
CONTROL SYSTEMS WITH ALMOST PERIODIC EXCITATIONSFRITZ COLONIUS†AND TOBIAS WICHTREY†Abstra
t. For 
ontrol systems des
ribed by ordinary di�erential equations subje
t to almostperiodi
 ex
itations the 
ontrollability properties depend on the spe
i�
 ex
itation. Here these prop-erties and, in parti
ular, 
ontrol sets and 
hain 
ontrol sets are dis
ussed for all ex
itations in the
losure of all time shifts of a given almost periodi
 fun
tion. Then relations between hetero
lini
orbits of an un
ontrolled and unperturbed system and 
ontrollability for small 
ontrol ranges andsmall perturbations are studied using Melnikov's method. Finally, a system with two-well potentialis studied in detail.Key words. Nonautonomous 
ontrol systems, almost periodi
ity, 
ontrol sets, Melnikov methodAMS subje
t 
lassi�
ations. 93B05, 37N35, 34C371. Introdu
tion. This paper analyzes 
ontrollability properties of 
ontrol sys-tems whi
h are subje
t to almost periodi
 ex
itations. More pre
isely, we 
onsider
ẋ(t) = f

(

x(t), z(t), u(t)
)

, u ∈ U , (1.1)in an open set M ⊂ Rd with admissible 
ontrols in U = {u ∈ L∞(R,Rm), u(t) ∈ Ufor all t ∈ R} and 
ontrol range U ⊂ Rm. We assume that z is an almost periodi
fun
tion with values in a 
ompa
t subset Z ⊂ Rk. In parti
ular, this in
ludes periodi
ex
itations and ex
itations with several in
ommensurable periods.Instead of analyzing the behavior of system (1.1) for a single almost periodi
ex
itation, we allow time shifts of z and, more generally, all ex
itations in the set Zof 
ontinuous fun
tions whi
h 
an uniformly be approximated by shifts of z (again,all elements of Z are almost periodi
). Observe that the traje
tories of (1.1) aredetermined by the initial states x = x(0) ∈M, the ex
itation z ∈ Z, and the 
ontrolfun
tion u : R → R
m.There are various ways to look at this system:(i) as a 
ontrol system in M with states x ∈M ;(ii) as a 
ontrol system in M ×Z with extended states (x, z) ∈M ×Z;(iii) as a dynami
al system in M ×Z × U with states (x, z, u) ∈M ×Z × U .Observe that the 
ontrol system in (i) is nonautonomous; the evolution of thestates x is only determined, if, in addition to the 
ontrol fun
tion u ∈ U , also thephase of the almost periodi
 fun
tion z is known. Hen
e here we have to distinguishbetween an analysis for �xed ex
itation z ∈ Z and the proje
tions to M . In (ii), we
an sometimes, if the almost periodi
 fun
tion is a solution of a di�erential equationon a 
ompa
t manifold Z (e. g. if Z is a k-Torus) repla
e Z by Z. Here, however,exa
t 
ontrollability properties in the extended state spa
e M × Z 
an only hold inthe very spe
ial 
ase of a periodi
 fun
tion z. Furthermore, the dimension of the statespa
e of the 
ontrol system is in
reased by k, whi
h makes a global numeri
al analysismu
h more di�
ult. The formulation (iii) results in a 
ontinuous dynami
al system(a 
ontrol �ow) provided that the system is 
ontrol a�ne and the 
ontrol range U is
ompa
t and 
onvex. The analysis of this dynami
al system (in
luding time shifts on

Z and on U) may yield stru
tural insights and, in parti
ular, sheds light on subsetsof 
omplete 
ontrollability, i. e. 
ontrol sets. In the present paper, we will analyzesystem (1.1) employing all three points of view above.
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Note that for T -periodi
ally ex
ited 
ontrol systems, 
ontrollability properties inthe extended state spa
e (where also the phase in R/TZ is part of the state) 
anto a large extent be 
hara
terized by a Poin
aré se
tion, i. e. the interse
tion with a�ber over a �xed phase (
ompare Gayer [8℄). We will generalize some of these results.Using methods from ergodi
 theory, 
ontrollability properties of nonautonomous linear
ontrol systems have also been dis
ussed by Johnson and Nerurkar [10℄. Many furtherresults in this dire
tion have been obtained, in parti
ular in 
onne
tion with asso
iatedRi

ati equations. For a di�erent line of resear
h, see San Martin and Patrao [16℄,who study 
ontrol sets and 
hain 
ontrol sets for semi-dynami
al systems on �berbundles (related to the third interpretation above of system (1.1)).The main topi
 of this paper are the relations between hetero- or homo
lini
 orbitsof an un
ontrolled and unperturbed system and 
ontrollability for small 
ontrol ranges.Here Melnikov's method plays an important role. In the 
ase of a periodi
 ex
itationthis was dis
ussed from a numeri
al point of view in Colonius, Kreuzer, Marquardtand Si
hermann [4℄. In the present paper a 
hara
terization in the general almostperiodi
 
ase will be given (the result is also new in the periodi
 
ase). Melnikov'smethod for su
h di�erential equations was, in parti
ular, developed by Palmer [15℄,S
heurle [18℄ and Meyer and Sell [14℄. Our paper is 
loser to the spirit of the latterreferen
e, sin
e we 
onsider the hull of an almost periodi
 ex
itation. We would like topoint out that we do not really need the strength of Melnikov's result here; existen
eof a 
haoti
 set is not in our 
enter of interest. Instead interse
tions of stable andunstable manifolds are relevant here. Note that basi
 referen
es for almost periodi
di�erential equations in
lude Fink [7℄ and Levitan and Zhikov [12℄; a ni
e dis
ussionof almost periodi
 and quasi-periodi
 fun
tions 
an also be found in � II.1 of [14℄,together with further referen
es.The paper is organized as follows: After preliminaries in � 2, we analyze 
hain
ontrol sets in � 3. Se
tion 4 introdu
es 
ontrol sets and presents relations to 
hain
ontrol sets and to almost periodi
 solutions of the un
ontrolled system. Se
tion5 presents relevant results on almost periodi
 perturbations of hyperboli
 equilibriaand Melnikov's method. These results are essentially known in the literature (seePalmer [15℄, S
heurle [18℄, and also Meyer and Sell [14℄). However, for the reader's
onvenien
e, we have in
luded some arguments from the proofs. This is used in� 6 to study the relation between hetero
lini
 orbits of an unperturbed system and
ontrollability for small 
ontrol ranges. In the �nal se
tion 7 we dis
uss a se
ond ordersystem with M -potential modelling ship roll motion. Note that here the 
ontrols uare interpreted as time-dependent perturbations.2. Preliminaries. Consider the 
ontrol system (1.1)
ẋ(t) = f

(

x(t), z(t), u(t)
)

, u ∈ U ,in an open set M ⊂ Rd with admissible 
ontrols in U and assume that z is an almostperiodi
 fun
tion. That is, we assume (
ompare e. g. S
heurle [18℄, De�nition 2.6)that z : R → Rk is 
ontinuous and that for every ε > 0 there exists an l = l(ε) > 0su
h that in any interval of length l there is a so-
alled translation number τ su
hthat
‖z(t+ τ) − z(t)‖ < ε for all t ∈ R.De�ne θ as the time shift (θtz)(s) := z(t + s), s, t ∈ R. Let Z be the 
losure in thespa
e Cb(R,R

k) of bounded 
ontinuous fun
tions of the shifts of an almost periodi
2



fun
tion. Then Z is a minimal set, i. e. every traje
tory is dense in Z. Observe thatfor z ∈ Z it holds that z(t) = (θtz)(0). Assuming global existen
e and uniqueness,we denote by ϕ(t, t0, x, z, u) the solution of the initial value problem
ẋ(t) = f

(

x(t), z(t), u(t)
)

, x(t0) = x; (2.1)if t0 = 0, we often omit this argument. The solution map of the 
oupled system isdenoted by
ψ(t, x, z, u) =

(

ϕ(t, x, z, u), θtz
)

.We assume that the set of admissible 
ontrols is given by
U = {u ∈ L∞(R,Rm), u(t) ∈ U for almost all t},where U ⊂ Rm. If we denote also the time shift on U by θt, we obtain the 
o
y
leproperty
ϕ(t+ s, x, z, u) = ϕ

(

s, ϕ(t, x, z, u), θtz, θtu
)

, t, s ∈ R.Finally, the maps
Φt : M ×Z × U →M ×Z × U , Φt(x, z, u) =

(

ψ(t, x, z, u), θtu
)

, t ∈ R,de�ne a 
ontinuous �ow, the 
ontrol �ow, provided that U ⊂ Rm is 
onvex and
ompa
t and
f(x, z, u) = f0(x, z) +

m
∑

i=1

uifi(x, z)with C1-fun
tions fi : Rd×Rk → Rd; here U ⊂ L∞(R,Rm) is endowed with the weak∗topology. This follows by a minor extension of Proposition 4.1.1 in [3℄. Throughoutthis paper, we assume that these 
onditions guaranteeing 
ontinuity of the 
ontrol�ow are satis�ed. For 
onvenien
e, we also assume that 0 ∈ U , and we 
all the
orresponding di�erential equation with u ≡ 0 the un
ontrolled system.For periodi
 and for quasi-periodi
 ex
itations we may be able to repla
e Z by a�nite dimensional state spa
e Z.Example 2.1. For a smooth periodi
 ex
itation let ζ : S1 → S1 =: Z be thesolution map ζtz0 = ω(t+ z0), t ∈ R, of ż = ω, z(0) = z0; here ω > 0 is the frequen
yand (2.1) may be written as
ẋ(t) = f

(

x(t), ζt(z0), u(t)
)

, x(0) = x0.For a quasi-periodi
 ex
itation, let ζ : Sk → Sk =: Z be the solution map ζtz0 =
(

ω1(t+ z0,1), . . . , ωk(t+ z0,k)
)

, t ∈ R, of
ż1 = ω1, ż2 = ω2, . . . , żk = ωk,with initial 
ondition z(0) = (z0,1, . . . , z0,k). Here ω1, . . . , ωk > 0 are the frequen
iesand we assume that they are rationally independent, i. e. if qi ∈ Q with q1ω1 + · · · +

qkωk = 0, then qi = 0 for all i. Again (2.1) may be written as above.3



3. Chain Control Sets. In this se
tion we de�ne and 
hara
terize 
hain 
ontrolsets relative to a subset of the state spa
e working in the general almost periodi
 
ase.It will be 
onvenient to write for a subset A ⊂ M × Z the se
tion with a �berover z ∈ Z as
Az := A ∩ (M × {z}).Hen
e A =

