
CONTROL SYSTEMS WITH ALMOST PERIODIC EXCITATIONSFRITZ COLONIUS†AND TOBIAS WICHTREY†Abstrat. For ontrol systems desribed by ordinary di�erential equations subjet to almostperiodi exitations the ontrollability properties depend on the spei� exitation. Here these prop-erties and, in partiular, ontrol sets and hain ontrol sets are disussed for all exitations in thelosure of all time shifts of a given almost periodi funtion. Then relations between heteroliniorbits of an unontrolled and unperturbed system and ontrollability for small ontrol ranges andsmall perturbations are studied using Melnikov's method. Finally, a system with two-well potentialis studied in detail.Key words. Nonautonomous ontrol systems, almost periodiity, ontrol sets, Melnikov methodAMS subjet lassi�ations. 93B05, 37N35, 34C371. Introdution. This paper analyzes ontrollability properties of ontrol sys-tems whih are subjet to almost periodi exitations. More preisely, we onsider
ẋ(t) = f

(

x(t), z(t), u(t)
)

, u ∈ U , (1.1)in an open set M ⊂ Rd with admissible ontrols in U = {u ∈ L∞(R,Rm), u(t) ∈ Ufor all t ∈ R} and ontrol range U ⊂ Rm. We assume that z is an almost periodifuntion with values in a ompat subset Z ⊂ Rk. In partiular, this inludes periodiexitations and exitations with several inommensurable periods.Instead of analyzing the behavior of system (1.1) for a single almost periodiexitation, we allow time shifts of z and, more generally, all exitations in the set Zof ontinuous funtions whih an uniformly be approximated by shifts of z (again,all elements of Z are almost periodi). Observe that the trajetories of (1.1) aredetermined by the initial states x = x(0) ∈M, the exitation z ∈ Z, and the ontrolfuntion u : R → R
m.There are various ways to look at this system:(i) as a ontrol system in M with states x ∈M ;(ii) as a ontrol system in M ×Z with extended states (x, z) ∈M ×Z;(iii) as a dynamial system in M ×Z × U with states (x, z, u) ∈M ×Z × U .Observe that the ontrol system in (i) is nonautonomous; the evolution of thestates x is only determined, if, in addition to the ontrol funtion u ∈ U , also thephase of the almost periodi funtion z is known. Hene here we have to distinguishbetween an analysis for �xed exitation z ∈ Z and the projetions to M . In (ii), wean sometimes, if the almost periodi funtion is a solution of a di�erential equationon a ompat manifold Z (e. g. if Z is a k-Torus) replae Z by Z. Here, however,exat ontrollability properties in the extended state spae M × Z an only hold inthe very speial ase of a periodi funtion z. Furthermore, the dimension of the statespae of the ontrol system is inreased by k, whih makes a global numerial analysismuh more di�ult. The formulation (iii) results in a ontinuous dynamial system(a ontrol �ow) provided that the system is ontrol a�ne and the ontrol range U isompat and onvex. The analysis of this dynamial system (inluding time shifts on

Z and on U) may yield strutural insights and, in partiular, sheds light on subsetsof omplete ontrollability, i. e. ontrol sets. In the present paper, we will analyzesystem (1.1) employing all three points of view above.
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Note that for T -periodially exited ontrol systems, ontrollability properties inthe extended state spae (where also the phase in R/TZ is part of the state) anto a large extent be haraterized by a Poinaré setion, i. e. the intersetion with a�ber over a �xed phase (ompare Gayer [8℄). We will generalize some of these results.Using methods from ergodi theory, ontrollability properties of nonautonomous linearontrol systems have also been disussed by Johnson and Nerurkar [10℄. Many furtherresults in this diretion have been obtained, in partiular in onnetion with assoiatedRiati equations. For a di�erent line of researh, see San Martin and Patrao [16℄,who study ontrol sets and hain ontrol sets for semi-dynamial systems on �berbundles (related to the third interpretation above of system (1.1)).The main topi of this paper are the relations between hetero- or homolini orbitsof an unontrolled and unperturbed system and ontrollability for small ontrol ranges.Here Melnikov's method plays an important role. In the ase of a periodi exitationthis was disussed from a numerial point of view in Colonius, Kreuzer, Marquardtand Sihermann [4℄. In the present paper a haraterization in the general almostperiodi ase will be given (the result is also new in the periodi ase). Melnikov'smethod for suh di�erential equations was, in partiular, developed by Palmer [15℄,Sheurle [18℄ and Meyer and Sell [14℄. Our paper is loser to the spirit of the latterreferene, sine we onsider the hull of an almost periodi exitation. We would like topoint out that we do not really need the strength of Melnikov's result here; existeneof a haoti set is not in our enter of interest. Instead intersetions of stable andunstable manifolds are relevant here. Note that basi referenes for almost periodidi�erential equations inlude Fink [7℄ and Levitan and Zhikov [12℄; a nie disussionof almost periodi and quasi-periodi funtions an also be found in � II.1 of [14℄,together with further referenes.The paper is organized as follows: After preliminaries in � 2, we analyze hainontrol sets in � 3. Setion 4 introdues ontrol sets and presents relations to hainontrol sets and to almost periodi solutions of the unontrolled system. Setion5 presents relevant results on almost periodi perturbations of hyperboli equilibriaand Melnikov's method. These results are essentially known in the literature (seePalmer [15℄, Sheurle [18℄, and also Meyer and Sell [14℄). However, for the reader'sonveniene, we have inluded some arguments from the proofs. This is used in� 6 to study the relation between heterolini orbits of an unperturbed system andontrollability for small ontrol ranges. In the �nal setion 7 we disuss a seond ordersystem with M -potential modelling ship roll motion. Note that here the ontrols uare interpreted as time-dependent perturbations.2. Preliminaries. Consider the ontrol system (1.1)
ẋ(t) = f

(

x(t), z(t), u(t)
)

, u ∈ U ,in an open set M ⊂ Rd with admissible ontrols in U and assume that z is an almostperiodi funtion. That is, we assume (ompare e. g. Sheurle [18℄, De�nition 2.6)that z : R → Rk is ontinuous and that for every ε > 0 there exists an l = l(ε) > 0suh that in any interval of length l there is a so-alled translation number τ suhthat
‖z(t+ τ) − z(t)‖ < ε for all t ∈ R.De�ne θ as the time shift (θtz)(s) := z(t + s), s, t ∈ R. Let Z be the losure in thespae Cb(R,R

k) of bounded ontinuous funtions of the shifts of an almost periodi2



funtion. Then Z is a minimal set, i. e. every trajetory is dense in Z. Observe thatfor z ∈ Z it holds that z(t) = (θtz)(0). Assuming global existene and uniqueness,we denote by ϕ(t, t0, x, z, u) the solution of the initial value problem
ẋ(t) = f

(

x(t), z(t), u(t)
)

, x(t0) = x; (2.1)if t0 = 0, we often omit this argument. The solution map of the oupled system isdenoted by
ψ(t, x, z, u) =

(

ϕ(t, x, z, u), θtz
)

.We assume that the set of admissible ontrols is given by
U = {u ∈ L∞(R,Rm), u(t) ∈ U for almost all t},where U ⊂ Rm. If we denote also the time shift on U by θt, we obtain the oyleproperty
ϕ(t+ s, x, z, u) = ϕ

(

s, ϕ(t, x, z, u), θtz, θtu
)

, t, s ∈ R.Finally, the maps
Φt : M ×Z × U →M ×Z × U , Φt(x, z, u) =

(

ψ(t, x, z, u), θtu
)

, t ∈ R,de�ne a ontinuous �ow, the ontrol �ow, provided that U ⊂ Rm is onvex andompat and
f(x, z, u) = f0(x, z) +

m
∑

i=1

uifi(x, z)with C1-funtions fi : Rd×Rk → Rd; here U ⊂ L∞(R,Rm) is endowed with the weak∗topology. This follows by a minor extension of Proposition 4.1.1 in [3℄. Throughoutthis paper, we assume that these onditions guaranteeing ontinuity of the ontrol�ow are satis�ed. For onveniene, we also assume that 0 ∈ U , and we all theorresponding di�erential equation with u ≡ 0 the unontrolled system.For periodi and for quasi-periodi exitations we may be able to replae Z by a�nite dimensional state spae Z.Example 2.1. For a smooth periodi exitation let ζ : S1 → S1 =: Z be thesolution map ζtz0 = ω(t+ z0), t ∈ R, of ż = ω, z(0) = z0; here ω > 0 is the frequenyand (2.1) may be written as
ẋ(t) = f

(

x(t), ζt(z0), u(t)
)

, x(0) = x0.For a quasi-periodi exitation, let ζ : Sk → Sk =: Z be the solution map ζtz0 =
(

ω1(t+ z0,1), . . . , ωk(t+ z0,k)
)

, t ∈ R, of
ż1 = ω1, ż2 = ω2, . . . , żk = ωk,with initial ondition z(0) = (z0,1, . . . , z0,k). Here ω1, . . . , ωk > 0 are the frequeniesand we assume that they are rationally independent, i. e. if qi ∈ Q with q1ω1 + · · · +

qkωk = 0, then qi = 0 for all i. Again (2.1) may be written as above.3



3. Chain Control Sets. In this setion we de�ne and haraterize hain ontrolsets relative to a subset of the state spae working in the general almost periodi ase.It will be onvenient to write for a subset A ⊂ M × Z the setion with a �berover z ∈ Z as
Az := A ∩ (M × {z}).Hene A =

⋃

z∈Z Az . Where onvenient, we identify Az and {x ∈M, (x, z) ∈ Az}.A ontrolled (ε, T )-hain along z ∈ Z is given by T0, . . . , Tn−1 ≥ T, ontrols
u0, . . . , un−1 ∈ U and points x0, . . . , xn ∈M with

d
(

ϕ(Tj , xj , θT0+···+Tj−1
z, uj), xj+1

)

