i.e., F is contained in a �nite dimensional a¢ ne subspace of X (M).
The time-dependent vector �elds taking values in F are

F = fX 2 L1(R; E); Xt 2 F for t 2 Rg: (1)

Below we will assume that all corresponding (nonautonomous) di¤erential
equations

_x = Xtx where X 2 F ; (2)

have unique (absolutely continuous) global solutions 't(x0; X); t 2 R; with
'0(x0; X) = x0. Then system (2) de�nes a �ow on F �M

�t(X; x0) = (�tX;'t(x;X)); t 2 R; (3)

here �t is the shift on F given by (�tX) (s) = Xt+s; s 2 R. We call this the
associated (non-parametric) control �ow (cp. also [5]). It is closely related
to control �ows as considered in [4] with the shift on the space U of control
functions; here the time dependent vector �elds are parametrized by the
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control functions and it has to be assumed that the system is control-a¢ ne
and the control range U is compact and convex. In fact, the time-dependent
vector �elds in F (and hence the control �ow (3)) can be parametrized as
follows.

Proposition 2.1 (i) Let F � X (M) be a compact and convex subset of the
�nite dimensional subspace E � X (M) spanned by these vector �elds. Then
there exist a convex and compact subset U � Rm, m = dimE; and m + 1
vector �elds X0; ; ; ; ; Xm 2 X (M) such that

F = fX0 +
mX
i=1

ui(�)Xi; (ui) 2 L1(R;Rm) with u(t) 2 U for t 2 Rg: (4)

(ii) Conversely, consider a control-a¢ ne system on M of the form

_x = X0(x) +
mX
i=1

ui(t)Xi(x);

(ui) 2 U = fu 2 L1(R;Rd); u(t) 2 U for t 2 Rg;

where m 2 N; X0; :::; Xm 2 X (M) and U � Rm is convex and compact.
Then

F = fX0 +
mX
i=1

uiXi; u 2 Ug (5)

is a convex and compact subset of a �nite dimensional space E � X(M) of
vector �elds and

fX 2 L1(R; E); Xt 2 F for t 2 Rg = fX0 +
mX
i=1

ui(�)Xi; u 2 Ug:

Proof: Clearly, for a compact and convex set U � Rm, the set F in
(5) is a convex and compact subset of a �nite dimensional vector space in
X (M). The vector space E spanned by the vector �elds X0; X1; : : : ; Xm has
dimension bounded by m + 1. Conversely, let F be a convex and compact
set generating an m�dimensional space E � X (M). Fixing X0 2 F and a
base X1; :::; Xm of E one �nds that every element X 2 F can uniquely be
written as

X0 +
mX
i=1

uiXi
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with coe¢ cients ui 2 R. We may assume that X1; : : : ; Xm 2 F , since E
is generated by F . Clearly, the corresponding set U of coe¢ cients forms a
convex and compact subset of Rm (with 0 2 U). It remains to show that for
every X 2 F one can �nd a measurable selection u with

Xt = X0 +
mX
i=1

ui(t)Xi for almost all t 2 R.

This follows from Filippov�s Theorem, see e.g. Aubin/Frankowska [3], The-
orem 8.2.10.

�
Remark: If F is contained in an n-dimensional a¢ ne space, then dimE =

n+1, therefore, in the second part of the proof, one can restrict tom, instead
of (m+ 1), vector �elds: just take e.g. X0 = X1 in the arguments above.

This proposition shows that the nonparametric control �ows are just a
concise way of writing the control �ows corresponding to control-a¢ ne sys-
tems as considered, e.g., in [4]; here one uses the shift on the space U of
admissible control functions instead of the shift on the space of time de-
pendent vector �elds. Nonparametric control �ows inherit all properties of
control �ows; in fact they can also be considered as the special case

_x = u(t)x; u 2 F = fu 2 L1(R; E); u(t) 2 F fort 2 Rg:

Note that for a �xed control function u(�), these equations reduce to ordinary
di¤erential equations, hence one can apply all the techniques of existence and
uniqueness of solution and di¤erential dependence on parameters. The family
�t is a continuous skew-product �ow on F�M . Note that theM�component
of � satis�es the cocycle property

't+s(x;X) = 't('s(x;X); �sX):

When the control vector �eld X = Xt is implicit in the context, for sake of
simplicity in the notation, we shall write simply 't instead of 't(�; X).
The non-linear Iwasawa decomposition can more precisely be described

as follows: Under certain geometrical conditions on the vector �elds [13], or
if the manifold M has constant curvature (cf. Theorem 4.1), then, for an
initial condition x0 2 M and an initial orthonormal frame k in the tangent
space Tx0M , there exists a unique factorization

't = �t � �t; (6)
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where �t corresponds to a control �ow in the group of isometries, �t �xes
the starting point x0 for all t � 0, i.e., �t(x0; X) � x0, and the derivative
in the space parameter D�(k) = k st where st are upper triangular matrices.
Adding some other restrictions in the vector �elds (or assuming that M is
�at, cf. Corollary 4.2) one can go further in the decomposition and factorize
the remainder �t of equation (6) to get a (dynamically) weaker remainder
(using the same notation �t):

't = �t �	t � �t; (7)

where �t are isometries, 	t are in the group of a¢ ne transformations of M
(hence so does �t �	t), but now the new remainders �t are di¤eomorphisms
which �x x0 for all t � 0, i.e. �t(x0) � x0, and the derivative with respect to x,
the space parameter, is given by the identityD�t � IdTx0M . In decomposition
(7) we have extracted the a¢ ne component from the previous remainder in
(6). Hence, in this second factorization, the dynamics of �t is reduced locally
to the identity, up to �rst order.