⋃

z∈Z Az . Where 
onvenient, we identify Az and {x ∈M, (x, z) ∈ Az}.A 
ontrolled (ε, T )-
hain along z ∈ Z is given by T0, . . . , Tn−1 ≥ T, 
ontrols
u0, . . . , un−1 ∈ U and points x0, . . . , xn ∈M with

d
(

ϕ(Tj , xj , θT0+···+Tj−1
z, uj), xj+1

)

< ε for all j = 0, . . . , n− 1.Definition 3.1. A 
hain 
ontrol set relative to a 
losed set Q ⊂ M × Z is anonvoid maximal set E ⊂M ×Z su
h that(i) for all (x, z), (y, w) ∈ E and all ε, T > 0 there exists a 
ontrolled (ε, T )-
hainin Q along z from x to (y, w), i. e. x0 = x, xn = y and d(θT0+···+Tn−1
z, w) < ε, and

ψ(t, xj , θT0+···+Tj−1
z, uj) ∈ Q for all t ∈ [0, Tj] and for all j; (3.1)(ii) for all (x, z) ∈ E there is u ∈ U with ψ(t, x, z, u) ∈ E for all t ∈ R.The 
ondition in (3.1) 
an be written as

ϕ(t, xj , θT0+···+Tj−1
z, uj) ∈ Qθtzj

.Note that the three 
omponents x, z and u are treated in di�erent ways: jumpsare allowed in x, approximate rea
hability is required for z and no 
ondition on the
ontrols is imposed. Observe that also Meyer and Sell [14℄ do not allow jumps in thealmost periodi
 base �ow. It is easy to show that 
hain 
ontrol sets are 
losed.Next we dis
uss the behavior for �xed `phases' z ∈ Z by looking at the �bers ofa 
hain 
ontrol set.Lemma 3.2. Suppose that E is a 
hain 
ontrol set relative to Q. Then the �bers
Ez := E ∩Qz, z ∈ Z, satisfy the following properties:(i) For every z ∈ Z and all x, y ∈ Ez and all ε, T > 0 there exists a 
ontrolled
(ε, T )-
hain in Q from x along z to (y, z).(ii) For every z ∈ Z and every x ∈ Ez there exists a 
ontrol u ∈ U su
h that

ϕ(t, x, z, u) ∈ Eθtz for all t ∈ R.(iii) If xn ∈ Ezn
with (xn, zn) → (x, z) ∈M ×Z, then x ∈ Ez.Proof. Condition (iii) follows from 
losedness of E, (i) and (ii) are obvious.Remark 3.3. In 
ondition (ii) of Lemma 3.2 one does not have that a traje
toryexists whi
h after an appropriate time 
omes ba
k to Ez (as for periodi
 ex
itations,where one 
omes ba
k into the same �ber after the period). In the general almostperiodi
 
ase the traje
tory will never 
ome ba
k to the same �ber. Instead, the weakerproperty formulated in (ii) holds together with 
ondition (iii), whi
h lo
ally 
onne
tsdi�erent �bers and is an upper semi-
ontinuity property of z 7→ Ez.Next we dis
uss if the properties formulated in Lemma 3.2 
hara
terize 
hain
ontrol sets.Lemma 3.4. Suppose Q is 
ompa
t and that Ez ⊂ Qz, z ∈ Z, is a family of setssatisfying 
onditions (i), (ii), and (iii) in Lemma 3.2. Assume that

E :=
⋃

z∈Z
Ez ⊂ intQ.4



Then E satis�es properties (i) and (ii) of 
hain 
ontrol sets in De�nition 3.1.Proof. Let (x, z), (y, w) ∈ E and ε, T > 0. Then ω(z) = Z and there is a 
ontrol
u ∈ U su
h that ψ(t, x, z, u) ∈ E for all t ∈ R. In parti
ular, this proves property (ii)of 
hain 
ontrol sets. Furthermore, there are Sk > T su
h that for zk := θSk

z one has
d(zk, w) < 1/k and 
learly yk := ϕ(Sk, x, z, u) ∈ Ezk

. By 
ompa
tness of Q we mayassume that (yk, zk) 
onverges to some (y0, w) ∈ Q. By property (iii) it follows that
y0 ∈ Ew. By property (i) there is a 
ontrolled (ε/2, T )-
hain in Q from y0 along w to
(y, w) satisfying x0 = y0, xn = y and d(θT0+···+Tn−1

w,w) < ε/2, and
ψ(t, xj , θT0+···+Tj−1

w, uj) ∈ Q for all t ∈ [0, Tj] and for all j.Introdu
ing, if ne
essary, trivial jumps, we may assume that Tj ∈ [T, 2T ] for all j. Byuniform 
ontinuity, there is δ > 0 su
h that for all x ∈ Q and all u ∈ U

d(z, z′) < δ implies d
(

ϕ(t, x, z, u), ϕ(t, x, z′, u)
)

< ε/2, t ∈ [0, 2T ]. (3.2)Choose k large enough su
h that
d(zk, w) = d(θSk

z, w) := sup
t∈R

‖z(Sk + t) − w(t)‖ < δ and d(ϕ(Sk, x, z, u), y0) < ε.Hen
e for all j
d
(

ϕ(Tj , xj , θˆSk+T0+···+Tj−1
z, uj), xj+1

)

≤ d
(

ϕ(Tj , xj , θSk+T0+···+Tj−1
z, uj), ϕ(Tj , xj , θT0+···+Tj−1

w, uj)
)

+ d
(

ϕ(Tj , xj , θT0+···+Tj−1
w, uj), xj+1

)

< ε/2 + ε/2 = ε.This shows that there is a 
ontrolled (ε, T )-
hain from x along z to (y, w). Sin
e byassumption E ⊂ intQ and by (3.2) this (ε, T )-
hain is ε-
lose to an (ε, T )-
hain in
Q, we may 
hoose ε > 0 small enough, su
h that this is a 
hain in Q. This provesproperty (i) of 
hain 
ontrol sets.The following result 
lari�es the relations between 
hain 
ontrol sets and their�bers.Proposition 3.5. Consider system (1.1) in a 
losed subset Q ⊂M ×Z.(i) Suppose that Q is 
ompa
t and let Ez ⊂ Qz, z ∈ Z, be a maximal family ofsets satisfying 
onditions (i)�(iii) in Lemma 3.2. If E :=

⋃

z∈ZE
z ⊂ intQ, then E isa 
hain 
ontrol set.(ii) Let E be a 
hain 
ontrol set. Then the �bers Ez , z ∈ Z, are 
ontained in amaximal family Ẽz ⊂ Qz, z ∈ Z, of sets satisfying 
onditions (i)�(iii) in Lemma 3.2.If Ẽ :=

⋃

z∈Z Ẽ
z ⊂ intQ, then E = Ẽ.Proof. It only remains to dis
uss the maximality properties.(i) The union E satis�es properties (i) and (ii) of 
hain 
ontrol sets, sin
e for

ε < dist(E, ∂Q) the 
ontrolled (ε, T )-
hains are in Q. Hen
e E is 
ontained in theunion Ẽ of all sets 
ontaining E and satisfying these properties. Then Ẽ is a 
hain
ontrol set and its �bers Ẽz 
ontain the sets Ez and satisfy properties (i)�(iii) inLemma 3.2. By maximality, it follows that E = Ẽ.(ii) Let E be a 
hain 
ontrol set. Then the �bers Ez satisfy properties (i)�(iii) inLemma 3.2. Clearly, the family Ez , z ∈ Z, is 
ontained in a maximal family Ẽz , z ∈ Z,with these properties. If Ẽ ⊂ intQ, the �rst assertion shows that Ẽ is a 
hain 
ontrolset and hen
e E = Ẽ. 5



It is of great interest to see if the behavior in a single �ber determines 
hain
ontrol sets. In the periodi
 
ase, one 
an re
onstru
t 
hain 
ontrol sets from theirinterse
tion with a �ber. More pre
isely, the following is a minor modi�
ation ofGayer [8℄, Taubert [21, Satz 2.2.5℄.Proposition 3.6. Assume that in system (1.1) the set Z 
onsists of the shiftsof a T -periodi
 fun
tion and write Z := R/TZ. Let Q ⊂ M × Z be 
losed and pi
k
z0 ∈ Z. Suppose that Ez0 ⊂ Qz0

is a maximal set su
h that(i) for all x, y ∈ Ez0 and all ε > 0 there are (xj , zj) ∈ Q × Z and 
ontrols
uj ∈ U with (x0, z0) = (x, z0), (xn, zn) = (y, z0) su
h that for all j = 0, . . . , n− 1

d
(

ψ(T, (xj , zj , uj)), (xj+1 , zj+1)
)

< ε and ψ(t, xj , zj , uj) ∈ Q for t ∈ [0, T ],(ii) for all x ∈ Ez0 there is u ∈ U with ϕ(T, x, z0, u), ϕ(−T, x, z0, u) ∈ Ez0 .Then the set
E :=

{

(x, z) ∈M × Z,
there are x0 ∈ Ez0 , u ∈ U , t ∈ [0, T ) with

(x, z) = ψ(t, x0, z0, u) and ϕ(T, x0, z0, u) ∈ Ez0

}is a 
hain 
ontrol set relative to Q.Conversely, for a 
hain 
ontrol set E ⊂ Q × Z, every �ber Ez0
, z0 ∈ Z, is maximalwith properties (i) and (ii).In order to derive an analogous result in the almost periodi
 
ase, we have tomodify property (ii) in Proposition 3.6, sin
e it 
annot be satis�ed.Theorem 3.7. Consider system (1.1) and assume that Q ⊂ M ×Z is 
ompa
t.For some z0 ∈ Z let Ez0 ⊂ Q × {z0} be a nonvoid maximal set su
h that for all

x0, y0 ∈ Ez0 and all ε, T > 0 there exists a 
ontrolled (ε, T )-
hain in Q from x0 along
z0 to (y0, z0).Then the set
E := cl