< ε for all j = 0, . . . , n− 1.Definition 3.1. A hain ontrol set relative to a losed set Q ⊂ M × Z is anonvoid maximal set E ⊂M ×Z suh that(i) for all (x, z), (y, w) ∈ E and all ε, T > 0 there exists a ontrolled (ε, T )-hainin Q along z from x to (y, w), i. e. x0 = x, xn = y and d(θT0+···+Tn−1
z, w) < ε, and

ψ(t, xj , θT0+···+Tj−1
z, uj) ∈ Q for all t ∈ [0, Tj] and for all j; (3.1)(ii) for all (x, z) ∈ E there is u ∈ U with ψ(t, x, z, u) ∈ E for all t ∈ R.The ondition in (3.1) an be written as

ϕ(t, xj , θT0+···+Tj−1
z, uj) ∈ Qθtzj

.Note that the three omponents x, z and u are treated in di�erent ways: jumpsare allowed in x, approximate reahability is required for z and no ondition on theontrols is imposed. Observe that also Meyer and Sell [14℄ do not allow jumps in thealmost periodi base �ow. It is easy to show that hain ontrol sets are losed.Next we disuss the behavior for �xed `phases' z ∈ Z by looking at the �bers ofa hain ontrol set.Lemma 3.2. Suppose that E is a hain ontrol set relative to Q. Then the �bers
Ez := E ∩Qz, z ∈ Z, satisfy the following properties:(i) For every z ∈ Z and all x, y ∈ Ez and all ε, T > 0 there exists a ontrolled
(ε, T )-hain in Q from x along z to (y, z).(ii) For every z ∈ Z and every x ∈ Ez there exists a ontrol u ∈ U suh that

ϕ(t, x, z, u) ∈ Eθtz for all t ∈ R.(iii) If xn ∈ Ezn
with (xn, zn) → (x, z) ∈M ×Z, then x ∈ Ez.Proof. Condition (iii) follows from losedness of E, (i) and (ii) are obvious.Remark 3.3. In ondition (ii) of Lemma 3.2 one does not have that a trajetoryexists whih after an appropriate time omes bak to Ez (as for periodi exitations,where one omes bak into the same �ber after the period). In the general almostperiodi ase the trajetory will never ome bak to the same �ber. Instead, the weakerproperty formulated in (ii) holds together with ondition (iii), whih loally onnetsdi�erent �bers and is an upper semi-ontinuity property of z 7→ Ez.Next we disuss if the properties formulated in Lemma 3.2 haraterize hainontrol sets.Lemma 3.4. Suppose Q is ompat and that Ez ⊂ Qz, z ∈ Z, is a family of setssatisfying onditions (i), (ii), and (iii) in Lemma 3.2. Assume that

E :=
⋃

z∈Z
Ez ⊂ intQ.4



Then E satis�es properties (i) and (ii) of hain ontrol sets in De�nition 3.1.Proof. Let (x, z), (y, w) ∈ E and ε, T > 0. Then ω(z) = Z and there is a ontrol
u ∈ U suh that ψ(t, x, z, u) ∈ E for all t ∈ R. In partiular, this proves property (ii)of hain ontrol sets. Furthermore, there are Sk > T suh that for zk := θSk

z one has
d(zk, w) < 1/k and learly yk := ϕ(Sk, x, z, u) ∈ Ezk

. By ompatness of Q we mayassume that (yk, zk) onverges to some (y0, w) ∈ Q. By property (iii) it follows that
y0 ∈ Ew. By property (i) there is a ontrolled (ε/2, T )-hain in Q from y0 along w to
(y, w) satisfying x0 = y0, xn = y and d(θT0+···+Tn−1

w,w) < ε/2, and
ψ(t, xj , θT0+···+Tj−1

w, uj) ∈ Q for all t ∈ [0, Tj] and for all j.Introduing, if neessary, trivial jumps, we may assume that Tj ∈ [T, 2T ] for all j. Byuniform ontinuity, there is δ > 0 suh that for all x ∈ Q and all u ∈ U

d(z, z′) < δ implies d
(

ϕ(t, x, z, u), ϕ(t, x, z′, u)
)

< ε/2, t ∈ [0, 2T ]. (3.2)Choose k large enough suh that
d(zk, w) = d(θSk

z, w) := sup
t∈R

‖z(Sk + t) − w(t)‖ < δ and d(ϕ(Sk, x, z, u), y0) < ε.Hene for all j
d
(

ϕ(Tj , xj , θˆSk+T0+···+Tj−1
z, uj), xj+1

)

≤ d
(

ϕ(Tj , xj , θSk+T0+···+Tj−1
z, uj), ϕ(Tj , xj , θT0+···+Tj−1

w, uj)
)

+ d
(

ϕ(Tj , xj , θT0+···+Tj−1
w, uj), xj+1

)

< ε/2 + ε/2 = ε.This shows that there is a ontrolled (ε, T )-hain from x along z to (y, w). Sine byassumption E ⊂ intQ and by (3.2) this (ε, T )-hain is ε-lose to an (ε, T )-hain in
Q, we may hoose ε > 0 small enough, suh that this is a hain in Q. This provesproperty (i) of hain ontrol sets.The following result lari�es the relations between hain ontrol sets and their�bers.Proposition 3.5. Consider system (1.1) in a losed subset Q ⊂M ×Z.(i) Suppose that Q is ompat and let Ez ⊂ Qz, z ∈ Z, be a maximal family ofsets satisfying onditions (i)�(iii) in Lemma 3.2. If E :=

⋃

z∈ZE
z ⊂ intQ, then E isa hain ontrol set.(ii) Let E be a hain ontrol set. Then the �bers Ez , z ∈ Z, are ontained in amaximal family Ẽz ⊂ Qz, z ∈ Z, of sets satisfying onditions (i)�(iii) in Lemma 3.2.If Ẽ :=

⋃

z∈Z Ẽ
z ⊂ intQ, then E = Ẽ.Proof. It only remains to disuss the maximality properties.(i) The union E satis�es properties (i) and (ii) of hain ontrol sets, sine for

ε < dist(E, ∂Q) the ontrolled (ε, T )-hains are in Q. Hene E is ontained in theunion Ẽ of all sets ontaining E and satisfying these properties. Then Ẽ is a hainontrol set and its �bers Ẽz ontain the sets Ez and satisfy properties (i)�(iii) inLemma 3.2. By maximality, it follows that E = Ẽ.(ii) Let E be a hain ontrol set. Then the �bers Ez satisfy properties (i)�(iii) inLemma 3.2. Clearly, the family Ez , z ∈ Z, is ontained in a maximal family Ẽz , z ∈ Z,with these properties. If Ẽ ⊂ intQ, the �rst assertion shows that Ẽ is a hain ontrolset and hene E = Ẽ. 5



It is of great interest to see if the behavior in a single �ber determines hainontrol sets. In the periodi ase, one an reonstrut hain ontrol sets from theirintersetion with a �ber. More preisely, the following is a minor modi�ation ofGayer [8℄, Taubert [21, Satz 2.2.5℄.Proposition 3.6. Assume that in system (1.1) the set Z onsists of the shiftsof a T -periodi funtion and write Z := R/TZ. Let Q ⊂ M × Z be losed and pik
z0 ∈ Z. Suppose that Ez0 ⊂ Qz0

is a maximal set suh that(i) for all x, y ∈ Ez0 and all ε > 0 there are (xj , zj) ∈ Q × Z and ontrols
uj ∈ U with (x0, z0) = (x, z0), (xn, zn) = (y, z0) suh that for all j = 0, . . . , n− 1

d
(

ψ(T, (xj , zj , uj)), (xj+1 , zj+1)
)

< ε and ψ(t, xj , zj , uj) ∈ Q for t ∈ [0, T ],(ii) for all x ∈ Ez0 there is u ∈ U with ϕ(T, x, z0, u), ϕ(−T, x, z0, u) ∈ Ez0 .Then the set
E :=

{

(x, z) ∈M × Z,
there are x0 ∈ Ez0 , u ∈ U , t ∈ [0, T ) with

(x, z) = ψ(t, x0, z0, u) and ϕ(T, x0, z0, u) ∈ Ez0

}is a hain ontrol set relative to Q.Conversely, for a hain ontrol set E ⊂ Q × Z, every �ber Ez0
, z0 ∈ Z, is maximalwith properties (i) and (ii).In order to derive an analogous result in the almost periodi ase, we have tomodify property (ii) in Proposition 3.6, sine it annot be satis�ed.Theorem 3.7. Consider system (1.1) and assume that Q ⊂ M ×Z is ompat.For some z0 ∈ Z let Ez0 ⊂ Q × {z0} be a nonvoid maximal set suh that for all

x0, y0 ∈ Ez0 and all ε, T > 0 there exists a ontrolled (ε, T )-hain in Q from x0 along
z0 to (y0, z0).Then the set
E := cl















(x, z) ∈M × Z,

for all ε, T > 0 there are x0, y0 ∈ Ez0 and ontrolled
(ε, T )-hains in Q from x0 along z0 to (y0, z0) suhthat (x, z) = ψ(t, xj , θT0+···+Tj−1

z0, uj) for some jand t ∈ [0, Tj]















.is a hain ontrol set relative to Q.Proof. Consider the �bers Ez , z ∈ Z, of E. By losedness of E it is lear that
xn ∈ Ezn

with (xn, zn) → (x, z) ∈M ×Z implies x ∈ Ez. Sine Ez0 is nonvoid and Eis ontained in the ompat set Q, hene also ompat, every �ber Ez of E is nonvoid.Let (x, z), (y, w) ∈ E and ε, T > 0. Then there exists a ontrolled (ε, T )-hain in
Q from x along z to (y, w). This follows for elements on ontrolled hains from Ez0 to
Ez0 by onatenating appropriate hains and using ontinuity (in order to guarantee
Tj ≥ T ). Again by ontinuity, this also follows for elements in the losure of the set ofthese points. It remains to show that for every z ∈ Z and every x ∈ Ez there existsa ontrol u ∈ U suh that