2.2 Geometric Preliminaries

We shall denote the linear frame bundle over a d-dimensional smooth man-
ifold M by GL(M). It is a principal bundle over M with structural group
Gl(d;R). A Riemannian structure on M is determined by a choice of a
subbundle of orthonormal frames OM with structural subgroup O(d;R).
We shall denote by � : GL(M) ! M and by �o : OM ! M the projec-
tions of these frame bundles onto M . The canonical Iwasawa decomposition
given by the Gram-Schmidt orthonormalization in the elements of a frame
k = (k1; : : : ; kd) de�nes a projection ?: k 7! k? : GL(M) ! OM such
that GL(M) is again a principal bundle over OM with structural group
S � Gl(d;R), the subgroup of upper triangular matrices. The principal
bundles described above factorize as � = �o � ?.
Unless in quite particular examples, the Levi-Civita connection (tor-

sion free) is the most physically meaningful, hence this is the connection
we are going to consider in this paper. We recall that for a frame k in
GL(M) a connection � determines a direct sum decomposition of the tan-
gent space at k into horizontal and vertical subspaces which will be denoted
by TkGL(M) = HTkGL(M) � V TkGL(M). An analogous decomposition
holds in the tangent bundle TOM � T GL(M). For k 2 OM , we have
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that HTkOM = HTkGL(M). Given a vector �eld X on M , we denote its
horizontal lift to GL(M) by HX(k) 2 TkGL(M).
The covariant derivative of a vector �eld X at x is a linear map denoted

by rX(x) : TxM ! TxM , we write rX(Y ) or rYX for a vector Y 2 TxM .
In terms of �bre bundles, the covariant derivative is de�ned as a derivative
along horizontal lift of trajectories, hence it has a purely vertical component.
Considering the right action of the structural group in the frame bundle
GL(M), via adjoint, we can associate to rX an element in the structural
group Gl(d;R) of the principal bundle GL(M) given by the matrix ~X(k) =
ad(k�1)rX, which acts on the right such that rX(k) = k ~X(k). Note that,
di¤erent from rX, the right action of the matrix ~X(k) does depend on k.
The natural lift of X to GL(M) is the unique vector �eld �X in GL(M)

such that L�X(k)� = 0, where � is the canonical Rd-valued 1-form on GL(M)
de�ned by �(Hk(�)) = � for all � 2 Rd. This natural lift is given by:

�X(k) =
d

dt
[D�t(k)]jt=0: (8)

whereD�t : Tx0M ! T�t(x0)M is the derivative of the local 1-parameter group
of di¤eomorphisms �t associated to the vector �eld X. Note that it describes
the in�nitesimal behavior of the linearized �ow of X in an orthonormal basis
k of the space Tx0M . Naturally, �X is equivariant by the right action of
Gl(d;R) in the �bres.
Next lemma guarantees that the left action of the linearized �ow is also

well de�ned in the subbundle OM . In fact, this is a well expected result since
the horizontal component is the same of the horizontal component inGL(M),
and, for the vertical component (in the �bre), the left action of Gl(m;R) is
well de�ned in the �ag manifolds, see e.g. [18]. In any case, for the reader�s
convenience we shall present a proof of this simpler version which is all that
we need here.

Lemma 2.1 The projection ?: GL(M) ! OM is invariant for the lin-
earized �ow, in the sense that, for all k 2 GL(M),

(D�t(k))
? = (D�t(k

?))?: (9)

Proof: This is a consequence of the commutativity of the right action of
Gl(d;R) (in particular, in this case, the action of the upper triangular matri-
ces subgroup S) on GL(M) with any other linear left actions (in particular,
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in this case, the linearized �ow). In fact, consider the Iwasawa decomposition
k = k? � s(k) for some s(k) 2 S. Hence,

D�t(k
? � s(k)) = (D�tk?) � s(k) = (D�t(k))? � s(D�t(k)):

Equality (9) follows by the uniqueness of the Iwasawa decomposition.
�

The vertical component V �X(k) at k 2 ��1(x0) is given by the covariant
derivative rX(k) (see e.g. Elworthy [6], or Kobayashi and Nomizu [9]).
In terms of Lie algebra, consider the canonical Cartan decomposition of
matrices G = K � S into a skew-symmetric and upper triangular compo-
nent respectively. By projecting in each of these two components, we write
~X(k) = [ ~X(k)]K + [ ~X(k)]S . With this notation, we have the decomposition:

�X(k) = H(X) + k[ ~X(k)]K + k[ ~X(k)]S ; (10)

where H(X) is the horizontal lift of X to TkOM ,
The natural lift of X to the subbundle OM , denoted by (�X)? is the

projection of �X onto OM , i.e. for k 2 OM ,

(�X)?(k) :=
d

dt
[D�t(k)]

? jt=0:

Again, we have the decomposition of (�X)?(k) into horizontal and vertical
components: (�X)?(k) = H�X(k)+V (�X)?(k). In terms of the right action
of ~X(k), the vertical component is simply V (�X)?(k) = k[ ~X(k)]K. In terms
of the left action of (rX) we shall denote V (�X)?(k) = (rX(k))?k, where
(rX(k))? is a skew-symmetric map: TxM ! TxM . The characterization of
(rX(k))? in terms of its left action on OM is the content of the following
lemma. Although the formula looks quite intricate, it helps to understand
the corresponding right action of ~X(k).