(x, z) ∈M × Z,

for all ε, T > 0 there are x0, y0 ∈ Ez0 and 
ontrolled
(ε, T )-
hains in Q from x0 along z0 to (y0, z0) su
hthat (x, z) = ψ(t, xj , θT0+···+Tj−1

z0, uj) for some jand t ∈ [0, Tj]















.is a 
hain 
ontrol set relative to Q.Proof. Consider the �bers Ez , z ∈ Z, of E. By 
losedness of E it is 
lear that
xn ∈ Ezn

with (xn, zn) → (x, z) ∈M ×Z implies x ∈ Ez. Sin
e Ez0 is nonvoid and Eis 
ontained in the 
ompa
t set Q, hen
e also 
ompa
t, every �ber Ez of E is nonvoid.Let (x, z), (y, w) ∈ E and ε, T > 0. Then there exists a 
ontrolled (ε, T )-
hain in
Q from x along z to (y, w). This follows for elements on 
ontrolled 
hains from Ez0 to
Ez0 by 
on
atenating appropriate 
hains and using 
ontinuity (in order to guarantee
Tj ≥ T ). Again by 
ontinuity, this also follows for elements in the 
losure of the set ofthese points. It remains to show that for every z ∈ Z and every x ∈ Ez there existsa 
ontrol u ∈ U su
h that

ϕ(t, x, z, u) ∈ Eθtz for all t ∈ R.For (x, z) ∈ E and k ∈ N 
hoose 
ontrolled (1/k, T )-
hains ζk from x along z to (x, z)with 
ontrols uk
j ∈ U . Then a subsequen
e of uk

0 
onverges to some 
ontrol v0 ∈ Uand, by 
ontinuity,
ϕ(T, x, z, uk

0) → ϕ(T, x, z, v0) for k → ∞.6



Then one �nds that ϕ(T, x, z, v0) ∈ EθT z, sin
e E is 
losed. Iterating this pro
edure,one 
onstru
ts a 
ontrol u+ ∈ U with ϕ(t, x, u+) ∈ E for all t ≥ 0. For negative times,
onsider the last members of the 
hains ζk. We may assume that the 
orresponding
ontrols uk
nk


onverge to a 
ontrol v ∈ U and, by de�nition,
ψ(Tnk

, xnk
, θT k

0
+···+T k

nk

z, uk
nk

) → (x, z) for k → ∞.By 
ontinuity, we may assume that T k
nk

∈ [T, 2T ], and hen
e that T k
nk

→ S ≥ T .Then θT k
nk

uk
nk

→ θSv and 
ontinuity implies
ψ(Tnk

− T, xnk
, θT k

0
+···+T k

nk

z, uk
nk

)

= ψ(−T, ψ(Tnk
, xnk

, θT k
0

+···+T k
nk

z, uk
nk

), θT k
nk

uk
nk

)

→ ψ(−T, x, z, θSv) for k → ∞.With u− := θSv one �nds that ϕ(−T, x, z, v1) ∈ EθT z , sin
e E is 
losed. Iteratingthis pro
edure, one 
onstru
ts a 
ontrol u− ∈ U with ϕ(t, x, z, u−) ∈ E for all t ≤ 0.Combining u+ and u− the desired 
ontrol u is found.Remark 3.8. Theorem 3.7 shows that, up to 
losure, one 
an �nd 
hain 
ontrolsets by looking at a single �ber, i. e. a single almost periodi
 ex
itation. This signif-i
antly simpli�es numeri
al 
omputations, sin
e only one almost periodi
 ex
itation
z(t), t ≥ 0, has to be 
onsidered. Then the resulting sets must be 
onsidered for thosetimes T where z and θT z are 
lose. In the quasi-periodi
 
ase (
p. Example 2.1), onehas to look for (large) times t where all ωit are 
lose to zero modulo 2π.In addition to 
hain 
ontrol sets E, also their proje
tion to M de�ned as

πME := {x ∈M, (x, z) ∈ E for some z ∈ Z}is of interest. Obviously, for all (x1, x2) ∈ πME there are z1, z2 ∈ Z su
h that
(x1, z1), (x2, z2) ∈ E, hen
e there are 
ontrolled (ε, T )-
hains from x1 along z1 to
(x2, z2).4. Controllability and Chain Controllability. The main aim in this se
tionis to analyze, when an almost periodi
 solution of the un
ontrolled system is 
ontainedin the interior of a subset of 
omplete 
ontrollability. For this purpose, we ask whena rea
hable point is 
ontained in the interior of the rea
hable set and dis
uss 
hain
ontrollability. This leads us to 
ontrol sets and their relation to 
hain 
ontrol sets.Again, 
onsider 
ontrol system (1.1). For a 
losed subset Q ⊂ M × Z, a point
x ∈ Q and z ∈ Z we de�ne the positive and negative orbits along z relative to Q as
O+(x; z,Q) := {ϕ(t, x, z, u), with ψ(s, x, z, u) ∈ Q, s ∈ [0, t] for some t ≥ 0, u ∈ U},
O−(x; z,Q) := {ϕ(t, x, z, u), with ψ(s, x, z, u) ∈ Q, s ∈ [t, 0] for some t ≤ 0, u ∈ U}.Observe that ϕ(t, x, z, u) ∈ Qθtz. Analogously O+

t (x; z,Q),O−
t (x; z,Q) et
. are de-�ned, if we restri
t the times a

ordingly. If Q = M , we omit the argument Q.In addition to 
hain 
ontrol sets it is also of interest to dis
uss 
ontrol sets, i. e.maximal subsets of approximate 
ontrollability.Definition 4.1. For a 
losed subset Q ⊂M ×Z a subset D ⊂ Q is a 
ontrol setrelative to Q if it is maximal with the following properties:(i) For all (x, z), (y, w) ∈ D there are Tn ≥ 0, un ∈ U with ψ(Tn, x, z, un) →

(y, w) and ψ(t, x, z, un) ∈ Q for t ∈ [0, Tn].7



(ii) For every z ∈ Z and every x ∈ Dz there exists a 
ontrol u ∈ U su
h that
ψ(t, x, z, u) ∈ D for all t ≥ 0.In 
ondition (i), it is 
lear that Tn → ∞, unless the ex
itation is periodi
. Condi-tion (ii) immediately implies that the proje
tion of the 
ontrol set is dense in Z; thein
lusion may be rewritten as ϕ(t, x, z, u) ∈ Dz(t+·) for all t ≥ 0.For periodi
 ex
itations, one 
an 
hara
terize 
ontrol sets by looking at the dis-
rete time system de�ned by the Poin
aré map (Gayer [8℄). We will show that also inthe almost periodi
 
ase, it is possible to 
hara
terize 
ontrol sets �berwise.Lemma 4.2. Suppose that D ⊂ Q is a 
ontrol set. Then the �bers Dz := D∩Qz,

z ∈ Z, satisfy the following properties:(i) For every z ∈ Z and all x, y ∈ Dz there are Tn → ∞ and un ∈ U with
ψ(Tn, x, z, un) → (y, z) and ψ(t, x, z, un) ∈ Q for all t ∈ [0, Tn].(ii) For every z ∈ Z and every x ∈ Dz there exists a 
ontrol u ∈ U su
h that

ϕ(t, x, z, u) ∈ Dθtz for all t ≥ 0.Proof. This obviously follows from properties (i) and (ii) of 
ontrol sets.The following lemma shows, that the properties in Lemma 4.2 
hara
terize 
ontrolsets.Lemma 4.3. Suppose Q ⊂M ×Z is 
losed and that Dz ⊂ Qz, z ∈ Z, is a familyof sets satisfying 
onditions (i) and (ii) in Lemma 4.2 and, additionally,(iii) For every (x, z) ∈ Dz and all Tn > 0 with θTn
z → w ∈ Z there are y ∈ Mand un ∈ U su
h that ψ(Tn, x, z, un) → (y, w) ∈ Dw and ψ(t, x, z, un) ∈ Q for all

t ∈ [0, Tn].Then D :=
⋃

z∈Z D
z satis�es properties (i) and (ii) of 
ontrol sets in De�ni-tion 4.1.Proof. Property (ii) of 
ontrol sets is 
learly satis�ed due to property (ii) of the�bers. In order to prove property (i), let (x, z), (y, w) ∈ D. Sin
e ω(z) = Z there are

Sk → ∞ with θSk
z → w. By Property (iii) we may assume that, for some 
ontrols

uk ∈ U and some (y0, w) ∈ D

ψ(Sk, x, z, uk) → (y0, w) in Q. (4.1)By property (i) of the �bers there are Tn → ∞ and vn ∈ U with
ψ(Tn, y0, w, vn) → (y, w) in Q. (4.2)Let ε > 0 and denote here and in the following the open ε-ball around x by Bε(x).For every n ∈ N there is an ηn > 0 su
h that

ψ
(

Tn,Bηn
(y0, w), vn

)

⊂ Bε/2

(

ψ(Tn, y0, w, vn)
) (4.3)due to 
ontinuous dependen
e on initial 
onditions. Convergen
e in (4.2) implies that

ψ(Tn, y0, w, vn) ∈ Bε/2(y, w) for su�
iently large n. Together, this yields
ψ
(

Tn,Bηn
(y0, w), vn

)

⊂ Bε(y, w)for n large enough.By 
onvergen
e in (4.1), there is a sequen
e (kn)n∈N ⊂ N su
h that
ψ(Skn

, x, z, ukn
) ∈ Bηn

(y0, w).8



Let T̃n := Skn
+ Tn and

ũn(t) :=

{

un(t) if t < Skn
,

vn(t− Skn
) otherwise.Then in
lusion (4.3) implies ψ(T̃n, x, z, ũn) ∈ Bε(y, w) for all n ∈ N. Sin
e ε > 0 isarbitrary, this implies ψ(T̃n, x, z, ũn) → (y, w). Furthermore ψ(t, x, z, ũn) ∈ Q for all

t ∈ [0, T̃n], n ∈ N, by 
onstru
tion.The following result 
lari�es the relations between 
ontrol sets and their �bers.Theorem 4.4. Consider system (1.1) in a 
losed subset Q ⊂M ×Z.(i) Let Dz ⊂ Qz, z ∈ Z, be a maximal family of sets satisfying 
onditions (i)and (ii) in Lemma 4.2 and 
ondition (iii) in Lemma 4.3. Then D :=
⋃

z∈Z D
z is a
ontrol set.(ii) Let D be a 
ontrol set. Then the �bers Dz form a maximal family of setssatisfying 
onditions (i) and (ii) in Lemma 4.2Proof. By Lemmas 4.2 and 4.3 only maximality has to be shown.(i) By Lemma 4.3 the set D :=