ϕ(t, x, z, u) ∈ Eθtz for all t ∈ R.For (x, z) ∈ E and k ∈ N hoose ontrolled (1/k, T )-hains ζk from x along z to (x, z)with ontrols uk
j ∈ U . Then a subsequene of uk

0 onverges to some ontrol v0 ∈ Uand, by ontinuity,
ϕ(T, x, z, uk

0) → ϕ(T, x, z, v0) for k → ∞.6



Then one �nds that ϕ(T, x, z, v0) ∈ EθT z, sine E is losed. Iterating this proedure,one onstruts a ontrol u+ ∈ U with ϕ(t, x, u+) ∈ E for all t ≥ 0. For negative times,onsider the last members of the hains ζk. We may assume that the orrespondingontrols uk
nk

onverge to a ontrol v ∈ U and, by de�nition,
ψ(Tnk

, xnk
, θT k

0
+···+T k

nk

z, uk
nk

) → (x, z) for k → ∞.By ontinuity, we may assume that T k
nk

∈ [T, 2T ], and hene that T k
nk

→ S ≥ T .Then θT k
nk

uk
nk

→ θSv and ontinuity implies
ψ(Tnk

− T, xnk
, θT k

0
+···+T k

nk

z, uk
nk

)

= ψ(−T, ψ(Tnk
, xnk

, θT k
0

+···+T k
nk

z, uk
nk

), θT k
nk

uk
nk

)

→ ψ(−T, x, z, θSv) for k → ∞.With u− := θSv one �nds that ϕ(−T, x, z, v1) ∈ EθT z , sine E is losed. Iteratingthis proedure, one onstruts a ontrol u− ∈ U with ϕ(t, x, z, u−) ∈ E for all t ≤ 0.Combining u+ and u− the desired ontrol u is found.Remark 3.8. Theorem 3.7 shows that, up to losure, one an �nd hain ontrolsets by looking at a single �ber, i. e. a single almost periodi exitation. This signif-iantly simpli�es numerial omputations, sine only one almost periodi exitation
z(t), t ≥ 0, has to be onsidered. Then the resulting sets must be onsidered for thosetimes T where z and θT z are lose. In the quasi-periodi ase (p. Example 2.1), onehas to look for (large) times t where all ωit are lose to zero modulo 2π.In addition to hain ontrol sets E, also their projetion to M de�ned as

πME := {x ∈M, (x, z) ∈ E for some z ∈ Z}is of interest. Obviously, for all (x1, x2) ∈ πME there are z1, z2 ∈ Z suh that
(x1, z1), (x2, z2) ∈ E, hene there are ontrolled (ε, T )-hains from x1 along z1 to
(x2, z2).4. Controllability and Chain Controllability. The main aim in this setionis to analyze, when an almost periodi solution of the unontrolled system is ontainedin the interior of a subset of omplete ontrollability. For this purpose, we ask whena reahable point is ontained in the interior of the reahable set and disuss hainontrollability. This leads us to ontrol sets and their relation to hain ontrol sets.Again, onsider ontrol system (1.1). For a losed subset Q ⊂ M × Z, a point
x ∈ Q and z ∈ Z we de�ne the positive and negative orbits along z relative to Q as
O+(x; z,Q) := {ϕ(t, x, z, u), with ψ(s, x, z, u) ∈ Q, s ∈ [0, t] for some t ≥ 0, u ∈ U},
O−(x; z,Q) := {ϕ(t, x, z, u), with ψ(s, x, z, u) ∈ Q, s ∈ [t, 0] for some t ≤ 0, u ∈ U}.Observe that ϕ(t, x, z, u) ∈ Qθtz. Analogously O+

t (x; z,Q),O−
t (x; z,Q) et. are de-�ned, if we restrit the times aordingly. If Q = M , we omit the argument Q.In addition to hain ontrol sets it is also of interest to disuss ontrol sets, i. e.maximal subsets of approximate ontrollability.Definition 4.1. For a losed subset Q ⊂M ×Z a subset D ⊂ Q is a ontrol setrelative to Q if it is maximal with the following properties:(i) For all (x, z), (y, w) ∈ D there are Tn ≥ 0, un ∈ U with ψ(Tn, x, z, un) →

(y, w) and ψ(t, x, z, un) ∈ Q for t ∈ [0, Tn].7



(ii) For every z ∈ Z and every x ∈ Dz there exists a ontrol u ∈ U suh that
ψ(t, x, z, u) ∈ D for all t ≥ 0.In ondition (i), it is lear that Tn → ∞, unless the exitation is periodi. Condi-tion (ii) immediately implies that the projetion of the ontrol set is dense in Z; theinlusion may be rewritten as ϕ(t, x, z, u) ∈ Dz(t+·) for all t ≥ 0.For periodi exitations, one an haraterize ontrol sets by looking at the dis-rete time system de�ned by the Poinaré map (Gayer [8℄). We will show that also inthe almost periodi ase, it is possible to haraterize ontrol sets �berwise.Lemma 4.2. Suppose that D ⊂ Q is a ontrol set. Then the �bers Dz := D∩Qz,

z ∈ Z, satisfy the following properties:(i) For every z ∈ Z and all x, y ∈ Dz there are Tn → ∞ and un ∈ U with
ψ(Tn, x, z, un) → (y, z) and ψ(t, x, z, un) ∈ Q for all t ∈ [0, Tn].(ii) For every z ∈ Z and every x ∈ Dz there exists a ontrol u ∈ U suh that

ϕ(t, x, z, u) ∈ Dθtz for all t ≥ 0.Proof. This obviously follows from properties (i) and (ii) of ontrol sets.The following lemma shows, that the properties in Lemma 4.2 haraterize ontrolsets.Lemma 4.3. Suppose Q ⊂M ×Z is losed and that Dz ⊂ Qz, z ∈ Z, is a familyof sets satisfying onditions (i) and (ii) in Lemma 4.2 and, additionally,(iii) For every (x, z) ∈ Dz and all Tn > 0 with θTn
z → w ∈ Z there are y ∈ Mand un ∈ U suh that ψ(Tn, x, z, un) → (y, w) ∈ Dw and ψ(t, x, z, un) ∈ Q for all

t ∈ [0, Tn].Then D :=
⋃

z∈Z D
z satis�es properties (i) and (ii) of ontrol sets in De�ni-tion 4.1.Proof. Property (ii) of ontrol sets is learly satis�ed due to property (ii) of the�bers. In order to prove property (i), let (x, z), (y, w) ∈ D. Sine ω(z) = Z there are

Sk → ∞ with θSk
z → w. By Property (iii) we may assume that, for some ontrols

uk ∈ U and some (y0, w) ∈ D

ψ(Sk, x, z, uk) → (y0, w) in Q. (4.1)By property (i) of the �bers there are Tn → ∞ and vn ∈ U with
ψ(Tn, y0, w, vn) → (y, w) in Q. (4.2)Let ε > 0 and denote here and in the following the open ε-ball around x by Bε(x).For every n ∈ N there is an ηn > 0 suh that

ψ
(

Tn,Bηn
(y0, w), vn

)

⊂ Bε/2

(

ψ(Tn, y0, w, vn)
) (4.3)due to ontinuous dependene on initial onditions. Convergene in (4.2) implies that

ψ(Tn, y0, w, vn) ∈ Bε/2(y, w) for su�iently large n. Together, this yields
ψ
(

Tn,Bηn
(y0, w), vn

)

⊂ Bε(y, w)for n large enough.By onvergene in (4.1), there is a sequene (kn)n∈N ⊂ N suh that
ψ(Skn

, x, z, ukn
) ∈ Bηn

(y0, w).8



Let T̃n := Skn
+ Tn and

ũn(t) :=

{

un(t) if t < Skn
,

vn(t− Skn
) otherwise.Then inlusion (4.3) implies ψ(T̃n, x, z, ũn) ∈ Bε(y, w) for all n ∈ N. Sine ε > 0 isarbitrary, this implies ψ(T̃n, x, z, ũn) → (y, w). Furthermore ψ(t, x, z, ũn) ∈ Q for all

t ∈ [0, T̃n], n ∈ N, by onstrution.The following result lari�es the relations between ontrol sets and their �bers.Theorem 4.4. Consider system (1.1) in a losed subset Q ⊂M ×Z.(i) Let Dz ⊂ Qz, z ∈ Z, be a maximal family of sets satisfying onditions (i)and (ii) in Lemma 4.2 and ondition (iii) in Lemma 4.3. Then D :=
⋃

z∈Z D
z is aontrol set.(ii) Let D be a ontrol set. Then the �bers Dz form a maximal family of setssatisfying onditions (i) and (ii) in Lemma 4.2Proof. By Lemmas 4.2 and 4.3 only maximality has to be shown.(i) By Lemma 4.3 the set D :=

⋃

z∈Z D
z satis�es the two de�ning propertiesof ontrol sets and is thus ontained in a ontrol set D̃. The �bers D̃z, z ∈ Z, satisfyonditions (i) and (ii) in Lemma 4.2. So by maximality D̃z = Dz for every z ∈ Z,whih implies D = D̃.(ii) By Lemma 4.2 the �bers Dz satisfy onditions (i) and (ii) and are thusontained in a maximal family Dz , z ∈ Z, of sets satisfying these properties. ByLemma 4.3 the set D̃ :=