Lemma 2.2 Let k = (k1; : : : ; kd) 2 OM with �o(k) = x. The image of the
j-th component kj by the matrix (rX(k))? is given by

(rX(k))?kj

= rX(kj)� hrX(kj); kjikj �
X
0<r<j

�
hrX(kr); kji+ hrX(kj); kri

�
kr:
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Proof: If t 2 R 7�! Vt 2 Rd is di¤erentiable with Vt 6= 0 for all
t 2 (��; �), then:

d

dt

�
Vt
kVtk

�����
t=0

=
_Vt

kVtk
� h

_Vt; Vti
kVtk3

Vt ; (11)

where _Vt is the derivative of Vt.
For the sake of simplicity, �x a basis in TxM and denote by A the matrix

which represents the linear transformation rX(x). Formula (11) with t = 0
will be used in each coordinate of

(eAt(k))? =

�
V 1t
kV 1t k

; : : : ;
V dt
kV dt k

�
;

where each component of the orthogonalization process is given by

V jt = e
At(kj)�

X
0<r<j

heAt(kj); V rt i
hV rt ; V rt i

V rt :

One easily checks, by induction in j, that the derivatives satisfy:

dV jt
dt

�����
t=0

= A(kj)�
X
0<r<j

�
hA(kj); kri+ hA(kr); kji

�
kr ;

which gives, by formula (11),

d

dt

�
Vt
kVtk

�����
t=0

= A(kj)�hA(kj); kjikj�
X
0<r<j

�
hA(kr); kji+ hA(kj); kri

�
kr :

�
One sees the skew-symmetry of (rX(k))? by checking that

< (rX(k))?ki; kj >= � < (ki;rX(k))?kj > :

2.3 A¢ ne Transformations and Isometries

The group of di¤eomorphisms Dif(M) is generated by the exponential of its
Lie algebra which can be identi�ed with the space of smooth, bounded deriv-
ative vector �elds X (M). This exponential of vector �elds here means the
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associated �ow. We shall denote by A(M) the Lie subgroup of a¢ ne trans-
formations of M whose elements are given by maps 	 2 Di�(M) such that
their derivatives D	 preserve horizontal trajectories in TM . This is equiv-
alent to saying that a¢ ne maps are those which preserve geodesics. Its Lie
algebra a(M) is the set of in�nitesimal a¢ ne transformations characterized
by vector �elds X such that the Lie derivative of the connection form ! on
GL(M) satis�es L�X! = 0. Yet, X is an in�nitesimal a¢ ne transformation
if for all vectors �elds Y :

rAX(Y ) = R(X; Y );

where the tensor AX = LX �rX and R is the curvature (see e.g. Kobayashi
and Nomizu [9, Chap. VI, Prop. 2.6]).
For a �xed k 2 GL(M), the linear map

i1 : a(M)! TkGL(M)

X 7! �X(k) (12)

is injective, see e.g. Kobayashi and Nomizu [9, Theorem VI.2.3]. We shall
denote by �a(k) its image in TkGL(M).

We shall denote by I(M) the Lie group of isometries of M , I(M) �
A(M). Its Lie algebra i(M) is the space of Killing vector �elds or in�nitesimal
isometries, characterized by the skew-symmetry of the covariant derivative,
i.e., a vector �eld X is Killing if and only if

< rX(Z);W >= � < Z;rX(W ) >;

for all vectors Z;W in a tangent space TxM . Note that, in this case, by
Lemma 2.2, for any orthonormal frame k we have that (rX(k))? = rX and
(�X)?(k) = �X(k).
For a �xed k 2 OM , the linear map

i2 : i(M)! TkOM

X 7! �X(k) (13)

is just a restriction of the map i1 de�ned above, hence it is also injective. We
shall denote by �i(k) its image in TkOM .

Since, as we said, the dynamics can be described as trajectories in Lie
groups (of di¤eomorphisms, isometries, a¢ ne transformations, etc.), when-
ever convenient, we shall change from the usual dynamical terminology into
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the Lie group terminology. For example, as we have mentioned before, vector
�elds are identi�ed with Lie algebra elements which will generate right in-
variant vector �elds in the Lie group Dif(M); furthermore, if � belongs to the
connected component of the identity of Dif(M), one identi�es the derivative
in the space D� : TM ! TM (which sends vector �elds into vector �elds in
M) with the derivative of the left action L� : TA(M) ! TA(M). In fact,
given such a �, there exists an element a in the Lie algebra of Dif(M) such
that � = ea. If b is another vector �eld, then D�(b) = Dea(b) = L�(b).