⋃

z∈Z D
z satis�es the two de�ning propertiesof 
ontrol sets and is thus 
ontained in a 
ontrol set D̃. The �bers D̃z, z ∈ Z, satisfy
onditions (i) and (ii) in Lemma 4.2. So by maximality D̃z = Dz for every z ∈ Z,whi
h implies D = D̃.(ii) By Lemma 4.2 the �bers Dz satisfy 
onditions (i) and (ii) and are thus
ontained in a maximal family Dz , z ∈ Z, of sets satisfying these properties. ByLemma 4.3 the set D̃ :=

⋃

z∈Z D
z is a 
ontrol set. Clearly D ⊂ D̃. Maximalityimplies D = D̃ and so Dz = Dz for all z.We note the following simple property of 
ontrol sets.Proposition 4.5. Let D1 and D2 be 
ontrol sets relative to Q and assume thatthere are z ∈ Z, times T2 > T1 > 0, a point x ∈ Dz

1 , and a 
ontrol u ∈ U su
h that
ϕ(T1, x, z, u) ∈ D2,z(T1+·) and ϕ(T1 + T2, x, z, u) ∈ D1,z(T1+T2+·),and ψ(t, x1, z, u) ∈ Q for all t ∈ [0, T1 + T2].Then D1 = D2.Proof. This follows by maximality of D1, sin
e D1 ∪{ψ(t, x, z, u), t ∈ [0, T1 +T2]}satis�es properties (i) and (ii) of 
ontrol sets.Our next aim is to prove that under an inner-pair 
ondition every almost periodi
solution of the un
ontrolled equation is 
ontained in the interior of a 
ontrol set. For aperiodi
 ex
itation as 
onsidered in Example 2.1, the state spa
e Z = S1 is (trivially)
ompletely 
ontrollable. However, already for a quasi-periodi
 ex
itation with twonon
ommensurable (i. e. rationally independent) frequen
ies ω1, ω2, this is no longertrue. Hen
e it does not make sense to 
onsider exa
t 
ontrollability properties inthe z-
omponent. This is di�erent in the x-
omponent as shown by the followingproposition.Proposition 4.6. Let ψ(t, x0, z0, 0) ∈ Q, t ∈ R, be an almost periodi
 solution ofthe un
ontrolled system and de�ne A := cl{ψ(t, x0, z0, 0), t ∈ R}. Assume that thereare ε, T > 0 su
h that for every (x, z) ∈ A

Bε

(

ϕ(T, x, z, 0)
)

⊂ O+
T (x; z,Q).Then for all (x, z), (y, w) ∈ A there is τ > 0 su
h that Bε/2(y) ⊂ O+

τ (x; z,Q) and forevery y0 ∈ Bε/2(y) there are τn ≥ 0 and un ∈ U with ϕ(τn, x, z, un) = y0 in Q and
θτn

z → w. 9



Proof. Let (x, z), (y, w) ∈ A. Note that by uniform 
ontinuity, there is δ > 0 su
hthat
d
(

(x1, z1), (x2, z2)
)

< δ implies d
(

ψ(T, x1, z1, 0), ψ(T, x2, z2, 0)
)

< ε/2.By almost periodi
ity one has ω(x, z) = A, hen
e there are Sn → ∞ su
h that
ψ(Sn, x, z, 0) → ψ(−T, y, w, 0) in A ⊂ Q. Choose n large enough su
h that for
S0 := Sn

d(ψ(−T, y, w, 0), ψ(S0, x, z, 0)) < δ. (4.4)This implies
d((y, w), ψ(S0 + T, x, z, 0)) = d(ψ(T, ψ(−T, y, w, 0), 0), ψ(T, ψ(S0, x, z, 0), 0)) < ε/2and we 
on
lude for ε > 0, small enough,

Bε/2(y) ⊂ Bε

(

ϕ(S0 + T, x, z, 0)
)

= Bε

(

ϕ
(

T, ϕ(S0, x, z, 0), θT z
)

)

⊂ intO+
T

(

ϕ(S0, x, z, 0); θT z,Q
)

⊂ intO+
S0+T (x; z,Q).This yields the �rst assertion with τ = S0 + T and the se
ond assertion follows with

τn := Sn + T if we 
onsider δn → 0 in (4.4).This proposition allows us to show that almost periodi
 solutions of the un
on-trolled system are 
ontained in the interior of 
ontrol sets. In other words, around analmost periodi
 solution we have 
omplete 
ontrollability along the almost periodi
ex
itations.Theorem 4.7. Let ψ(t, x0, z0, 0) ∈ Q, t ∈ R, be an almost periodi
 solution ofthe un
ontrolled system and let A := cl{ψ(t, x0, z0, 0), t ∈ R}. Assume that there are
ε, T > 0 su
h that for every (x, z) ∈ A

Bε(ϕ(T, x, z, 0)) ⊂ O+
T (x; z,Q) and Bε(ϕ(−T, x, z, 0)) ⊂ O−

T (x; z,Q). (4.5)Then there exists a 
ontrol set D su
h that for every (x, z) ∈ A one has x ∈ intDz.Proof. It is 
lear that the set A satis�es properties (i) and (ii) of De�nition 4.1.Hen
e it is 
ontained in a maximal set with these properties, i. e. a 
ontrol set D. Theassertion follows, if we 
an show that for all (x, z) ∈ A the neighborhoods Bε/2(x) alsosatisfy these properties. Let (x, z), (y, w) ∈ A. For property (i) it su�
es to show thatfor x0 ∈ Bε/2(x), y0 ∈ Bε/2(y) there are Tn ≥ 0 and un ∈ U with ψ(Tn, y0, w, un) →
(x0, z) in Q. Sin
e ψ(T, x, z, 0) ∈ A, 
ondition (4.5) implies

Bε/2(x) ⊂ O−
T

(

ψ(T, x, z, 0)
)

.Hen
e for every (x0, z) ∈ Bε/2(x) × {z} there is a 
ontrol u0 ∈ U with ψ(T, x, z, 0) =
ψ(T, x0, z, u0). Similarly, ψ(−T, y, w, 0) ∈ A implies

Bε/2(y) ⊂ O+
T

(

ψ(−T, y, w, 0)
)

,and hen
e there is a 
ontrol v0 ∈ U with (y0, w) = ψ(T, ψ(−T, y, w, 0), v0).Sin
e ψ(T, x, z, 0), ψ(−T, y, w, 0) ∈ A there are Sn ≥ 0 and vn ∈ U with
ψ
(

Sn, ψ(T, x, z, 0), vn

)

→ ψ(−T, y, w, 0) in Q.10



By 
ontinuity, this implies
ψ
(

T, ψ
(

Sn, ψ(T, x, z, 0), vn

)

, v0

)

→ ψ
(

T, ψ(−T, y, w, 0), v0
)

= (y0, w).De�ne the 
on
atenated 
ontrols
un(t) :=







u0(t) for t ∈ [0, T ]
vn(t− T ) for t ∈ (T, T + Sn]
v0(t− T − Sn) for t ∈ (T + Sn, 2T + Sn].Then, with Tn := 2T + Sn,

ψ(Tn, x0, z, un) = ψ(2T + Sn, x0, z, un)

= ψ
(

T, ψ
(

Sn, ψ(T, x0, z, u0), vn

)

, v0

)

= ψ
(

T, ψ
(

Sn, ψ(T, x, z, 0), vn

)

, v0

)

→ (y0, w).This proves property (i). Then property (ii) is obvious.Remark 4.8. Condition (4.5) is analogous to the inner-pair 
ondition (butslightly stronger) for autonomous 
ontrol systems, see De�nition 4.1.5 in [3℄Assumption (4.5) in Theorem 4.7 
an be guaranteed for a large 
lass of systems,as shown by Gayer [8℄: Consider the following nth order systems on Rm









x
(n)
1...
x

(n)
m









+







f1(t, x, . . . , x
(n−1))...

fm(t, x, . . . , x(n−1))






=







b1(t, x, . . . , x
(n−1)) u1(t)...

bm(t, x, . . . , x(n−1)) um(t)






. (4.6)Here x = (xi) ∈ Cn−1(R,Rm), its nth derivative exists but is not ne
essarily 
on-tinuous, and x(k) denotes its kth derivative. Assume fi : R × Rnm → R and

bi : R × Rnm → R are C1 and 
onsider 
ontrols
u = (ui) ∈ Uρ := {u : R → Rm, u(t) ∈ Uρ for all t}.We assume that the 
ontrol ranges Uρ are 
ompa
t and 
onvex and that mapping

ρ 7→ Uρ is stri
tly in
reasing, i. e. Uρ1 ⊂ intUρ2 for 0 ≤ ρ1 ≤ ρ2. As before, assumethat for all initial values and all 
ontrols the solutions are unique and exist for alltimes.We 
onsider the asso
iated �rst order systems. So for initial values y0, . . . , yn−1 ∈
Rm at time t0 = 0 and a 
ontrol u ∈ Uρ denote by λ(t, y0, . . . , yn−1, u) the 
orrespond-ing solution of (4.6). We set y0 := (y0, . . . , yn−1) ∈ Rnm and de�ne the set rea
hablefrom y0 at time T > 0 by

O+,ρ
T (y0) :=

{

(z0, . . . , zn−1) ∈ Rnm, there is u ∈ Uwith zi = λ(i)(t, y0) for 0 ≤ i ≤ n− 1

}

.Proposition 4.9. Consider system (4.6) and assume that there is some α > 0su
h that |bi(t, y)| ≥ α for all i ∈ {1, . . . ,m} and all (t, y) ∈ R×Rnm. Let 0 ≤ ρ1 ≤ ρ211



and 
onsider a 
ompa
t subset B ⊂ Rnm. Then for every T > 0 there is ε > 0 su
hthat for all (y0, u) ∈ B × Uρ1

B

(

(λ(T, y0, u), . . . , λ(n−1)(T, y0, u); ε
)