⋃

z∈Z D
z is a ontrol set. Clearly D ⊂ D̃. Maximalityimplies D = D̃ and so Dz = Dz for all z.We note the following simple property of ontrol sets.Proposition 4.5. Let D1 and D2 be ontrol sets relative to Q and assume thatthere are z ∈ Z, times T2 > T1 > 0, a point x ∈ Dz

1 , and a ontrol u ∈ U suh that
ϕ(T1, x, z, u) ∈ D2,z(T1+·) and ϕ(T1 + T2, x, z, u) ∈ D1,z(T1+T2+·),and ψ(t, x1, z, u) ∈ Q for all t ∈ [0, T1 + T2].Then D1 = D2.Proof. This follows by maximality of D1, sine D1 ∪{ψ(t, x, z, u), t ∈ [0, T1 +T2]}satis�es properties (i) and (ii) of ontrol sets.Our next aim is to prove that under an inner-pair ondition every almost periodisolution of the unontrolled equation is ontained in the interior of a ontrol set. For aperiodi exitation as onsidered in Example 2.1, the state spae Z = S1 is (trivially)ompletely ontrollable. However, already for a quasi-periodi exitation with twononommensurable (i. e. rationally independent) frequenies ω1, ω2, this is no longertrue. Hene it does not make sense to onsider exat ontrollability properties inthe z-omponent. This is di�erent in the x-omponent as shown by the followingproposition.Proposition 4.6. Let ψ(t, x0, z0, 0) ∈ Q, t ∈ R, be an almost periodi solution ofthe unontrolled system and de�ne A := cl{ψ(t, x0, z0, 0), t ∈ R}. Assume that thereare ε, T > 0 suh that for every (x, z) ∈ A

Bε

(

ϕ(T, x, z, 0)
)

⊂ O+
T (x; z,Q).Then for all (x, z), (y, w) ∈ A there is τ > 0 suh that Bε/2(y) ⊂ O+

τ (x; z,Q) and forevery y0 ∈ Bε/2(y) there are τn ≥ 0 and un ∈ U with ϕ(τn, x, z, un) = y0 in Q and
θτn

z → w. 9



Proof. Let (x, z), (y, w) ∈ A. Note that by uniform ontinuity, there is δ > 0 suhthat
d
(

(x1, z1), (x2, z2)
)

< δ implies d
(

ψ(T, x1, z1, 0), ψ(T, x2, z2, 0)
)

< ε/2.By almost periodiity one has ω(x, z) = A, hene there are Sn → ∞ suh that
ψ(Sn, x, z, 0) → ψ(−T, y, w, 0) in A ⊂ Q. Choose n large enough suh that for
S0 := Sn

d(ψ(−T, y, w, 0), ψ(S0, x, z, 0)) < δ. (4.4)This implies
d((y, w), ψ(S0 + T, x, z, 0)) = d(ψ(T, ψ(−T, y, w, 0), 0), ψ(T, ψ(S0, x, z, 0), 0)) < ε/2and we onlude for ε > 0, small enough,

Bε/2(y) ⊂ Bε

(

ϕ(S0 + T, x, z, 0)
)

= Bε

(

ϕ
(

T, ϕ(S0, x, z, 0), θT z
)

)

⊂ intO+
T

(

ϕ(S0, x, z, 0); θT z,Q
)

⊂ intO+
S0+T (x; z,Q).This yields the �rst assertion with τ = S0 + T and the seond assertion follows with

τn := Sn + T if we onsider δn → 0 in (4.4).This proposition allows us to show that almost periodi solutions of the unon-trolled system are ontained in the interior of ontrol sets. In other words, around analmost periodi solution we have omplete ontrollability along the almost periodiexitations.Theorem 4.7. Let ψ(t, x0, z0, 0) ∈ Q, t ∈ R, be an almost periodi solution ofthe unontrolled system and let A := cl{ψ(t, x0, z0, 0), t ∈ R}. Assume that there are
ε, T > 0 suh that for every (x, z) ∈ A

Bε(ϕ(T, x, z, 0)) ⊂ O+
T (x; z,Q) and Bε(ϕ(−T, x, z, 0)) ⊂ O−

T (x; z,Q). (4.5)Then there exists a ontrol set D suh that for every (x, z) ∈ A one has x ∈ intDz.Proof. It is lear that the set A satis�es properties (i) and (ii) of De�nition 4.1.Hene it is ontained in a maximal set with these properties, i. e. a ontrol set D. Theassertion follows, if we an show that for all (x, z) ∈ A the neighborhoods Bε/2(x) alsosatisfy these properties. Let (x, z), (y, w) ∈ A. For property (i) it su�es to show thatfor x0 ∈ Bε/2(x), y0 ∈ Bε/2(y) there are Tn ≥ 0 and un ∈ U with ψ(Tn, y0, w, un) →
(x0, z) in Q. Sine ψ(T, x, z, 0) ∈ A, ondition (4.5) implies

Bε/2(x) ⊂ O−
T

(

ψ(T, x, z, 0)
)

.Hene for every (x0, z) ∈ Bε/2(x) × {z} there is a ontrol u0 ∈ U with ψ(T, x, z, 0) =
ψ(T, x0, z, u0). Similarly, ψ(−T, y, w, 0) ∈ A implies

Bε/2(y) ⊂ O+
T

(

ψ(−T, y, w, 0)
)

,and hene there is a ontrol v0 ∈ U with (y0, w) = ψ(T, ψ(−T, y, w, 0), v0).Sine ψ(T, x, z, 0), ψ(−T, y, w, 0) ∈ A there are Sn ≥ 0 and vn ∈ U with
ψ
(

Sn, ψ(T, x, z, 0), vn

)

→ ψ(−T, y, w, 0) in Q.10



By ontinuity, this implies
ψ
(

T, ψ
(

Sn, ψ(T, x, z, 0), vn

)

, v0

)

→ ψ
(

T, ψ(−T, y, w, 0), v0
)

= (y0, w).De�ne the onatenated ontrols
un(t) :=







u0(t) for t ∈ [0, T ]
vn(t− T ) for t ∈ (T, T + Sn]
v0(t− T − Sn) for t ∈ (T + Sn, 2T + Sn].Then, with Tn := 2T + Sn,

ψ(Tn, x0, z, un) = ψ(2T + Sn, x0, z, un)

= ψ
(

T, ψ
(

Sn, ψ(T, x0, z, u0), vn

)

, v0

)

= ψ
(

T, ψ
(

Sn, ψ(T, x, z, 0), vn

)

, v0

)

→ (y0, w).This proves property (i). Then property (ii) is obvious.Remark 4.8. Condition (4.5) is analogous to the inner-pair ondition (butslightly stronger) for autonomous ontrol systems, see De�nition 4.1.5 in [3℄Assumption (4.5) in Theorem 4.7 an be guaranteed for a large lass of systems,as shown by Gayer [8℄: Consider the following nth order systems on Rm









x
(n)
1...
x

(n)
m









+







f1(t, x, . . . , x
(n−1))...

fm(t, x, . . . , x(n−1))






=







b1(t, x, . . . , x
(n−1)) u1(t)...

bm(t, x, . . . , x(n−1)) um(t)






. (4.6)Here x = (xi) ∈ Cn−1(R,Rm), its nth derivative exists but is not neessarily on-tinuous, and x(k) denotes its kth derivative. Assume fi : R × Rnm → R and

bi : R × Rnm → R are C1 and onsider ontrols
u = (ui) ∈ Uρ := {u : R → Rm, u(t) ∈ Uρ for all t}.We assume that the ontrol ranges Uρ are ompat and onvex and that mapping

ρ 7→ Uρ is stritly inreasing, i. e. Uρ1 ⊂ intUρ2 for 0 ≤ ρ1 ≤ ρ2. As before, assumethat for all initial values and all ontrols the solutions are unique and exist for alltimes.We onsider the assoiated �rst order systems. So for initial values y0, . . . , yn−1 ∈
Rm at time t0 = 0 and a ontrol u ∈ Uρ denote by λ(t, y0, . . . , yn−1, u) the orrespond-ing solution of (4.6). We set y0 := (y0, . . . , yn−1) ∈ Rnm and de�ne the set reahablefrom y0 at time T > 0 by

O+,ρ
T (y0) :=

{

(z0, . . . , zn−1) ∈ Rnm, there is u ∈ Uwith zi = λ(i)(t, y0) for 0 ≤ i ≤ n− 1

}

.Proposition 4.9. Consider system (4.6) and assume that there is some α > 0suh that |bi(t, y)| ≥ α for all i ∈ {1, . . . ,m} and all (t, y) ∈ R×Rnm. Let 0 ≤ ρ1 ≤ ρ211



and onsider a ompat subset B ⊂ Rnm. Then for every T > 0 there is ε > 0 suhthat for all (y0, u) ∈ B × Uρ1

B

(

(λ(T, y0, u), . . . , λ(n−1)(T, y0, u); ε
)

⊂ O+,ρ2

T (y0).Proof. This follows from [8, Theorem 3℄ and its proof. Here arbitrary timedependene of the right hand side is allowed and the theorem is formulated a bitdi�erently (in terms of inner pairs for varying ontrol range), but the proof shows thestronger result formulated above.In partiular, under the assumptions of Proposition 4.9, one obtains for ρ1 =
0 that ondition (4.5) is satis�ed (applying the theorem also to the time reversedsystem).Next we generalize Theorem 4.7 in order to show a relation between hain on-trollability and ontrollability. We begin with the following lemma.Lemma 4.10. Let 0 ≤ ρ1 ≤ ρ2 and onsider a ompat subset Q ⊂ M × Z. Let
Eρ1 be a hain ontrol set relative to Q for system (1.1) with ontrols in Uρ1 . Assumethat there are ε, T > 0 suh that for every (x, z) ∈ Eρ1 and u ∈ Uρ1