3 Decompositions of Control Flows

This section describes conditions on the vector �elds of the control system for
the existence of the decomposition into isometric or a¢ ne transformations.
We start with a theorem which, under certain conditions on the vector

�elds X 2 F , factorizes the control �ow 't of equation (2) in the form
't = 	t � �t such that 	t is a control �ow in the a¢ ne transformations
group, and the remainder �t �xes the initial point and has trivial derivatives
(identity).
Let k be an element in GL(M) which is a base for Tx0M , i.e. �(k) = x0.

We shall assume the following hypothesis on the vector �eldsX 2 F , involved
in the control system (2):

(H1) �[D	(X)](k) 2 �a(k), for all a¢ ne transformations 	 2 A(M).

Observe that in the �nite dimensional case (classical a¢ ne control sys-
tem), this condition holds if it holds for the vector �elds X0; :::; Xm in the
representation (4). Intuitively, a vector �eld X satis�es hypothesis (H1) if
the associated �ow carries x0 and its �in�nitesimal neighborhood� (i.e., a
basis in Tx0M) along trajectories which �instantaneously�coincide with the
trajectories of an in�nitesimally a¢ ne transformation.

Theorem 3.1 Suppose all vector �elds X 2 F of the control system (2)
satisfy the hypothesis (H1) for a certain frame k 2 GL(M), with x0 = �(k).
Then, the associated control �ow 't factorizes uniquely as:

't = 	t � �t;

where 	t is a control �ow in the group of a¢ ne transformations A(M), and
the remainder �t satis�es �t(x0) � x0 and D�t = Id(Tx0M) for all t � 0.
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Proof: Since the linear map i1 of equation (12) is injective, by hypothesis
(H1), for each X 2 F we can uniquely de�ne the in�nitesimal a¢ ne transfor-
mation Xa which satis�es �Xa(k) = �X(k). Hence, by the comments after
Lemma 2.1, one obviously sees that

Xa(x0) = X(x0) and rXa(x0) = rX(x0): (14)

Let 	t be the solution of the following equation in the Lie group A(M), with
	0 = IdM :

_	t = 	t[D	
�1
t (Xt)]

a ; t 2 R with X 2 F : (15)

where the elements [ � ]a in the Lie algebra a(M) act on the right in A(M).
We recall that, in the Lie algebra terminology, Xt here means Xt(	t), the
right invariant vector �eld evaluated at 	t.
Equation (15) is obviously a control system in A(M) and the solution 	t

generates a control �ow on A(M): Indeed, it is generated by the convex and
compact set of vector �elds on A(M)

	 7! 	[D	�1(X)]a ; X 2 F:

which is contained in the �nite dimensional vector space obtained by con-
sidering all X 2 E. Using that 	t	�1t = IdM one easily �nds the control
system for the inverse 	�1t in A(M):

_	�1t = �[D	�1t (Xt)]
a	�1t ; t 2 R with X 2 F :

We de�ne �t = 	�1t �'t. Again, in the context of the Lie group, we have the
following equation for �t in the Lie group of di¤eomorphisms of M :

_�t = D	
�1
t ( _'t) + ( _	

�1
t )'t

= D	�1t (Xt('t))� [D	�1t (Xt)]
a	�1t 't

=
�
D	�1t (Xt)� [D	�1t (Xt)]

a
	
(�t): (16)

In the last line we use the right invariance of the X and the fact that
D	�1t (Xt('t)) = L	�1(R�tXt(	t)), which yields (by commutativity of right
and left action) to D	�1t (Xt(	t)) (�t). That is, it is a direct application of
the formula Lg(X)(h) = Lg(X(g

�1h)) for right invariant vector �elds in a
Lie group (with Lg = D	�1; h = �t; g = 	�1).
By de�nition of Xa (equation (14)) and equation (16) we have that, not

only _�t(x0) = 0 but also that �
�
D	�1t Xt� [D	�1t (Xt)]

a
	
(�t) = 0, hence the
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derivative of the linearization d
dt
D�t(u) = 0. This establishes the properties

of each component of the factorization of 't = 	t � �t stated in the theorem.
For uniqueness, suppose that 	0t � �0t = 	t � �t where 	0t and �0t also

satisfy the properties stated. This implies that 	�1t 	
0
t(x0) = x0 for all t � 0.

Besides, the derivative Dx0(	
�1
t 	

0
t) = Id, hence the natural lift to GL(M)

satis�es the di¤erential equation d
dt
D(	�1t 	

0
t) = 0 . Since the map i1 is

injective, it follows that 	�1t �	0t = IdM .
�

Remark. We emphasize that the a¢ ne transformation system 	t does
depend on the choice of the initial frame k.
Remark. Observe that, in general, �t is not a control system in Di�(M)

since the vector �elds involved in the equation do not depend exclusively
on Xt and on the point �t. On the other hand, the control �ow 	t may
be considered as a skew product �ow in F � A(M). This follows at once
from its de�nition. Then (	t; �t) is a skew product �ow in the �ber bundle
F � A(M) �M ! A(M) �M with base �ow 	t. In the linear case, this
is well known and was used, e.g., by Johnson, Palmer and Sell [[7] in their
proof of the Oseledets theorem for linear �ows on vector bundles.
For the next theorem, �x an element k 2 OM . We shall assume the

following hypothesis on the vector �elds X 2 F of the system:
(H2) [�(D�(X))(k)]? 2 �i(k) for every isometry � 2 I(M).
Intuitively, a vector �eld X satis�es hypothesis (H2) if the associated �ow

carries x0 and its �in�nitesimal neighborhood�(i.e., an orthonormal basis in
Tx0M) along trajectories which �instantaneously�coincide with trajectories
of a Killing vector �eld (in�nitesimal isometry). That is, a vector �eld X
violates (H2), if there is no isometry rotating the �in�nitesimal neighborhood�
of x0 into the same direction as the �ow induced by X.
The nonlinear Iwasawa decomposition is described in the following theo-

rem.