⊂ O+,ρ2

T (y0).Proof. This follows from [8, Theorem 3℄ and its proof. Here arbitrary timedependen
e of the right hand side is allowed and the theorem is formulated a bitdi�erently (in terms of inner pairs for varying 
ontrol range), but the proof shows thestronger result formulated above.In parti
ular, under the assumptions of Proposition 4.9, one obtains for ρ1 =
0 that 
ondition (4.5) is satis�ed (applying the theorem also to the time reversedsystem).Next we generalize Theorem 4.7 in order to show a relation between 
hain 
on-trollability and 
ontrollability. We begin with the following lemma.Lemma 4.10. Let 0 ≤ ρ1 ≤ ρ2 and 
onsider a 
ompa
t subset Q ⊂ M × Z. Let
Eρ1 be a 
hain 
ontrol set relative to Q for system (1.1) with 
ontrols in Uρ1 . Assumethat there are ε, T > 0 su
h that for every (x, z) ∈ Eρ1 and u ∈ Uρ1

Bε(ϕ(T, x, z, u)) ⊂ O+,ρ2

T (x; z,Q). (4.7)Then for all (x, z), (y, w) ∈ Eρ1 there is τ > 0 su
h that Bε/2(y) ⊂ O+,ρ2

τ (x; z,Q) andfor every y0 ∈ Bε/2(y) there are τn ≥ 0 and un ∈ Uρ2 with ϕ(τn, x, z, un) = y0 in Qand θτn
un → w.Proof. Let (x, z), (y, w) ∈ Eρ1 . By uniform 
ontinuity, there is δ with 0 < δ < ε/2su
h that for all u
d
(

(x1, z1), (x2, z2)
)

< δ implies d
(

ψ(T, x1, z1, u), ψ(T, x2, z2, u)
)

< ε/2.There is u0 ∈ Uρ1 su
h that ψ(−T, y, w, u0) ∈ Eρ1 . By 
hain 
ontrollability, thereexists a 
ontrolled (δ, T )-
hain in Q along z from x to ψ(−T, y, w, u0), i. e. x0 =
x, xn = ϕ(−T, y, w, u0), and

d(θT0+···+Tn−1
z, θ−Tw) < δ, d

(

ϕ(Tj , xj , θT0+···+Tj−1
z, vj), xj+1

)

< δ for all j,
ψ(t, xj , θT0+···+Tj−1

z, vj) ∈ Q for all t ∈ [0, Tj] and for all j;For every j one �nds by indu
tion
xj+1 ∈ Bδ

(

ϕ(Tj , xj , θT0+···+Tj−1
z, vj)

)

= Bδ

(

ϕ(T, ϕ(Tj − T, xj , θT0+···+Tj−1
z, vj), θT0+···+Tj−1+Tj−T z, θTj−T vj

)

⊂ O+,ρ2

T

(

ϕ(Tj − T, xj , θT0+···+Tj−1
z, vj); θT0+···+Tj−1+Tj−T z,Q

)

⊂ O+,ρ2

T0+···+Tj
(x0; z,Q).Hen
e there is a 
ontrol v ∈ Uρ2 with

xn = ϕ(T0 + · · · + Tn−1, x, z, v) and d(θT0+···+Tn−1
z, θ−Tw) < δ. (4.8)By 
hoi
e of δ we �nd

d
(

ψ(T, xn, θT0+···+Tn−1
z, θ−Tu0), (y, w)

)

= d
(

ψ(T, xn, θT0+···+Tn−1
z, θ−Tu0), ψ

(

T, ψ(−T, y, w, u0), θ−Tu0

)

)

< ε/2.12



We 
on
lude for ε > 0, small enough,
Bε/2(y) ⊂ Bε

(

ϕ(T, xn, θT0+···+Tn−1
z, θ−Tu0)

)

= Bε

(

ϕ
(

T, ϕ(T0 + · · · + Tn−1, x, z, v), θT0+···+Tn−1
z, θ−Tu0

)

)

⊂ O+,ρ2

T0+···+Tn−1+T (x; z,Q).This yields the �rst assertion with τ = T0 + · · · + Tn−1 + T . The se
ond assertionfollows with τn = T0 + · · · + Tn−1 + T if we 
onsider δn → 0 in (4.8).This lemma allows us to show that 
hain 
ontrol sets are 
ontained in the interiorof 
ontrol sets for larger 
ontrol ranges.Theorem 4.11. Let 0 ≤ ρ1 ≤ ρ2 and 
onsider a 
ompa
t subset Q ⊂M ×Z. Let
Eρ1 be a 
hain 
ontrol set relative to Q for system (1.1) with 
ontrols in Uρ1 . Assumethat there are ε, T > 0 su
h that for every (x, z) ∈ Eρ1 and u ∈ Uρ1

Bε

(

ϕ(T, x, z, u)
)

⊂ O+,ρ2

T (x; z,Q) and Bε

(

ϕ(−T, x, z, u)
)

⊂ O−,ρ2

T (x; z,Q). (4.9)Then there exists a 
ontrol set Dρ2 su
h that for every (x, z) ∈ Eρ1 one has x ∈
intDρ2

z .Proof. The assertion follows, if we 
an show that for all (x, z) ∈ Eρ1 the neigh-borhoods Bε/2(x) satisfy 
onditions (i) and (ii) in De�nition 4.1 for 
ontrols in Uρ2 .Then Eρ1 is 
ontained in a maximal set with these properties, i. e. a 
ontrol set Dρ2 .Let (x, z), (y, w) ∈ Eρ1 . For property (i) it su�
es to show that for x0 ∈ Bε/2(x), y0 ∈
Bε/2(y) there are Tn ≥ 0 and un ∈ Uρ2 with ψ(Tn, y0, w, un) → (x0, z) in Q. There isa 
ontrol v0 ∈ Uρ1 with ψ(T, x, z, v0) ∈ Eρ1 , hen
e 
ondition (4.5) implies

Bε/2(x) ⊂ O−,ρ2

T

(

ψ(T, x, z, v0)
)

.Hen
e for every x0 ∈ B(x, ε/2) there is a 
ontrol u0 ∈ Uρ2 with ψ(T, x, z, v0) =
ψ(T, x0, z, u0). Similarly, there is a 
ontrol v1 ∈ Uρ1 with ψ(−T, y, w, v1) ∈ Eρ1 and

Bε/2(y) ⊂ O+,ρ2

T

(

ψ(−T, y, w, v1)
)

,and hen
e there is a 
ontrol u1 ∈ Uρ2 with (y0, w) = ψ
(

T, ψ(−T, y, w, v1), u1

).Sin
e ψ(T, x, z, v0), ψ(−T, y, w, v1) ∈ Eρ1 , Proposition 4.10 implies that there are
τn ≥ 0 and vn ∈ Uρ2 with ψ(τn, ψ(T, x, z, v0), vn

)

→ ψ(−T, y, w, v1) in Q.Together, one obtains
ψ
(

T, ψ
(

τn, ψ(T, x, z, v0), vn

)

, u1

)

→ ψ
(

T, ψ(−T, y, w, v1), u1

)

= (y0, w).De�ne the 
on
atenated 
ontrol un ∈ Uρ2 by
un(t) :=







u0(t) for t ∈ [0, T ]
vn(t− T ) for t ∈ (T, T + τn]
u1(t− T − τn) for t ∈ [T + τn, 2T + τn].Then, with Tn := 2T + τn

ψ(Tn, x0, z, un) = ψ(2T + τn, x0, z, un)

= ψ
(

T, ψ
(

τn, ψ(T, x0, z, un), θTun

)

, θT+τn
un

)

= ψ
(

T, ψ
(

τn, ψ(T, x0, z, u0), vn

)

, u1

)

→ (y0, w). 13



This proves property (i) of 
ontrol sets. Now property (ii) is obvious.Remark 4.12. Using this theorem we 
an, as in [3, Theorem 4.7.5℄, show thatfor all up to at most 
ountably many ρ-values the 
losures of 
ontrol sets and the 
hain
ontrol sets 
oin
ide. The proof is based on S
herbina's Lemma [17℄ for 
ontinuity ofmonotoni
ally in
reasing set valued fun
tions. Hen
e, by Theorem 3.7 one may alsodetermine the �bers of 
ontrol sets via the �bers of the 
hain 
ontrol sets. For thispurpose, one has to 
onsider `long' times, sin
e these �bers are determined only onlong time intervals, 
p. Remark 3.8. At �rst sight, this is di�erent, if the ex
itation isperiodi
; here only the Poin
aré map, and hen
e the period length, is needed, Propo-sition 3.6. Nevertheless, also in this 
ase approximate 
ontrollability is relevant (theentran
e boundary of a 
ontrol set is rea
hed from the interior only for time tendingto in�nity), and hen
e also these obje
ts are only determined on long time intervals.5. Almost Periodi
 Solutions and Hetero
lini
 Orbits. In this se
tion were
all results on almost periodi
 perturbations of hyperboli
 equilibria and Melnikov'smethod. Sin
e in the literature they are not pre
isely stated in the form needed here,we re
all the relevant 
on
epts and some arguments for the proofs.It is well-known that, under small periodi
 perturbations, a hyperboli
 �xed pointof an autonomous di�erential equation be
omes a periodi
 solution, see e. g. [1, The-orem 25.2℄ for details on this result, whi
h is known as Poin
aré 
ontinuation. Thisresult 
an be generalized to almost periodi
 perturbations, in whi
h 
ase the existen
eof an almost periodi
 solution 
an be shown. Consider the di�erential equation
ẋ = g(x) + µh(t, x, µ) (5.1)for g : Rd → Rd and h : R × Rd × R → Rd. The parameter µ ∈ R is interpreted asa small perturbation. Setting µ = 0 in system (5.1) leads to the equation ẋ = g(x)whi
h will be referred to as the unperturbed system. Throughout we assume that (5.1)satis�es the following 
onditions:The fun
tion g is C1 and h is 
ontinuous and hx exists and there are a boundedand open subset V ⊂ Rd 
ontaining x0 and a 
onstant µ̄ > 0, su
h that h and hx arealmost periodi
 in t, uniformly with respe
t to (x, µ) ∈ clV × [−µ̄, µ̄], and solutionsof (5.1) exist for all starting points in V , all µ ∈ [−µ̄, µ̄] and all times.As noted in S
heurle [18℄, Remark 2.7, almost periodi
ity of hx uniformly withrespe
t to (x, µ) is equivalent with hx being uniformly 
ontinuous on R×clV ×[−µ̄, µ̄].Next re
all the notion of exponential di
hotomies, whi
h generalize the idea ofhyperboli
ity to nonautonomous systems, 
f. Coppel [5℄.Definition 5.1. Consider the system