Bε(ϕ(T, x, z, u)) ⊂ O+,ρ2

T (x; z,Q). (4.7)Then for all (x, z), (y, w) ∈ Eρ1 there is τ > 0 suh that Bε/2(y) ⊂ O+,ρ2

τ (x; z,Q) andfor every y0 ∈ Bε/2(y) there are τn ≥ 0 and un ∈ Uρ2 with ϕ(τn, x, z, un) = y0 in Qand θτn
un → w.Proof. Let (x, z), (y, w) ∈ Eρ1 . By uniform ontinuity, there is δ with 0 < δ < ε/2suh that for all u
d
(

(x1, z1), (x2, z2)
)

< δ implies d
(

ψ(T, x1, z1, u), ψ(T, x2, z2, u)
)

< ε/2.There is u0 ∈ Uρ1 suh that ψ(−T, y, w, u0) ∈ Eρ1 . By hain ontrollability, thereexists a ontrolled (δ, T )-hain in Q along z from x to ψ(−T, y, w, u0), i. e. x0 =
x, xn = ϕ(−T, y, w, u0), and

d(θT0+···+Tn−1
z, θ−Tw) < δ, d

(

ϕ(Tj , xj , θT0+···+Tj−1
z, vj), xj+1

)

< δ for all j,
ψ(t, xj , θT0+···+Tj−1

z, vj) ∈ Q for all t ∈ [0, Tj] and for all j;For every j one �nds by indution
xj+1 ∈ Bδ

(

ϕ(Tj , xj , θT0+···+Tj−1
z, vj)

)

= Bδ

(

ϕ(T, ϕ(Tj − T, xj , θT0+···+Tj−1
z, vj), θT0+···+Tj−1+Tj−T z, θTj−T vj

)

⊂ O+,ρ2

T

(

ϕ(Tj − T, xj , θT0+···+Tj−1
z, vj); θT0+···+Tj−1+Tj−T z,Q

)

⊂ O+,ρ2

T0+···+Tj
(x0; z,Q).Hene there is a ontrol v ∈ Uρ2 with

xn = ϕ(T0 + · · · + Tn−1, x, z, v) and d(θT0+···+Tn−1
z, θ−Tw) < δ. (4.8)By hoie of δ we �nd

d
(

ψ(T, xn, θT0+···+Tn−1
z, θ−Tu0), (y, w)

)

= d
(

ψ(T, xn, θT0+···+Tn−1
z, θ−Tu0), ψ

(

T, ψ(−T, y, w, u0), θ−Tu0

)

)

< ε/2.12



We onlude for ε > 0, small enough,
Bε/2(y) ⊂ Bε

(

ϕ(T, xn, θT0+···+Tn−1
z, θ−Tu0)

)

= Bε

(

ϕ
(

T, ϕ(T0 + · · · + Tn−1, x, z, v), θT0+···+Tn−1
z, θ−Tu0

)

)

⊂ O+,ρ2

T0+···+Tn−1+T (x; z,Q).This yields the �rst assertion with τ = T0 + · · · + Tn−1 + T . The seond assertionfollows with τn = T0 + · · · + Tn−1 + T if we onsider δn → 0 in (4.8).This lemma allows us to show that hain ontrol sets are ontained in the interiorof ontrol sets for larger ontrol ranges.Theorem 4.11. Let 0 ≤ ρ1 ≤ ρ2 and onsider a ompat subset Q ⊂M ×Z. Let
Eρ1 be a hain ontrol set relative to Q for system (1.1) with ontrols in Uρ1 . Assumethat there are ε, T > 0 suh that for every (x, z) ∈ Eρ1 and u ∈ Uρ1

Bε

(

ϕ(T, x, z, u)
)

⊂ O+,ρ2

T (x; z,Q) and Bε

(

ϕ(−T, x, z, u)
)

⊂ O−,ρ2

T (x; z,Q). (4.9)Then there exists a ontrol set Dρ2 suh that for every (x, z) ∈ Eρ1 one has x ∈
intDρ2

z .Proof. The assertion follows, if we an show that for all (x, z) ∈ Eρ1 the neigh-borhoods Bε/2(x) satisfy onditions (i) and (ii) in De�nition 4.1 for ontrols in Uρ2 .Then Eρ1 is ontained in a maximal set with these properties, i. e. a ontrol set Dρ2 .Let (x, z), (y, w) ∈ Eρ1 . For property (i) it su�es to show that for x0 ∈ Bε/2(x), y0 ∈
Bε/2(y) there are Tn ≥ 0 and un ∈ Uρ2 with ψ(Tn, y0, w, un) → (x0, z) in Q. There isa ontrol v0 ∈ Uρ1 with ψ(T, x, z, v0) ∈ Eρ1 , hene ondition (4.5) implies

Bε/2(x) ⊂ O−,ρ2

T

(

ψ(T, x, z, v0)
)

.Hene for every x0 ∈ B(x, ε/2) there is a ontrol u0 ∈ Uρ2 with ψ(T, x, z, v0) =
ψ(T, x0, z, u0). Similarly, there is a ontrol v1 ∈ Uρ1 with ψ(−T, y, w, v1) ∈ Eρ1 and

Bε/2(y) ⊂ O+,ρ2

T

(

ψ(−T, y, w, v1)
)

,and hene there is a ontrol u1 ∈ Uρ2 with (y0, w) = ψ
(

T, ψ(−T, y, w, v1), u1

).Sine ψ(T, x, z, v0), ψ(−T, y, w, v1) ∈ Eρ1 , Proposition 4.10 implies that there are
τn ≥ 0 and vn ∈ Uρ2 with ψ(τn, ψ(T, x, z, v0), vn

)

→ ψ(−T, y, w, v1) in Q.Together, one obtains
ψ
(

T, ψ
(

τn, ψ(T, x, z, v0), vn

)

, u1

)

→ ψ
(

T, ψ(−T, y, w, v1), u1

)

= (y0, w).De�ne the onatenated ontrol un ∈ Uρ2 by
un(t) :=







u0(t) for t ∈ [0, T ]
vn(t− T ) for t ∈ (T, T + τn]
u1(t− T − τn) for t ∈ [T + τn, 2T + τn].Then, with Tn := 2T + τn

ψ(Tn, x0, z, un) = ψ(2T + τn, x0, z, un)

= ψ
(

T, ψ
(

τn, ψ(T, x0, z, un), θTun

)

, θT+τn
un

)

= ψ
(

T, ψ
(

τn, ψ(T, x0, z, u0), vn

)

, u1

)

→ (y0, w). 13



This proves property (i) of ontrol sets. Now property (ii) is obvious.Remark 4.12. Using this theorem we an, as in [3, Theorem 4.7.5℄, show thatfor all up to at most ountably many ρ-values the losures of ontrol sets and the hainontrol sets oinide. The proof is based on Sherbina's Lemma [17℄ for ontinuity ofmonotonially inreasing set valued funtions. Hene, by Theorem 3.7 one may alsodetermine the �bers of ontrol sets via the �bers of the hain ontrol sets. For thispurpose, one has to onsider `long' times, sine these �bers are determined only onlong time intervals, p. Remark 3.8. At �rst sight, this is di�erent, if the exitation isperiodi; here only the Poinaré map, and hene the period length, is needed, Propo-sition 3.6. Nevertheless, also in this ase approximate ontrollability is relevant (theentrane boundary of a ontrol set is reahed from the interior only for time tendingto in�nity), and hene also these objets are only determined on long time intervals.5. Almost Periodi Solutions and Heterolini Orbits. In this setion wereall results on almost periodi perturbations of hyperboli equilibria and Melnikov'smethod. Sine in the literature they are not preisely stated in the form needed here,we reall the relevant onepts and some arguments for the proofs.It is well-known that, under small periodi perturbations, a hyperboli �xed pointof an autonomous di�erential equation beomes a periodi solution, see e. g. [1, The-orem 25.2℄ for details on this result, whih is known as Poinaré ontinuation. Thisresult an be generalized to almost periodi perturbations, in whih ase the existeneof an almost periodi solution an be shown. Consider the di�erential equation
ẋ = g(x) + µh(t, x, µ) (5.1)for g : Rd → Rd and h : R × Rd × R → Rd. The parameter µ ∈ R is interpreted asa small perturbation. Setting µ = 0 in system (5.1) leads to the equation ẋ = g(x)whih will be referred to as the unperturbed system. Throughout we assume that (5.1)satis�es the following onditions:The funtion g is C1 and h is ontinuous and hx exists and there are a boundedand open subset V ⊂ Rd ontaining x0 and a onstant µ̄ > 0, suh that h and hx arealmost periodi in t, uniformly with respet to (x, µ) ∈ clV × [−µ̄, µ̄], and solutionsof (5.1) exist for all starting points in V , all µ ∈ [−µ̄, µ̄] and all times.As noted in Sheurle [18℄, Remark 2.7, almost periodiity of hx uniformly withrespet to (x, µ) is equivalent with hx being uniformly ontinuous on R×clV ×[−µ̄, µ̄].Next reall the notion of exponential dihotomies, whih generalize the idea ofhyperboliity to nonautonomous systems, f. Coppel [5℄.Definition 5.1. Consider the system

ẋ = A(t)x (5.2)for a pieewise ontinuous matrix funtion A : J → Rd×d de�ned on an interval
J ⊂ R and let X(t) be a fundamental matrix funtion for (5.2). System (5.2) hasan exponential dihotomy on J if there is a projetion P : Rd → Rd and onstants
K ≥ 1, α > 0 suh that