Theorem 3.2 Suppose that for a certain frame k 2 OM with x0 = �o(k),
all vector �elds X 2 F of the control system (2) satisfy hypothesis (H2).
Then for the associated control �ow 't one has the unique decomposition

't = �t � �t;
where �t generates a control �ow in the group of isometries I(M), �t(x0) =
x0 and Dx0�t(k) = k st for all t � 0, where st lies in the group of upper
triangular matrices.
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Proof: The �rst part of the proof proceeds similarly to the proof of Theorem
3.1, changing the group A(M) to I(M): Since the linear map i2 of equation
(13) is injective, for each X 2 F , we can take X i, the unique in�nitesimal
isometry which satis�es �X i(u) = (�X)?(u). Analogously to equation (14),
we have that:

X i(x0) = X(x0) and rX i(k) = (rX(k))?k: (17)

We de�ne the following system in the group I(M), with initial condition
�0 = IdM :

_�t = �t[D�
�1
t (Xt)]

i (18)

Note that the equation above is a control system in I(M) and the solution
�t generates a control �ow on I(M): Indeed, it is generated by the convex
and compact set of vector �elds on I(M)

� 7! �[D��1(X)]i ; X 2 F:

The control system for the inverse ��1t in I(M) is given by:

_��1t = �[D��1t (Xt)]
i��1t ; t 2 R with X 2 F :

We de�ne �t = ��1t �'t. Again, in the context of the Lie group, we have the
following equation for �t in the Lie group of di¤eomorphisms of M (by the
same arguments as for equation (16) ):

_�t = D�
�1
t ( _'t) + ( _�

�1
t )'t

= D��1t (Xt('t))� [D��1t (Xt)]
i��1t 't

=
�
D��1t (Xt)� [D��1t (Xt)]

i
	
(�t): (19)

By the �rst part of equation (17) and equation (19) we have that _�t(x0) =
0. Moreover, by the decomposition of formula (10) and the second part of
equation (17) we have that, for a given k 2 OM ,

�
�
D��1t (Xt)� [D��1t (Xt)]

i
	
(k) = k [D��1t (Xt)]

�
S ;

where [D��1t (Xt)]
�
S on the right hand side are upper triangular matrices.

As mentioned before, the canonical lift of a vector �eld gives the in�nitesi-
mal behavior of the linearized �ow acting on a basis, that is, by de�nition
(equation (8)) :
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d

dt
D�t(k) = D�t(k) [D�

�1
t (Xt)]

�
S :

Since the Lie algebra element on the right hand side is upper triangular and
D�0(k) = k, one can write D�t(k) = k st where st are upper triangular
matrices which solve the following left invariant di¤erential equation in the
Lie group of upper triangular matrices:8<:

_st = st [D�
�1
t (Xt)]

�
S ;

s0 = Id:

This establishes the derivative property of the remainder �t. For the unique-
ness of the decomposition, one checks that it follows easily from the fact that
the map i2 is injective, analogous to uniqueness in Theorem 3.1.

�
Note that in Theorem 3.2, again, the decomposition depends on the initial

orthonormal frame k 2 OM and the �ow�t may be viewed as a skew product
�ow on F � I(M). Now, juxtaposing the decompositions established by
Theorems 3.1 and 3.2, we have the following factorization of 't into three
components.

Corollary 3.3 Suppose all vector �elds X 2 F in the control system (2) sat-
isfy conditions (H1) and (H2) for a certain frame k 2 OM , with x0 = �o(k).
Then, for the associated control �ow 't, one has the unique decomposition

't = �t �	t � �t;

where each of the components �t, 	t, �t have the properties stated in Theo-
rems 3.1 and 3.2. Moreover �t � 	t corresponds to a control system in the
group of a¢ ne transformations.

Proof: By Theorem 3.1, let 't = 	0t � �t be the unique decomposition
where 	0t is a control system in the group of a¢ ne transformations A(M),
�t(x0) = x0 and D�t = IdTx0M for all t � 0.
By Theorem 3.2, let 't = �t � �0t be the unique decomposition where

�t is the control system in the group of isometries I(M) with �0t(x0) = x0
and Dx0�

0
t(k) = k s

0
t for a certain family s

0
t in the group of upper triangular

matrices.
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Take the process �t and �t of the statement of this corollary as de�ned
above. De�ne the process 	t = ��1t 	

0
t. These assignments de�ne the de-

composition.
It only remains to prove that there exists a family on the group of upper

triangular matrices such thatD	t(k) = k st. By the properties above,D	0t =
D't, hence

D	t(k) = D�
�1
t �D	0t(k) = D��1t �D't(k)

= D�0t(k) = k s
0
t:

Thus the upper triangular matrix family st of the statement is given by
s0t. This con�rms the expected fact that although, in general 	t is di¤erent
from 	0t, they have the same derivative behavior (which carries the Lyapunov
information of the system).