ẋ = A(t)x (5.2)for a pie
ewise 
ontinuous matrix fun
tion A : J → Rd×d de�ned on an interval
J ⊂ R and let X(t) be a fundamental matrix fun
tion for (5.2). System (5.2) hasan exponential di
hotomy on J if there is a proje
tion P : Rd → Rd and 
onstants
K ≥ 1, α > 0 su
h that

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s) for s ≤ t,

‖X(t)(I − P )X−1(s)‖ ≤ Ke−α(s−t) for s ≥ t.Then the following perturbation result (Lemma 2.4 in [18℄) holds.Lemma 5.2. Let g(t, x) and h(t, x) be fun
tions whi
h are de�ned and 
ontinuouson R × V with values in Rd, where V is an open subset of Rd. Furthermore, assume14



that the partial derivatives gx and hx exist and that gx is uniformly 
ontinuous and
hx 
ontinuous in R × V . Finally assume that the equation ẋ = g(t, x) has a solution
x = x0(t) de�ned and 
ontained in V for all t ∈ R, and stri
tly bounded away from theboundary of V , su
h that the variational equation ẋ = gx

(

t, x0(t)
)

x has an exponentialdi
hotomy on R with 
onstants K and α. Then there exist a positive 
onstant η0 anda fun
tion η1(η) depending only on g,K, and α su
h that, if 0 < η ≤ η0,
sup

(t,x)∈R×V

‖h(t, x)‖ < η1(η) and sup
(t,x)∈R×V

‖hx(t, x)‖ < K α/2,then the equation ẋ = g(t, x) + h(t, x) has a unique solution x(t) satisfying ‖x(t) −
x0(t)‖ ≤ η, t ∈ R.A slight modi�
ation of Bohr's proof for the boundedness of almost periodi
fun
tions in [2℄ shows uniform boundedness of uniformly almost periodi
 fun
tions.Lemma 5.3. Let Λ be a 
ompa
t topologi
al spa
e, M a normed ve
tor spa
e withnorm ‖ · ‖ and f : R × Λ → M 
ontinuous and almost periodi
 in t uniformly withrespe
t to x ∈ Λ. Then

sup (t,x)∈R×Λ‖f(t, x)‖ <∞.Proof. Sin
e f is uniformly almost periodi
, there is an interval length L su
hthat for every interval J ⊂ R of length L there exists a translation number τ(J) ∈ Jsatisfying ∥∥f(t + τ(J), x) − f(t, x)
∥

∥ < 1 for all (t, x) ∈ R × Λ. Here L and τ areindependent of x due to uniformity.Sin
e f is 
ontinuous and Λ 
ompa
t, c := sup(t,x)∈[0,L]×Λ ‖f(t, x)‖ < ∞. Forevery t ∈ R any translation number τt in the interval J = [−t,−t + L] satis�es
t+ τt ∈ [0, L]. Therefore for every t ∈ R and x ∈ Λ

‖f(t, x)‖ ≤ ‖f(t+ τt)‖ + ‖f(t) − f(t+ τt)‖ ≤ c+ 1.The previous lemmas imply the following result (this is essentially Lemma 2.8 in[18℄).Proposition 5.4. Suppose that the unperturbed system 
orresponding to (5.1)has a hyperboli
 �xed point x0, i. e. g(x0) = 0 and the real parts of the eigenvalues of
gx(x0) are di�erent from 0. For all (small) η > 0 there is µ0 = µ0(η) > 0 su
h that for
|µ| ≤ µ0 there exists a unique solution ζµ(t) of system (5.1) satisfying ‖ζµ(t)−x0‖ ≤ ηfor all t ∈ R. This solution is almost periodi
.Proof. First we show that system (5.1) satis�es the assumptions of Lemma 5.2.The fun
tions g and h are 
ontinuous and the derivatives gx and hx exist and gxis uniformly 
ontinuous on the 
ompa
t set clV . As x0 is a hyperboli
 equilib-rium of the unperturbed equation, the 
orresponding linearized equation ẋ = gx(x0)xtrivially has an exponential di
hotomy on R. Finally, sup(t,x)∈R×V ‖µh(t, x, µ)‖ and
sup(t,x)∈R×V ‖µhx(t, x, µ)‖ 
an be made arbitrarily small by 
hoosing µ small enough,sin
e h and hx are uniformly almost periodi
 and thus uniformly bounded, due toLemma 5.3.This means that for su�
iently small perturbations µ there is a unique solution
ζµ whi
h stays near the original �xed point x0 for all times. For su�
iently small µthe equation

ẋ =
[

gx

(

ζµ(t)
)

+ µhx

(

t, ζµ(t), µ
)]

xhas an exponential di
hotomy on R. This follows from roughness of exponentialdi
hotomies with respe
t to small perturbations; see Proposition 2.2 in [18℄ or [5,15



p. 34℄. Finally, it remains to show almost periodi
ity of the perturbed solution ζµ.For this purpose 
onsider the shifted system
ẋ = g(x) + µh(t+ τ, x, µ) (5.3)for τ ∈ R. Lemma 5.2 applied to (5.3) shows that for small η and |µ| ≤ µ0(η) thereis a unique solution ζµ

τ (t) whi
h satis�es ‖ζµ
τ (t) − x0‖ ≤ η for all t ∈ R. Obviously

ζµ
τ (t) = ζµ(t+ τ) for all t, τ ∈ R.Now we apply Lemma 5.2 to (5.3) again, setting g(t, x) = g(x) + µh(t, x, µ),
h(t, x) = µ[h(t + τ, x, µ) − h(t, x, µ)] and x0(t) = ζµ(t). For su�
iently small µ and
η > 0 there is an ε = ε(µ, η) > 0 su
h that ‖ζµ(t) − ζµ

τ (t)‖ ≤ η, provided that
|µ| sup

(t,x)∈R×V

‖h(t+ τ, x, µ) − h(t, x, µ)‖ < εand
|µ| sup

(t,x)∈R×V

‖hx(t, x, µ) − hx(t+ τ, x, µ)‖ < ε.Hen
e uniform almost periodi
ity of h and hx implies almost periodi
ity of ζµ(t).If we suppose that in our setting there exist two hyperboli
 �xed points x± ∈ Rdof the unperturbed system, Proposition 5.4 implies the existen
e of almost periodi
solutions ζµ
± near x± for su�
iently small µ. If there is a hetero
lini
 orbit ζ from x−to x+, the question arises how the system behaves near ζ for small perturbations µ.For time-periodi
 perturbations Melnikov's method gives a handy 
riterion forthe existen
e of transversal hetero
lini
 points. K. J. Palmer has developed a gener-alization of Melnikov's method in [15℄ whi
h, in our setting, yields the following.Theorem 5.5. Consider the system ẋ = g(x) + µh(t, x, µ) and let the followingassumptions be satis�ed:(i) There is a bounded and open subset V ⊂ Rd and a 
onstant µ̄ > 0 su
h that

g : V → Rd is C2 and h : R×V × [−µ̄, µ̄] → Rd is 
ontinuous. The partial derivatives
ht, hx, hµ, hxx, hxµ, hµx, hµµ exist, are bounded, 
ontinuous in t for ea
h �xed x, µand 
ontinuous in x, µ uniformly with respe
t to t, x, µ.(ii) The fun
tions h and hx are almost periodi
 in t, uniformly with respe
t to
(x, µ) ∈ clV × [−µ̄, µ̄].(iii) The unperturbed equation ẋ = g(x) has hyperboli
 �xed points x± ∈ V withstable and unstable manifolds of the same dimensions.(iv) There is a hetero
lini
 orbit ζ from x− to x+ 
ontained in V .(v) The fun
tion

∆(t0) :=

∫ ∞

−∞
ϕ(t) · h

(

t+ t0, ζ(t), 0
)

dthas a simple zero at some t0 ∈ R, where ϕ(t) is the unique (up to a s
alar multiple)bounded solution of the adjoint system ẋ = gx

(

ζ(t)
)T
x and �·� denotes the innerprodu
t in Rd.Then there exists δ0 > 0 su
h that for su�
iently small µ the perturbed sys-tem (5.1) has a unique solution x(t, µ) satisfying ‖x(t, µ) − ζ(t − t0)‖ ≤ δ0 for all

t ∈ R. Furthermore
sup
t∈R

‖x(t, µ) − ζ(t− t0)‖ = O(µ) for µ→ 016



and
ẋ =

[

gx

(

x(t, µ)
)

+ µhx

(

t, x(t, µ), µ
)]

xhas an exponential di
hotomy on R.Finally, it holds that
lim

t→±∞
‖x(t, µ) − ζµ

±(t)‖ = 0 (5.4)for su�
iently small µ, where ζµ
± are the almost periodi
 solutions near x±.Proof. This follows from [15, Corollary 4.3℄ and the remark on pp. 251�252in [15℄ 
ombined with the ideas of the proof of [15, Corollary 4.4℄ using the fa
t,that ẋ = gx

(

ζ(t)
)

x has an exponential di
hotomy on both half-lines and that thedimensions of the stable and unstable subspa
es sum up to d.More pre
isely, Corollary 4.4 in [15℄ shows (5.4) for the periodi
 
ase. But infa
t, periodi
ity is only needed there to prove periodi
ity of ζµ
±. So (5.4) holds forthe almost periodi
 
ase, too, 
f. Remark 2.9 in [18℄. In detail, there is a δ > 0independent of µ su
h that if

‖x(t, µ) − ζµ
±(t)‖ ≤ δ (5.5)for su�
iently large |t| (positive for �+�, negative for �−�), then (5.4) holds, 
f. [9,Theorem 3.1℄. For su�
iently small µ and large |t|