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s) for s ≤ t,

‖X(t)(I − P )X−1(s)‖ ≤ Ke−α(s−t) for s ≥ t.Then the following perturbation result (Lemma 2.4 in [18℄) holds.Lemma 5.2. Let g(t, x) and h(t, x) be funtions whih are de�ned and ontinuouson R × V with values in Rd, where V is an open subset of Rd. Furthermore, assume14



that the partial derivatives gx and hx exist and that gx is uniformly ontinuous and
hx ontinuous in R × V . Finally assume that the equation ẋ = g(t, x) has a solution
x = x0(t) de�ned and ontained in V for all t ∈ R, and stritly bounded away from theboundary of V , suh that the variational equation ẋ = gx

(

t, x0(t)
)

x has an exponentialdihotomy on R with onstants K and α. Then there exist a positive onstant η0 anda funtion η1(η) depending only on g,K, and α suh that, if 0 < η ≤ η0,
sup

(t,x)∈R×V

‖h(t, x)‖ < η1(η) and sup
(t,x)∈R×V

‖hx(t, x)‖ < K α/2,then the equation ẋ = g(t, x) + h(t, x) has a unique solution x(t) satisfying ‖x(t) −
x0(t)‖ ≤ η, t ∈ R.A slight modi�ation of Bohr's proof for the boundedness of almost periodifuntions in [2℄ shows uniform boundedness of uniformly almost periodi funtions.Lemma 5.3. Let Λ be a ompat topologial spae, M a normed vetor spae withnorm ‖ · ‖ and f : R × Λ → M ontinuous and almost periodi in t uniformly withrespet to x ∈ Λ. Then

sup (t,x)∈R×Λ‖f(t, x)‖ <∞.Proof. Sine f is uniformly almost periodi, there is an interval length L suhthat for every interval J ⊂ R of length L there exists a translation number τ(J) ∈ Jsatisfying ∥∥f(t + τ(J), x) − f(t, x)
∥

∥ < 1 for all (t, x) ∈ R × Λ. Here L and τ areindependent of x due to uniformity.Sine f is ontinuous and Λ ompat, c := sup(t,x)∈[0,L]×Λ ‖f(t, x)‖ < ∞. Forevery t ∈ R any translation number τt in the interval J = [−t,−t + L] satis�es
t+ τt ∈ [0, L]. Therefore for every t ∈ R and x ∈ Λ

‖f(t, x)‖ ≤ ‖f(t+ τt)‖ + ‖f(t) − f(t+ τt)‖ ≤ c+ 1.The previous lemmas imply the following result (this is essentially Lemma 2.8 in[18℄).Proposition 5.4. Suppose that the unperturbed system orresponding to (5.1)has a hyperboli �xed point x0, i. e. g(x0) = 0 and the real parts of the eigenvalues of
gx(x0) are di�erent from 0. For all (small) η > 0 there is µ0 = µ0(η) > 0 suh that for
|µ| ≤ µ0 there exists a unique solution ζµ(t) of system (5.1) satisfying ‖ζµ(t)−x0‖ ≤ ηfor all t ∈ R. This solution is almost periodi.Proof. First we show that system (5.1) satis�es the assumptions of Lemma 5.2.The funtions g and h are ontinuous and the derivatives gx and hx exist and gxis uniformly ontinuous on the ompat set clV . As x0 is a hyperboli equilib-rium of the unperturbed equation, the orresponding linearized equation ẋ = gx(x0)xtrivially has an exponential dihotomy on R. Finally, sup(t,x)∈R×V ‖µh(t, x, µ)‖ and
sup(t,x)∈R×V ‖µhx(t, x, µ)‖ an be made arbitrarily small by hoosing µ small enough,sine h and hx are uniformly almost periodi and thus uniformly bounded, due toLemma 5.3.This means that for su�iently small perturbations µ there is a unique solution
ζµ whih stays near the original �xed point x0 for all times. For su�iently small µthe equation

ẋ =
[

gx

(

ζµ(t)
)

+ µhx

(

t, ζµ(t), µ
)]

xhas an exponential dihotomy on R. This follows from roughness of exponentialdihotomies with respet to small perturbations; see Proposition 2.2 in [18℄ or [5,15



p. 34℄. Finally, it remains to show almost periodiity of the perturbed solution ζµ.For this purpose onsider the shifted system
ẋ = g(x) + µh(t+ τ, x, µ) (5.3)for τ ∈ R. Lemma 5.2 applied to (5.3) shows that for small η and |µ| ≤ µ0(η) thereis a unique solution ζµ

τ (t) whih satis�es ‖ζµ
τ (t) − x0‖ ≤ η for all t ∈ R. Obviously

ζµ
τ (t) = ζµ(t+ τ) for all t, τ ∈ R.Now we apply Lemma 5.2 to (5.3) again, setting g(t, x) = g(x) + µh(t, x, µ),
h(t, x) = µ[h(t + τ, x, µ) − h(t, x, µ)] and x0(t) = ζµ(t). For su�iently small µ and
η > 0 there is an ε = ε(µ, η) > 0 suh that ‖ζµ(t) − ζµ

τ (t)‖ ≤ η, provided that
|µ| sup

(t,x)∈R×V

‖h(t+ τ, x, µ) − h(t, x, µ)‖ < εand
|µ| sup

(t,x)∈R×V

‖hx(t, x, µ) − hx(t+ τ, x, µ)‖ < ε.Hene uniform almost periodiity of h and hx implies almost periodiity of ζµ(t).If we suppose that in our setting there exist two hyperboli �xed points x± ∈ Rdof the unperturbed system, Proposition 5.4 implies the existene of almost periodisolutions ζµ
± near x± for su�iently small µ. If there is a heterolini orbit ζ from x−to x+, the question arises how the system behaves near ζ for small perturbations µ.For time-periodi perturbations Melnikov's method gives a handy riterion forthe existene of transversal heterolini points. K. J. Palmer has developed a gener-alization of Melnikov's method in [15℄ whih, in our setting, yields the following.Theorem 5.5. Consider the system ẋ = g(x) + µh(t, x, µ) and let the followingassumptions be satis�ed:(i) There is a bounded and open subset V ⊂ Rd and a onstant µ̄ > 0 suh that

g : V → Rd is C2 and h : R×V × [−µ̄, µ̄] → Rd is ontinuous. The partial derivatives
ht, hx, hµ, hxx, hxµ, hµx, hµµ exist, are bounded, ontinuous in t for eah �xed x, µand ontinuous in x, µ uniformly with respet to t, x, µ.(ii) The funtions h and hx are almost periodi in t, uniformly with respet to
(x, µ) ∈ clV × [−µ̄, µ̄].(iii) The unperturbed equation ẋ = g(x) has hyperboli �xed points x± ∈ V withstable and unstable manifolds of the same dimensions.(iv) There is a heterolini orbit ζ from x− to x+ ontained in V .(v) The funtion

∆(t0) :=

∫ ∞

−∞
ϕ(t) · h

(

t+ t0, ζ(t), 0
)

dthas a simple zero at some t0 ∈ R, where ϕ(t) is the unique (up to a salar multiple)bounded solution of the adjoint system ẋ = gx

(

ζ(t)
)T
x and �·� denotes the innerprodut in Rd.Then there exists δ0 > 0 suh that for su�iently small µ the perturbed sys-tem (5.1) has a unique solution x(t, µ) satisfying ‖x(t, µ) − ζ(t − t0)‖ ≤ δ0 for all

t ∈ R. Furthermore
sup
t∈R

‖x(t, µ) − ζ(t− t0)‖ = O(µ) for µ→ 016



and
ẋ =

[

gx

(

x(t, µ)
)

+ µhx

(

t, x(t, µ), µ
)]

xhas an exponential dihotomy on R.Finally, it holds that
lim

t→±∞
‖x(t, µ) − ζµ

±(t)‖ = 0 (5.4)for su�iently small µ, where ζµ
± are the almost periodi solutions near x±.Proof. This follows from [15, Corollary 4.3℄ and the remark on pp. 251�252in [15℄ ombined with the ideas of the proof of [15, Corollary 4.4℄ using the fat,that ẋ = gx

(

ζ(t)
)

x has an exponential dihotomy on both half-lines and that thedimensions of the stable and unstable subspaes sum up to d.More preisely, Corollary 4.4 in [15℄ shows (5.4) for the periodi ase. But infat, periodiity is only needed there to prove periodiity of ζµ
±. So (5.4) holds forthe almost periodi ase, too, f. Remark 2.9 in [18℄. In detail, there is a δ > 0independent of µ suh that if

‖x(t, µ) − ζµ
±(t)‖ ≤ δ (5.5)for su�iently large |t| (positive for �+�, negative for �−�), then (5.4) holds, f. [9,Theorem 3.1℄. For su�iently small µ and large |t|

‖x(t, µ) − ζµ
±(t)‖ ≤ ‖x(t, µ) − ζ(t− t0)‖ + ‖ζ(t− t0) − x±‖ + ‖x± − ζµ

±(t)‖ ≤ δ,hene (5.5) holds.The fat, that the variational system ẋ = gx

(

ζ(t)
)

x has an exponential dihotomyand that the dimensions sum up to d, follows from standard perturbation theory, andfrom the assumption that the stable and unstable manifolds of x− and x+ have thesame dimensions.Remark 5.6. This theorem is also appliable to homolini orbits by letting
x− = x+.Remark 5.7. If in the two-dimensional ase g is Hamiltonian, ∆(t0) oinideswith the Melnikov funtion up to a salar multiple, Marsden [13℄.6. Heterolini Orbits and Controllability. In this setion, we show thatexistene of a heterolini solution of the unperturbed unontrolled equation impliesa ontrollability ondition for perturbed systems with small ontrol in�uene. Con-versely, if the ontrollability ondition holds for small ontrol in�uene, existene ofa heterolini solution of the unperturbed equation follows. These results are used torelate heterolini yles to the existene of ontrol sets.Consider the following family of ontrol systems depending on a parameter µ