�

4 Conditions on the Manifold

This section characterizes Riemannian manifolds such that every vector �eld
satis�es hypotheses (H1) and (H2), respectively, and hence the corresponding
decompositions hold. These manifolds are precisely Riemannian manifolds
with constant curvature (simply connected or quotients of them) for the
isometric decomposition and �at space for the a¢ ne transformations decom-
position. In particular, the three-factor decomposition of Corollary 3.3 exists
for every control system if and only if M is a �at space. More precisely, we
have the following result.

Theorem 4.1 If M is simply connected with constant curvature (or its quo-
tient by discrete groups), then for every control system (2) and every ortho-
normal frame k0 2 OM , the control �ow admits a unique non-linear Iwasawa
decomposition 't = �t � �t. Conversely, if every control �ow on M admits
this decomposition, then the space M has constant curvature.

Proof: If M has constant curvature and is simply connected one checks
directly that the dimension of I(M) is bounded above by d(d+ 1)=2. Hence
the linear map i2 de�ned in equation (13) is bijective. Therefore, hypothesis
(H2) is always satis�ed for any set of vector �elds.
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Conversely, assume that for all vector �eld X and for every orthonor-
mal frame k 2 OM , the corresponding �ow �t has the non-linear Iwasawa
decomposition �t = �t � �t. Then, the trajectory kt in OM induced by �t
satis�es

kt := [D� (k)]
? = [D�t �D�t(k)]? = D�t(k):

We recall that
d

dt
(D�t(k)) jt=0 = (�X)?(k) (20)

For any �xed k 2 GL(M), the linear map X ! TkGL(M) given by X 7!
�X(k) is surjective because it concerns only local behavior ofX onM . Hence,
the projection of its image by ?: TkGL(M)! Tk?OM is also surjective. In
other words, if now k 2 OM , then X 7! (�X)?(k) is surjective. If there
exists the decomposition, equality (20) shows that the dimension of I(M)
equals d(d + 1)=2 which implies that M has constant curvature (see, e.g.
Klingenberg [8], Ratcli¤e [14] or Kobayashi and Nomizu [9, Thm. VI.3.3]).

�
As a particular case of the theorem above, we have the following condi-

tions on M which guarantee that every system on it will have a �ow which
factorizes into the three components stated in Corollary 3.3.

Corollary 4.2 If M is �at, simply connected (or its quotient by discrete
groups) then for every control system (2) and every orthonormal frame k 2
OM , the associated �ow 't has a unique decomposition ' = �t � 	t � �t as
described in Corollary 3.3. Conversely, if every �ow 't has this decomposition
then M is �at.

Proof: IfM is �at and simply connected, then a direct check shows that
the dimensions of the groups i(M) and A(M) are d(d + 1)=2 and d(d + 1)
respectively. This implies that the injective maps i1 and i2 are bijective,
hence hypotheses (H1) and (H2) are satis�ed for any set of vector �elds on
M .
Conversely, assume that for all vector �elds X and for every orthonormal

frame k 2 OM the corresponding �ow �t has the decomposition �t = �t�	t�
�t with the properties asserted. Then, the trajectory kt in GL(M) induced
by �t satis�es

kt = D	
0
t(k);

17



where 	0t = �t �	t. We recall that

d

dt
(D	0t(k)) jt=0 = �X(k): (21)

Again, for a �xed k 2 GL(M), the linear map X 7! �X(k) is surjective
because it concerns only local structure of X on M . Hence, equality (21)
implies that the dimension of the group of a¢ ne transformationsA(M) equals
d(d+1), which implies thatM is �at (see, e.g. Klingenberg [8] or Kobayashi
and Nomizu [9, Thm. VI.2.3]).

�

5 Examples

In the original paper by Liao [13], where the kind of decomposition we are
extending here was �rst proposed, his decomposition is illustrated by working
out one example in the sphere Sn. The results in the above section enlarge the
class of examples to many well known manifolds including projective spaces,
hyperbolic manifolds, �at torus and many other non-compact manifolds. In
this section we shall describe calculations on all the three possible simply-
connected cases. We shall concentrate mainly on the isometric part �t since
this is the component which carries more intuitive motivation. Note that this
is the component which presents the angular behavior (matrix of rotation,
see e.g. [17], [2]), while 	t presents the stability behavior (see [13] or [12])
The control system �t in the group of isometries presented in Theorem

3.2 becomes well de�ned by equation (18). In this section we shall give a
description of the calculation of the vector �elds X i involved in this equation
in each one of the three possibilities of simply connected manifolds with
constant curvature. In the case of �at spaces, the coe¢ cients Xa of equation
(15) for the system 	0t = �t �	t (Theorem 3.1) will also be described.