‖x(t, µ) − ζµ
±(t)‖ ≤ ‖x(t, µ) − ζ(t− t0)‖ + ‖ζ(t− t0) − x±‖ + ‖x± − ζµ

±(t)‖ ≤ δ,hen
e (5.5) holds.The fa
t, that the variational system ẋ = gx

(

ζ(t)
)

x has an exponential di
hotomyand that the dimensions sum up to d, follows from standard perturbation theory, andfrom the assumption that the stable and unstable manifolds of x− and x+ have thesame dimensions.Remark 5.6. This theorem is also appli
able to homo
lini
 orbits by letting
x− = x+.Remark 5.7. If in the two-dimensional 
ase g is Hamiltonian, ∆(t0) 
oin
ideswith the Melnikov fun
tion up to a s
alar multiple, Marsden [13℄.6. Hetero
lini
 Orbits and Controllability. In this se
tion, we show thatexisten
e of a hetero
lini
 solution of the unperturbed un
ontrolled equation impliesa 
ontrollability 
ondition for perturbed systems with small 
ontrol in�uen
e. Con-versely, if the 
ontrollability 
ondition holds for small 
ontrol in�uen
e, existen
e ofa hetero
lini
 solution of the unperturbed equation follows. These results are used torelate hetero
lini
 
y
les to the existen
e of 
ontrol sets.Consider the following family of 
ontrol systems depending on a parameter µ

ẋ = g(x) + µh(x, z(t), µ, u(t)), u ∈ U , (6.1)with 
ontinuous fun
tions g and h and 
ontrol range U ⊂ Rm 
ontaining the origin;the fun
tions z are in the hull Z of a single almost periodi
 fun
tion. We refer to
ẋ = g(x) and ẋ = g(x)+µh(t, x, µ, 0) as the unperturbed un
ontrolled system and theperturbed un
ontrolled system, respe
tively. For �xed µ this is a spe
ial 
ase of the
ontrol system (1.1); we use the notation introdu
ed in � 2, � 3 and � 4 with a super�x17



µ to indi
ate dependen
e on this parameter. In parti
ular, solutions (whose existen
ewe always assume) are denoted by ϕµ(t, x0, z, u), t ∈ R, x0 ∈ Rd, z ∈ Z, u ∈ U .Proposition 6.1. Assume that system (6.1) with 
ontrol u = 0 satis�es theassumptions (i) to (v) of Theorem 5.5. Let ζµ
± be the almost periodi
 solutions nearthe hyperboli
 equilibria x± of the unperturbed un
ontrolled system and let x(t, µ) :=

ϕµ(t, xµ, z0, 0) be the solution near the hetero
lini
 orbit ζ from x− to x+ for some
xµ ∈ Rd, z0 ∈ Z. Let µ be a parameter value su
h that the 
on
lusions of Theorem 5.5hold, and assume that there are ε = ε(µ), T = T (µ) > 0 su
h that for every (x, z) ∈
Q := clV ×Z

Bε(ϕ
µ(T, x, z, 0)) ⊂ Oµ,+

T (x; z,Q) and Bε(ϕ
µ(−T, x, z, 0)) ⊂ Oµ,−

T (x; z,Q). (6.2)Then there are a 
ontrol fun
tion uµ ∈ U and times tµ− < tµ+ su
h that the 
orrespond-ing solution ϕµ(t, xµ, z0, u
µ) of (6.1) satis�es

ϕµ(t, xµ, z0, u
µ) =

{

ζµ
−(t) if t ≤ tµ−,
ζµ
+(t) if t ≥ tµ+.Proof. Pi
k µ as stated and denote the 
onstants from 
ondition (6.2) by ε, T > 0.The solution x(t, µ) for the un
ontrolled system satis�es (5.4). In parti
ular, thereare times tµ− < 0 < tµ+, arbitrarily large, su
h that

‖x(tµ−, µ) − ζµ
−(tµ−)‖ < ε and ‖x(tµ+, µ) − ζµ

+(tµ+)‖ < ε.Together with (6.2) and the 
o
y
le property this means
ζµ
−(tµ−) ∈ Bε(ϕ

µ(tµ−, x
µ, z0, 0))

= Bε(ϕ
µ(−T, ϕµ(tµ− + T, xµ, z0, 0), z0(t

µ
− + T + ·), 0))

⊂ Oµ,−
T (ϕµ(tµ− + T, xµ, z0, 0); z0(t

µ
− + T + ·), Q)and, analogously,

ζµ
+(tµ+) ∈ Bε(ϕ

µ(tµ+, x
µ, z0, 0))

= Bε(ϕ
µ(T, ϕµ(tµ+ − T, xµ, z0, 0), z0(t

µ
+ − T + ·), 0))

⊂ Oµ,+
T (ϕµ(tµ+ − T, xµ, z0, 0); z0(t

µ
+ − T + ·), Q)This ensures the existen
e of 
ontrol fun
tions uµ

± ∈ U satisfying
ζµ
−(tµ−) = ϕ

(

−T, ϕµ(tµ− + T, xµ, z0, 0), z0(t
µ
− + T + ·), uµ

−
)

,

ζµ
+(tµ+) = ϕ

(

T, ϕµ(tµ+ − T, xµ, z0, 0), z0(t
µ
+ − T + ·), uµ

+

)

.Setting
uµ(t) :=











u−(t− tµ− − T ) if t ∈ [tµ−, t
µ
− + T ],

u+(t− tµ+ + T ) if t ∈ [tµ+ − T, tµ+],
0 otherwise
ompletes the proof.The previous proposition shows that existen
e of a hetero
lini
 orbit for the un-perturbed un
ontrolled equation implies the existen
e of a 
ontrol steering the system18



with almost periodi
 ex
itation from the almost periodi
 solution near one equilibriumto the almost periodi
 solution near the other equilibrium. The following result 
on-siders a 
onverse situation where the unperturbed equation has equilibria x+ and x−and we want to 
on
lude from existen
e of 
ontrolled traje
tories of the perturbed sys-tem from points near x− to x+ that a hetero
lini
 orbit of the unperturbed equationexists.Proposition 6.2. Suppose that g and h(x, z(t), µ, 0) satisfy assumptions (i) and(ii) of Theorem 5.5 for all z ∈ Z, i. e. these assumptions hold for system (6.1) with
u = 0. Moreover, assume that the 
hain re
urrent set of the unperturbed un
ontrolledsystem ẋ = g(x) relative to clV is equal to {x+, x−}.Suppose furthermore that the 
ontrol range U is bounded and there are µn → 0,almost periodi
 ex
itations zn ∈ Z, 
ontrol fun
tions un ∈ U , times tn− < tn+, andpoints xn ∈ clV su
h that the solution ϕn(t) := ϕµn(t, xn, zn, un), t ∈ R, of (6.1) is
ontained in clV and satis�es ϕn(tn−) → x− and there is δ > 0 with ‖ϕn(t)−x−‖ ≥ δfor all t ≥ tn+ and all n.Then the unperturbed, un
ontrolled system has a hetero
lini
 orbit from x− to
x+. Proof. For every n ∈ N let Tn ≥ tn− be the largest time satisfying ϕn(Tn) ∈
clBr(x−), where r > 0 is 
hosen su
h that Br(x−) ⊂ clV . We may assume thelimit ξ0 := limn→∞ ϕn(Tn) ∈ clBr(x−) exists. It su�
es to prove that ξ0 lies on ahetero
lini
 orbit in clV from x− to x+.By 
ompa
tness of Z, we may assume that zn(Tn + ·) 
onverges to some z0 ∈ Z.In order to show that the orbit through ξ0 lies in clV, �x t ∈ R and ε > 0. Byassumption

ϕn(Tn) = ϕµn(Tn, xn, zn, un) → ξ0,and µnh(x, z, µn, u) 
onverges to zero, uniformly in (x, z, u) by 
ontinuity of h andboundedness of U . Then 
ontinuous dependen
e on the right hand side and the initialvalue implies
ϕµn(Tn + t, xn, zn, un)

= ϕµn(t, ϕµn(Tn, xn, zn, un), zn(Tn + ·), un(Tn + ·)) → ϕ0(t, ξ0, z
0, 0).Hen
e the orbit through ξ0 is 
ontained in clV . Sin
e the α- and ω-limit sets of x0are 
onne
ted and in the 
hain re
urrent set, they 
onsist either of x− or x+. Sin
e

ϕµn(Tn + t, xn, zn, un) ∈ clBr(x−) for t ≤ 0, it follows that the α-limit set of ξ0 isgiven by x−. Similarly, ϕµn(Tn + t, xn, zn, un) 6∈ clBr(x−) for t > 0, by maximalityof Tn. Thus the ω-limit set is given by x+.Next we dis
uss 
onsequen
es of these results for 
ontrol sets of systems withalmost periodi
 ex
itations. Roughly, the results above imply that the existen
eof a hetero
lini
 
y
le of the unperturbed, un
ontrolled system is equivalent to theexisten
e of a 
ontrol set 
ontaining all almost periodi
 solutions near the equilibriafor the systems with almost periodi
 ex
itation and small 
ontrol ranges.Re
all that a hetero
lini
 
y
le of the unperturbed equation is given by a �niteset x0, x1, . . . , xn = x0 of equilibria together with hetero
lini
 solutions ζi from xito xi+1 for i = 0, . . . , n − 1. Existen
e of hetero
lini
 
y
les 
an be expe
ted in thepresen
e of symmetries.Theorem 6.3. Let x0, x1, . . . , xn = x0 be pairwise di�erent hyperboli
 equilibriaof the unperturbed un
ontrolled system ẋ = g(x) and 
onsider 
ontrol system (6.1)19



with a bounded 
ontrol range U 
ontaining the origin. For |µ| 6= 0, small, and z ∈ Zdenote the almost periodi
 solutions near xi for ex
itation z by ζµ
i (z). Assume thatsystem (6.1) with u = 0 satis�es assumptions (i) and (ii) of Theorem 5.5 for all z ∈ Zon an open set V 
ontaining all equilibria xi.(i) Assume that for all i there are open subsets Vi ⊂ Rd 
ontaining the equilibria

x− = xi and x+ = xi+1 su
h that assumptions (iii) to (v) of Theorem 5.5 are satis�edfor (6.1) with u = 0, and let xi(t, µ, z) = ϕµ(t, xµ
i , z, 0) be the solution near thehetero
lini
 orbit ζi(z) from xi to xi+1 . Assume that for all su�
iently small |µ| 6= 0there are εi, Ti > 0 su
h that for every (x, z) ∈ Qi := clVi ×Z