ẋ = g(x) + µh(x, z(t), µ, u(t)), u ∈ U , (6.1)with ontinuous funtions g and h and ontrol range U ⊂ Rm ontaining the origin;the funtions z are in the hull Z of a single almost periodi funtion. We refer to
ẋ = g(x) and ẋ = g(x)+µh(t, x, µ, 0) as the unperturbed unontrolled system and theperturbed unontrolled system, respetively. For �xed µ this is a speial ase of theontrol system (1.1); we use the notation introdued in � 2, � 3 and � 4 with a super�x17



µ to indiate dependene on this parameter. In partiular, solutions (whose existenewe always assume) are denoted by ϕµ(t, x0, z, u), t ∈ R, x0 ∈ Rd, z ∈ Z, u ∈ U .Proposition 6.1. Assume that system (6.1) with ontrol u = 0 satis�es theassumptions (i) to (v) of Theorem 5.5. Let ζµ
± be the almost periodi solutions nearthe hyperboli equilibria x± of the unperturbed unontrolled system and let x(t, µ) :=

ϕµ(t, xµ, z0, 0) be the solution near the heterolini orbit ζ from x− to x+ for some
xµ ∈ Rd, z0 ∈ Z. Let µ be a parameter value suh that the onlusions of Theorem 5.5hold, and assume that there are ε = ε(µ), T = T (µ) > 0 suh that for every (x, z) ∈
Q := clV ×Z

Bε(ϕ
µ(T, x, z, 0)) ⊂ Oµ,+

T (x; z,Q) and Bε(ϕ
µ(−T, x, z, 0)) ⊂ Oµ,−

T (x; z,Q). (6.2)Then there are a ontrol funtion uµ ∈ U and times tµ− < tµ+ suh that the orrespond-ing solution ϕµ(t, xµ, z0, u
µ) of (6.1) satis�es

ϕµ(t, xµ, z0, u
µ) =

{

ζµ
−(t) if t ≤ tµ−,
ζµ
+(t) if t ≥ tµ+.Proof. Pik µ as stated and denote the onstants from ondition (6.2) by ε, T > 0.The solution x(t, µ) for the unontrolled system satis�es (5.4). In partiular, thereare times tµ− < 0 < tµ+, arbitrarily large, suh that

‖x(tµ−, µ) − ζµ
−(tµ−)‖ < ε and ‖x(tµ+, µ) − ζµ

+(tµ+)‖ < ε.Together with (6.2) and the oyle property this means
ζµ
−(tµ−) ∈ Bε(ϕ

µ(tµ−, x
µ, z0, 0))

= Bε(ϕ
µ(−T, ϕµ(tµ− + T, xµ, z0, 0), z0(t

µ
− + T + ·), 0))

⊂ Oµ,−
T (ϕµ(tµ− + T, xµ, z0, 0); z0(t

µ
− + T + ·), Q)and, analogously,

ζµ
+(tµ+) ∈ Bε(ϕ

µ(tµ+, x
µ, z0, 0))

= Bε(ϕ
µ(T, ϕµ(tµ+ − T, xµ, z0, 0), z0(t

µ
+ − T + ·), 0))

⊂ Oµ,+
T (ϕµ(tµ+ − T, xµ, z0, 0); z0(t

µ
+ − T + ·), Q)This ensures the existene of ontrol funtions uµ

± ∈ U satisfying
ζµ
−(tµ−) = ϕ

(

−T, ϕµ(tµ− + T, xµ, z0, 0), z0(t
µ
− + T + ·), uµ

−
)

,

ζµ
+(tµ+) = ϕ

(

T, ϕµ(tµ+ − T, xµ, z0, 0), z0(t
µ
+ − T + ·), uµ

+

)

.Setting
uµ(t) :=











u−(t− tµ− − T ) if t ∈ [tµ−, t
µ
− + T ],

u+(t− tµ+ + T ) if t ∈ [tµ+ − T, tµ+],
0 otherwiseompletes the proof.The previous proposition shows that existene of a heterolini orbit for the un-perturbed unontrolled equation implies the existene of a ontrol steering the system18



with almost periodi exitation from the almost periodi solution near one equilibriumto the almost periodi solution near the other equilibrium. The following result on-siders a onverse situation where the unperturbed equation has equilibria x+ and x−and we want to onlude from existene of ontrolled trajetories of the perturbed sys-tem from points near x− to x+ that a heterolini orbit of the unperturbed equationexists.Proposition 6.2. Suppose that g and h(x, z(t), µ, 0) satisfy assumptions (i) and(ii) of Theorem 5.5 for all z ∈ Z, i. e. these assumptions hold for system (6.1) with
u = 0. Moreover, assume that the hain reurrent set of the unperturbed unontrolledsystem ẋ = g(x) relative to clV is equal to {x+, x−}.Suppose furthermore that the ontrol range U is bounded and there are µn → 0,almost periodi exitations zn ∈ Z, ontrol funtions un ∈ U , times tn− < tn+, andpoints xn ∈ clV suh that the solution ϕn(t) := ϕµn(t, xn, zn, un), t ∈ R, of (6.1) isontained in clV and satis�es ϕn(tn−) → x− and there is δ > 0 with ‖ϕn(t)−x−‖ ≥ δfor all t ≥ tn+ and all n.Then the unperturbed, unontrolled system has a heterolini orbit from x− to
x+. Proof. For every n ∈ N let Tn ≥ tn− be the largest time satisfying ϕn(Tn) ∈
clBr(x−), where r > 0 is hosen suh that Br(x−) ⊂ clV . We may assume thelimit ξ0 := limn→∞ ϕn(Tn) ∈ clBr(x−) exists. It su�es to prove that ξ0 lies on aheterolini orbit in clV from x− to x+.By ompatness of Z, we may assume that zn(Tn + ·) onverges to some z0 ∈ Z.In order to show that the orbit through ξ0 lies in clV, �x t ∈ R and ε > 0. Byassumption

ϕn(Tn) = ϕµn(Tn, xn, zn, un) → ξ0,and µnh(x, z, µn, u) onverges to zero, uniformly in (x, z, u) by ontinuity of h andboundedness of U . Then ontinuous dependene on the right hand side and the initialvalue implies
ϕµn(Tn + t, xn, zn, un)

= ϕµn(t, ϕµn(Tn, xn, zn, un), zn(Tn + ·), un(Tn + ·)) → ϕ0(t, ξ0, z
0, 0).Hene the orbit through ξ0 is ontained in clV . Sine the α- and ω-limit sets of x0are onneted and in the hain reurrent set, they onsist either of x− or x+. Sine

ϕµn(Tn + t, xn, zn, un) ∈ clBr(x−) for t ≤ 0, it follows that the α-limit set of ξ0 isgiven by x−. Similarly, ϕµn(Tn + t, xn, zn, un) 6∈ clBr(x−) for t > 0, by maximalityof Tn. Thus the ω-limit set is given by x+.Next we disuss onsequenes of these results for ontrol sets of systems withalmost periodi exitations. Roughly, the results above imply that the existeneof a heterolini yle of the unperturbed, unontrolled system is equivalent to theexistene of a ontrol set ontaining all almost periodi solutions near the equilibriafor the systems with almost periodi exitation and small ontrol ranges.Reall that a heterolini yle of the unperturbed equation is given by a �niteset x0, x1, . . . , xn = x0 of equilibria together with heterolini solutions ζi from xito xi+1 for i = 0, . . . , n − 1. Existene of heterolini yles an be expeted in thepresene of symmetries.Theorem 6.3. Let x0, x1, . . . , xn = x0 be pairwise di�erent hyperboli equilibriaof the unperturbed unontrolled system ẋ = g(x) and onsider ontrol system (6.1)19



with a bounded ontrol range U ontaining the origin. For |µ| 6= 0, small, and z ∈ Zdenote the almost periodi solutions near xi for exitation z by ζµ
i (z). Assume thatsystem (6.1) with u = 0 satis�es assumptions (i) and (ii) of Theorem 5.5 for all z ∈ Zon an open set V ontaining all equilibria xi.(i) Assume that for all i there are open subsets Vi ⊂ Rd ontaining the equilibria

x− = xi and x+ = xi+1 suh that assumptions (iii) to (v) of Theorem 5.5 are satis�edfor (6.1) with u = 0, and let xi(t, µ, z) = ϕµ(t, xµ
i , z, 0) be the solution near theheterolini orbit ζi(z) from xi to xi+1 . Assume that for all su�iently small |µ| 6= 0there are εi, Ti > 0 suh that for every (x, z) ∈ Qi := clVi ×Z

Bεi
(ϕµ(Ti, x, z, 0)) ⊂ Oµ,+

Ti
(x; z,Qi) and Bεi

(ϕµ(−Ti, x, z, 0)) ⊂ Oµ,−
Ti

(x; z,Qi).(6.3)Then for all |µ| 6= 0, small, there exists a ontrol set Dµ suh that for all z ∈ Z andall i the almost periodi solution satisfy ζµ
i (t) ∈ Dµ

z(t+·) and the heterolini solutionssatisfy xi(t, µ, z) ∈ Dµ,z(t+·).(ii) Conversely, suppose for all i there are open subsets Vi ontaining xi and
xi+1 suh that the hain reurrent set of the unperturbed unontrolled system ẋ =
g(x) relative to clVi is equal to {xi, xi+1}. Furthermore, suppose that for a sequene
0 6= µn → 0 there are ontrol sets Dµn ontaining the almost periodi solutions ζµn

inear xi for almost periodi exitations zn ∈ Z. Then the unperturbed system has aheterolini yle through the xi.Proof.(i) For all i, Theorem 4.7 implies that there are ontrol sets Dµ
i suh that thealmost periodi solutions ζµ

i (z) are ontained in the interior of Dµ
i,z. It remains toshow that all Dµ

i oinide. Fix z ∈ Z and onsider the almost periodi solutions ζi(z)near xi (we suppress dependene on µ in our notation). By Proposition 6.1 there are
y1 ∈ Rd, a ontrol funtion u1 ∈ U , and times t1 < t2 suh that the orrespondingsolution ϕ(t, y1, z, u1) of (6.1) satis�es