5.1 Flat spaces

We recall that the group A(Rd) of a¢ ne transformations in Rd (or any of
its quotient space by discrete subgroup) can be represented as a subgroup of
Gl(d+ 1;R):

A(Rd) =
��

1 0
v g

�
with g 2 Gl(d;R) and v is a column vector

�
:
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It acts on the left in Rd through its natural embedding on Rd+1 given by x 7!
(1; x). The group of isometries is the subgroup of A(M) where g 2 O(n;R).
Given a vector �eld X, assume that the initial condition x0 is the origin and
that k is an orthonormal frame in the tangent space at x0. One can easily
compute the vector �elds Xa 2 a(Rd) and X i 2 i(Rd) using the properties
established in equations (14) and (17):

Xa(x) = X(0) + (D0X)x

and
X i(x) = X(0) + (D0X(k))

?x

We shall �x k to be the canonical basis fe1; : : : ; edg of Rd. Then the matrix
(D0X(k))

? is simply the skew-symmetric component (D0X)K.
In terms of the Lie algebra action of a(Rd), the vector �elds Xa and X i

are given by the action of the elements

Xa =

�
1 0
X D0X

�
and X i =

�
1 0
X (D0X)K

�
:

Let 't be the �ow associated with the vector �eld X. One checks by inspec-
tion and by uniqueness that the component 	0t = �t � 	t in the group of
a¢ ne transformations (Theorem 3.1) and the component �t (Theorem 3.2)
which solve equations (15) and (18), respectively, are given by:

	0t =

�
1 0
't (D0't)

�
; �t =

�
1 0
't (D0't)

?

�
; (22)

and

	t =

�
1 0
0 (D0't)

k

�
; (23)

where D0't = (D0't)
? � (D0't)

k is the canonical Iwasawa decomposition of
the derivative D0't.
We are representing both the isometries and the a¢ ne transformations as

subgroups of the Lie group of matrices Gl(n+1;R). Recall that in the group
of matrices the di¤erential of left or right action coincides with the product
of matrices itself, i.e., DLgh = gh for g; h 2 Gl(n+1;R. Hence one sees that
equation (15) is given simply by:

_	0t =

�
1 0
X D0X

�
:
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Note that, in general, though the Xa corresponds to the �rst two elements
of the Taylor series of a vector �eld X, the factor 	t presents a strong non-
linear behavior (in time) due to the fact that the coe¢ cients of equation (15)
are non-autonomous.

Linear control systems

Consider the following linear control system:

_x(t) = Ax(t) +Bu(t)

where A is an d � d-matrix, B is a �xed vector in Rd, x(t) 2 Rd and
u(t) 2 U � Rm. Let us �x the initial condition x0 = 0 and the orthonormal
frame bundle k0 = (e1; : : : ; ed), the canonical basis. The a¢ ne transforma-
tion decomposition is obvious: the vector �elds A(x) and B are in the a¢ ne
transformation Lie algebra, hence the solution �ow 't already lives in A(Rd).
For the Iwasawa decomposition, the projection of each vector �eld in the

Lie algebra of isometries provides the equation for the isometric component
of the �ow, see equation (18). Hence the isometric component is the �ow
(rotations and translations) associated to the control system

_x(t) = A?x(t) +Bu(t);

where A? is the skew-symmetric matrix such that A?k = d(eAtk)?

dt
jt=0.

If A is skew-symmetric, the decomposition is trivial because the original
system already lives in the group of isometries of Rd.

Bilinear control systems

Consider the following bilinear control system:

_x(t) = A0x(t) +

mX
i=1

ui(t)Aix(t);

where the Ai are d � d-matrices, x(t) 2 Rd and (ui(t)) 2 U � Rm. Again,
the a¢ ne transformation decomposition is obvious: the vector �elds Aix are
in the a¢ ne transformation Lie algebra, hence the solution �ow 't already
lives in A(Rd).
For the Iwasawa decomposition, let us �x the initial condition x0 = 0 and

the orthonormal frame bundle k0 = (e1; : : : ; ed), the canonical basis. Then,
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the isometric component �t (pure rotations) is the �ow associated to the
following system:

_x(t) = A?0 x(t) +

mX
i=1

ui(t)A
?
i x(t):

5.2 Spheres Sd

Let X be a vector �eld in the sphere Sd. Assume that the starting point
is the north pole N = (0; 0; : : : ; 1) 2 Sd and that the orthonormal frame is
the canonical basis k = (e1; : : : ; ed). One way to calculate X i is �nding the
element A in the Lie algebra of skew-symmetric matrices so(d + 1) whose
vector �eld eA induced in Sd satis�es equations (17), i.e.:

eA(ed+1) = X(N);
and

d

dt
[ eAtk]t=0 = (rX(k))?k:

Hence,

A =

�
(rX(N))K X(N)
X(N)t 0

�
;

where X(N)t is the transpose of the column vector X(N).
To complement this description of the vector X i, we would suggest the

reader to see the calculations in Liao [13] in terms of the partial derivatives of
the components of X. In that (rather analytical) description, however, one
misses the geometrical insight which our description (in terms of the action
of the skew-symmetry matrix A) tries to provide.

North-south �ow: Let S2 � fNg be parametrized by the stereographic
projection � from R2 which intersects S2 in the equator. The north-south
�ow is given by the projection on S2 of the linear exponential contraction
on R2, precisely: 't(p) = � � e�t��1(p). It is associated to the vector �eld
X(x) = �x(�e3), where �x is the orthogonal projection into the tangent
space TxSd. For a point (x; y; z) 2 S2, one checks that the �ow is given by

't(x; y; z) =
1

cosh(t)� z sinh(t) (x; y; z cosh(t)� sinh(t)) :
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Let x0 = e1 and k = (e2; e3). For these initial conditions we have the
decomposition: 't = �t � �t where

�t =

0@ sech(t) 0 tanh(t)
0 1 0

� tanh(t) 0 sech(t)

1A
and, using the double-angle formulas sinh(2t) = 2 sinh(t) cosh(t) and cosh(2t) =
2 cosh2(t)� 1, we �nd

�t

=

�
2x� 2

cosh(2t)� z sinh(2t) + 1 + 1;
y

cosh(t)� z sinh(t) ;
2(z cosh(t) + (x� 1) sinh(t))
cosh(2t)� z sinh(2t) + 1

�
:

Hence, the derivative of �t at (1; 0; 0) is

D(1;0;0)�t =

0@ sech2(t) 0 0
0 sech(t) 0

tanh(t) 0 sech(t)

1A :
One sees that

D(1;0;0)�t (k) = k st;

where st are the upper triangular matrices

st =

�
sech(t) 0
0 sech(t)

�
:

5.3 Hyperbolic spaces

This example has already been worked out in [17], where we deal with the
hyperboloid Hn in Rn+1 with the metric invariant by the Lorentz group
O(1; n). In this case, a global parametrization centered at N = (1; 0; : : : ; 0) 2
Hn is given by the graph of the map x1 =

q
1 +

Pn+1
j=2 (x

j)2. We just recall

the formula which states that given a vector �eld X(x) = a1(x) @1 + : : : +
an+1(x) @n+1 with respect to the coordinates above, then, at the point N =
(1; 0; : : : ; 0) 2 Hn and an orthonormal frame k in TNM we have:

X i(k) =

0BB@
0 a2(N) ::: an+1(N)

a2(N)
: [@jai](k)

?

an+1(N)

1CCA
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Note that, if k is the canonical basis in TNM , then ([@j ai](k))? is simply
[(@jai)]K.

References

[1] L. Arnold �Random Dynamical Systems, Springer-Verlag, 1998.

[2] L. Arnold and P. Imkeller �Rotation numbers for linear stochastic dif-
ferential equations, Ann. Probab. 27 (1999), 130�149.

[3] J. Aubin and H. Frankowska �Set-Valued Analysis, Birkhäuser, 1990.

[4] F. Colonius and W. Kliemann �The Dynamics of Control, Birkhäuser,
2000.

[5] F. Colonius and W. Kliemann �Limits of Input-to-State Stability, Sys-
tem and Control Letters 49(2003), 111-120.

[6] K.D. Elworthy �Geometric Aspects of Di¤usions on Manifolds, in École
d�Eté de Probabilités de Saint-Flour, XV �XVII, 1985 � 1987 (P.L.
Hennequin, ed.) pp. 276 - 425. Lecture Notes Math. 1362, Springer-
Verlag, 1987.

[7] R.A. Johnson, K.R. Palmer, G.R. Sell � Ergodic properties of linear
dynamical systems, SIAM J. Math. Anal. Appl. 18 (1987), 1-33.

[8] W. Klingenberg �Riemannian Geometry, Walter de Gruyter, 1982.

[9] S. Kobayashi and K. Nomizu �Foundations of Di¤erential Geometry,
Vol.1, Wiley-Interscience Publication, 1963.

[10] H. Kunita �Stochastic di¤erential equations and stochastic �ows of dif-
feomorphisms, in École d�Eté de Probabilités de Saint-Flour XII - 1982,
pp. 143�303. Ed. P.L. Hennequin. Lecture Notes Math. 1097, Springer-
Verlag, 1984.

[11] H. Kunita �Stochastic �ows and stochastic di¤erential equations, Cam-
bridge University Press, 1988.

[12] M. Liao �Liapounov exponents of stochastic �ows, Ann. Probab. 25
(1997), 1241�1256.

23



[13] M. Liao �Decomposition of stochastic �ows and Lyapunov exponents,
Probab. Theory Rel. Fields 117 (2000) 589-607.

[14] J. G. Ratcli¤e �On the isometry groups of hyperbolic manifolds in The
Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Spe-
cial Sunctions (Brooklyn, NY, 1992), 491�495, Contemp. Math., 169,
Amer. Math. Soc., Providence, RI, 1994.

[15] P. R. C. Ru¢ no �Matrix of rotation for stochastic dynamical systems,
Computational and Applied Maths. - SBMA 18 (1999), 213-226.

[16] P. R. C. Ru¢ no �Decomposition of stochastic �ows and rotation matrix,
Stochastic and Dynamics. Vol 2(1) (2002), 93�108, .

[17] P. R. C. Ru¢ no � Non-Linear Iwasawa decomposition of stochastic
�ows: geometrical characterization and examples. Proceedings of Semi-
group Operators: Theory and Applications II (SOTA-2), Rio de Janeiro,
10-14 Sep. 2001, pp. 213-226. Ed: C. Kubrusly, N. Levan, M. da Silveira.
Optimization Software, Los Angeles, 2002.

[18] L. A. B. San Martin and P. A. Tonelli �Semigroup actions on homoge-
neous spaces. Semigroup Forum 50 (1995), 59�88.

24