ϕ(t, y1, z, u1) =

{

ζ1(t) if t ≤ t1,
ζ2(t) if t ≥ t2.There are y2 ∈ Rd, a ontrol funtion u2 ∈ U , and times τ2 > t2 and t3 > τ2 suh thatthe orresponding solution ϕ(·, y2, z, u1) of (6.1) satis�es

ϕ(t, y2, z, u2) =

{

ζ2(t) if t ≤ τ2,
ζ3(t) if t ≥ t3.Proeeding in this way and using xn = x0, one �nds times T2 > T1 > 0, a point

x ∈ Dz
1 , and a ontrol u ∈ U suh that

ϕ(T1, x, z, u) ∈ D2,z(T1+·) and ϕ(T1 + T2, x, z, u) ∈ D1,z(T1+T2+·),and ψ(t, x1, z, u) ∈ Q for all t ∈ [0, T1 + T2].Then Proposition 4.5 shows D1 = D2 and, repeating this argument, one onludesthat all ontrol sets Di oinide.(ii) The assumptions allows us to apply Proposition 6.2. Hene, for all i, theunperturbed unontrolled system has a heterolini orbit from xi to xi+1.20



7. An Osillator with M-Potential. In this setion we will apply our resultsto a seond order system with M -potential, whih models ship roll motion.Consider the system
ẍ+ µβ1ẋ+ µβ3ẋ

3 + x− αx3 = µz(t) + µu(t) (7.1)with positive parameters α, β1 and β3, a small perturbation parameter µ ∈ R, almostperiodi exitations z : R → R and ontrol funtions u : R → [−ρ, ρ] for a ontrolradius ρ > 0. This model, proposed in Kreuzer and Sihermann [11℄, has been studiedin Colonius, Kreuzer, Marquardt and Sihermann [4℄ without time-dependent exita-tion z. Note that in this appliation the terms u(·) are interpreted as time-dependentperturbations (not as ontrols) where only the range [−ρ, ρ] is known. Here the on-trol sets give information on the global stability behavior: An invariant ontrol setaround the origin indiates stability. If (for large perturbation amplitudes) it hasmerged with a variant ontrol set and itself beomes variant, stability is lost. Heneit is of interest to ompute all ontrol sets.System (7.1) is a speial ase of system (4.6). Hene, Proposition 4.9 shows thatassumption (4.9) in Theorem 4.11 is satis�ed for all ρ2 > ρ1 ≥ 0. Thus every ompathain ontrol set Eρ1 is ontained in the interior of a ontrol set Dρ2 and hene, forall up to ountably many ρ > 0, Remark 4.12 shows that the ompat hain ontrolsets oinide with the losures of ontrol sets.Writing (7.1) as a �rst order system yields the two-dimensional perturbed Hamil-tonian system
ẋ1 = x2,

ẋ2 = −x1 + αx3
1 + µ

(

−β1x2 − β3x
3
2 + z(t) + u(t)

)

.
(7.2)Denote by ϕµ(t, x, z, u) the solution of this system and let

ψµ(t, x, z, u) :=
(

ϕµ(t, x, z, u), θtz
)

.In the unperturbed and unontrolled ase µ = 0 system (7.2) has a �xed point in theorigin and two hyperboli �xed points at (±1/
√
α, 0). The hyperboli �xed points areonneted by two heterolini orbits given by xh
±(t) := ±

(

x1(t), x2(t)
), where

x1(t) :=
1√
α

tanh
t√
2
, x2(t) :=

1√
2α

sech2 t√
2
, t ∈ R,p. Simiu [19, p. 131℄. In the perturbed, unontrolled ase u ≡ 0 denote by ∆± theMelnikov funtions of system (7.2) with respet to xh

± and denote by ζµ
± the almostperiodi solutions near (±1/

√
α, 0), whih exist for su�iently small µ (see Proposi-tion 5.4). Let z0 ∈ Z be the orresponding exitation and ξµ

±(t) :=
(

ζµ
±(t), θtz0

).Proposition 7.1. Assume that the almost periodi exitation z is ontinuouslydi�erentiable with bounded derivative. If the funtions ∆± have simple zeros and µ issmall enough, then system (7.2) has a ontrol set D ontaining ξµ
±(R). Then D willbe alled a heterolini ontrol set.Proof. This essentially follows from Proposition 6.1. To be preise, system (7.2)satis�es assumptions (i) to (v) of Theorem 5.5 for u = 0: Assumption (i) is satis�edfor every bounded open set V ⊂ Rd and every µ̄ > 0. Property (ii) is learly satis�ed,beause z does not depend on x and µ. Assumptions (iii) and (iv) are true for asuitable bounded and open set V ⊂ Rd. Property (v) holds by assumption.21



Furthermore, property (6.2) is satis�ed, as an be shown by Proposition 4.9. Sofor su�iently small µ Proposition 6.1 implies the existene of points xµ
± ∈ R2, ontrolfuntions uµ

± ∈ U and times sµ
± < tµ± suh that

ϕµ(t, xµ
−, z0, u

µ
−) =

{

ζµ
+(t) if t ≤ sµ

−,
ζµ
−(t) if t ≥ tµ−and

ϕµ(t, xµ
+, z0, u

µ
+) =

{

ζµ
−(t) if t ≤ sµ

+,
ζµ
+(t) if t ≥ tµ+.The set D̃ := ψµ(R, xµ

−, z0, u
µ
−)∪ψµ(R, xµ

+, z0, u
µ
+)∪ξµ

−(R)∪ξµ
+(R) satis�es properties(i) and (ii) of ontrol sets and is thus ontained in a ontrol set D. This implies

ξµ
±(R) ⊂ D̃ ⊂ D.First we study the periodi ase and hoose z(t) := F cosωt for positive parame-ters F and ω, whih leads to the system

ẋ1 = x2,

ẋ2 = −x1 + αx3
1 + µ

(

−β1x2 − β3x
3
2 + F cosωt+ u(t)

)

.
(7.3)The exitation z is C1 and its derivative is bounded, so Proposition 7.1 is appliable.The Melnikov funtions ∆± of system (7.3) an easily be omputed using the residuetheorem:

∆±(t0) = −2
√

2β1

3α
− 8

√
2β3

35α2
±

√
2πωF√

α sinh πω√
2

· cosωt0.The Melnikov funtions ∆± have simple zeros if and only if F exeeds a ertain ritialamplitude Fc, i. e. if F > Fc := A−1B for
A :=

√
2πω√

α sinh πω√
2

and B :=
2
√

2β1

3α
+

8
√

2β3

35α2
.Corollary 7.2. If F > Fc, system (7.3) has a heterolini ontrol set forsu�iently small µ.Proof. This follows from Proposition 7.1.As the exitation is T -periodi for T := 2π/ω, it is possible to ompute �bers ofontrol sets by looking at the disrete ontrol system given by the time-T map. For thefollowing omputations we restrit our view to the parameter values α = 0.674, β1 =

0.231 and β3 = 0.375 (see [11℄ for a disussion of these parameters and this hoie) andhoose ω = 2.5 and ρ = 1.0. Then Fc ≈ 5.62880, so let F := 6 > Fc. Figure 7.1 showsthe �ber in phase 0 for ε = 0.1. The ontrol sets were approximated with the graphalgorithm (see Dellnitz/Junge [6℄, Szolnoki [20℄) using the implementation in GAIO1.For a spatial disretization into boxes, this algorithm omputes strongly onnetedomponents of an assoiated graph whose nodes are given by the boxes and whoseedges indiate reahability. The union of the resulting boxes is an approximation toa hain ontrol set; as noted above, for system (7.1) the hain ontrol sets typiallyoinide with the losures of ontrol sets. Note that this �gure shows the �ber of twoontrol sets: an invariant ontrol set around the origin (blak) and the heterolini22
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Figure 7.1. Fiber of ontrol sets for the periodially exited system (7.3). Computed in phase0 for α = 0.674, β1 = 0.231, β3 = 0.375, ω = 2.5, ρ = 1.0, F = 6 and ε = 0.1.
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Figure 7.2. Stable and unstable manifolds for the unontrolled periodially exited sys-tem (7.3). Computed in phase 0 for α = 0.674, β1 = 0.231, β3 = 0.375, ω = 2.5, F = 6 and
ε = 0.1. 23



ontrol set (red). Compare this to Figure 7.2, where the stable and unstable manifoldsfor these parameter values are shown, again for ε = 0.1 and in phase 0.Next we examine quasi-periodi exitations of the form z(t) := F cosω1t +
F sinω2t for positive parameters F, ω1, ω2, whih leads to the system

ẋ1 = x2,

ẋ2 = −x1 + αx3
1 + µ

(

−β1x2 − β3x
3
2 + F cosω1t+ F sinω2t+ u(t)

)

.
(7.4)The exitation z again is C1 and its derivative is bounded. The Melnikov funtions

∆± of system (7.4) are
∆±(t0) = −2

√
2β1

3α
− 8

√
2β3

35α2
±

√
2πF√
α

(

ω1 cosω1t0
sinh πω1√

2

+
ω2 sinω2t0
sinh πω2√

2

)

.The Melnikov funtion ∆± has a simple zero if F > Fc := A−1(S1 + S2)
−1B for

A :=

√
2π√
α
, Si :=

ωi

sinh πωi√
2

, i = 1, 2, and B :=
2
√

2β1

3α
+

8
√

2β3

35α2
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