Bεi
(ϕµ(Ti, x, z, 0)) ⊂ Oµ,+

Ti
(x; z,Qi) and Bεi

(ϕµ(−Ti, x, z, 0)) ⊂ Oµ,−
Ti

(x; z,Qi).(6.3)Then for all |µ| 6= 0, small, there exists a 
ontrol set Dµ su
h that for all z ∈ Z andall i the almost periodi
 solution satisfy ζµ
i (t) ∈ Dµ

z(t+·) and the hetero
lini
 solutionssatisfy xi(t, µ, z) ∈ Dµ,z(t+·).(ii) Conversely, suppose for all i there are open subsets Vi 
ontaining xi and
xi+1 su
h that the 
hain re
urrent set of the unperturbed un
ontrolled system ẋ =
g(x) relative to clVi is equal to {xi, xi+1}. Furthermore, suppose that for a sequen
e
0 6= µn → 0 there are 
ontrol sets Dµn 
ontaining the almost periodi
 solutions ζµn

inear xi for almost periodi
 ex
itations zn ∈ Z. Then the unperturbed system has ahetero
lini
 
y
le through the xi.Proof.(i) For all i, Theorem 4.7 implies that there are 
ontrol sets Dµ
i su
h that thealmost periodi
 solutions ζµ

i (z) are 
ontained in the interior of Dµ
i,z. It remains toshow that all Dµ

i 
oin
ide. Fix z ∈ Z and 
onsider the almost periodi
 solutions ζi(z)near xi (we suppress dependen
e on µ in our notation). By Proposition 6.1 there are
y1 ∈ Rd, a 
ontrol fun
tion u1 ∈ U , and times t1 < t2 su
h that the 
orrespondingsolution ϕ(t, y1, z, u1) of (6.1) satis�es

ϕ(t, y1, z, u1) =

{

ζ1(t) if t ≤ t1,
ζ2(t) if t ≥ t2.There are y2 ∈ Rd, a 
ontrol fun
tion u2 ∈ U , and times τ2 > t2 and t3 > τ2 su
h thatthe 
orresponding solution ϕ(·, y2, z, u1) of (6.1) satis�es

ϕ(t, y2, z, u2) =

{

ζ2(t) if t ≤ τ2,
ζ3(t) if t ≥ t3.Pro
eeding in this way and using xn = x0, one �nds times T2 > T1 > 0, a point

x ∈ Dz
1 , and a 
ontrol u ∈ U su
h that

ϕ(T1, x, z, u) ∈ D2,z(T1+·) and ϕ(T1 + T2, x, z, u) ∈ D1,z(T1+T2+·),and ψ(t, x1, z, u) ∈ Q for all t ∈ [0, T1 + T2].Then Proposition 4.5 shows D1 = D2 and, repeating this argument, one 
on
ludesthat all 
ontrol sets Di 
oin
ide.(ii) The assumptions allows us to apply Proposition 6.2. Hen
e, for all i, theunperturbed un
ontrolled system has a hetero
lini
 orbit from xi to xi+1.20



7. An Os
illator with M-Potential. In this se
tion we will apply our resultsto a se
ond order system with M -potential, whi
h models ship roll motion.Consider the system
ẍ+ µβ1ẋ+ µβ3ẋ

3 + x− αx3 = µz(t) + µu(t) (7.1)with positive parameters α, β1 and β3, a small perturbation parameter µ ∈ R, almostperiodi
 ex
itations z : R → R and 
ontrol fun
tions u : R → [−ρ, ρ] for a 
ontrolradius ρ > 0. This model, proposed in Kreuzer and Si
hermann [11℄, has been studiedin Colonius, Kreuzer, Marquardt and Si
hermann [4℄ without time-dependent ex
ita-tion z. Note that in this appli
ation the terms u(·) are interpreted as time-dependentperturbations (not as 
ontrols) where only the range [−ρ, ρ] is known. Here the 
on-trol sets give information on the global stability behavior: An invariant 
ontrol setaround the origin indi
ates stability. If (for large perturbation amplitudes) it hasmerged with a variant 
ontrol set and itself be
omes variant, stability is lost. Hen
eit is of interest to 
ompute all 
ontrol sets.System (7.1) is a spe
ial 
ase of system (4.6). Hen
e, Proposition 4.9 shows thatassumption (4.9) in Theorem 4.11 is satis�ed for all ρ2 > ρ1 ≥ 0. Thus every 
ompa
t
hain 
ontrol set Eρ1 is 
ontained in the interior of a 
ontrol set Dρ2 and hen
e, forall up to 
ountably many ρ > 0, Remark 4.12 shows that the 
ompa
t 
hain 
ontrolsets 
oin
ide with the 
losures of 
ontrol sets.Writing (7.1) as a �rst order system yields the two-dimensional perturbed Hamil-tonian system
ẋ1 = x2,

ẋ2 = −x1 + αx3
1 + µ

(

−β1x2 − β3x
3
2 + z(t) + u(t)

)

.
(7.2)Denote by ϕµ(t, x, z, u) the solution of this system and let

ψµ(t, x, z, u) :=
(

ϕµ(t, x, z, u), θtz
)

.In the unperturbed and un
ontrolled 
ase µ = 0 system (7.2) has a �xed point in theorigin and two hyperboli
 �xed points at (±1/
√
α, 0). The hyperboli
 �xed points are
onne
ted by two hetero
lini
 orbits given by xh
±(t) := ±

(

x1(t), x2(t)
), where

x1(t) :=
1√
α

tanh
t√
2
, x2(t) :=

1√
2α

sech2 t√
2
, t ∈ R,
p. Simiu [19, p. 131℄. In the perturbed, un
ontrolled 
ase u ≡ 0 denote by ∆± theMelnikov fun
tions of system (7.2) with respe
t to xh

± and denote by ζµ
± the almostperiodi
 solutions near (±1/

√
α, 0), whi
h exist for su�
iently small µ (see Proposi-tion 5.4). Let z0 ∈ Z be the 
orresponding ex
itation and ξµ

±(t) :=
(

ζµ
±(t), θtz0

).Proposition 7.1. Assume that the almost periodi
 ex
itation z is 
ontinuouslydi�erentiable with bounded derivative. If the fun
tions ∆± have simple zeros and µ issmall enough, then system (7.2) has a 
ontrol set D 
ontaining ξµ
±(R). Then D willbe 
alled a hetero
lini
 
ontrol set.Proof. This essentially follows from Proposition 6.1. To be pre
ise, system (7.2)satis�es assumptions (i) to (v) of Theorem 5.5 for u = 0: Assumption (i) is satis�edfor every bounded open set V ⊂ Rd and every µ̄ > 0. Property (ii) is 
learly satis�ed,be
ause z does not depend on x and µ. Assumptions (iii) and (iv) are true for asuitable bounded and open set V ⊂ Rd. Property (v) holds by assumption.21



Furthermore, property (6.2) is satis�ed, as 
an be shown by Proposition 4.9. Sofor su�
iently small µ Proposition 6.1 implies the existen
e of points xµ
± ∈ R2, 
ontrolfun
tions uµ

± ∈ U and times sµ
± < tµ± su
h that

ϕµ(t, xµ
−, z0, u

µ
−) =

{

ζµ
+(t) if t ≤ sµ

−,
ζµ
−(t) if t ≥ tµ−and

ϕµ(t, xµ
+, z0, u

µ
+) =

{

ζµ
−(t) if t ≤ sµ

+,
ζµ
+(t) if t ≥ tµ+.The set D̃ := ψµ(R, xµ

−, z0, u
µ
−)∪ψµ(R, xµ

+, z0, u
µ
+)∪ξµ

−(R)∪ξµ
+(R) satis�es properties(i) and (ii) of 
ontrol sets and is thus 
ontained in a 
ontrol set D. This implies

ξµ
±(R) ⊂ D̃ ⊂ D.First we study the periodi
 
ase and 
hoose z(t) := F cosωt for positive parame-ters F and ω, whi
h leads to the system

ẋ1 = x2,

ẋ2 = −x1 + αx3
1 + µ

(

−β1x2 − β3x
3
2 + F cosωt+ u(t)

)

.
(7.3)The ex
itation z is C1 and its derivative is bounded, so Proposition 7.1 is appli
able.The Melnikov fun
tions ∆± of system (7.3) 
an easily be 
omputed using the residuetheorem:

∆±(t0) = −2
√

2β1

3α
− 8

√
2β3

35α2
±

√
2πωF√

α sinh πω√
2

· cosωt0.The Melnikov fun
tions ∆± have simple zeros if and only if F ex
eeds a 
ertain 
riti
alamplitude Fc, i. e. if F > Fc := A−1B for
A :=

√
2πω√

α sinh πω√
2

and B :=
2
√

2β1

3α
+

8
√

2β3

35α2
.Corollary 7.2. If F > Fc, system (7.3) has a hetero
lini
 
ontrol set forsu�
iently small µ.Proof. This follows from Proposition 7.1.As the ex
itation is T -periodi
 for T := 2π/ω, it is possible to 
ompute �bers of
ontrol sets by looking at the dis
rete 
ontrol system given by the time-T map. For thefollowing 
omputations we restri
t our view to the parameter values α = 0.674, β1 =

0.231 and β3 = 0.375 (see [11℄ for a dis
ussion of these parameters and this 
hoi
e) and
hoose ω = 2.5 and ρ = 1.0. Then Fc ≈ 5.62880, so let F := 6 > Fc. Figure 7.1 showsthe �ber in phase 0 for ε = 0.1. The 
ontrol sets were approximated with the graphalgorithm (see Dellnitz/Junge [6℄, Szolnoki [20℄) using the implementation in GAIO1.For a spatial dis
retization into boxes, this algorithm 
omputes strongly 
onne
ted
omponents of an asso
iated graph whose nodes are given by the boxes and whoseedges indi
ate rea
hability. The union of the resulting boxes is an approximation toa 
hain 
ontrol set; as noted above, for system (7.1) the 
hain 
ontrol sets typi
ally
oin
ide with the 
losures of 
ontrol sets. Note that this �gure shows the �ber of two
ontrol sets: an invariant 
ontrol set around the origin (bla
k) and the hetero
lini
22
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Figure 7.1. Fiber of 
ontrol sets for the periodi
ally ex
ited system (7.3). Computed in phase0 for α = 0.674, β1 = 0.231, β3 = 0.375, ω = 2.5, ρ = 1.0, F = 6 and ε = 0.1.
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Figure 7.2. Stable and unstable manifolds for the un
ontrolled periodi
ally ex
ited sys-tem (7.3). Computed in phase 0 for α = 0.674, β1 = 0.231, β3 = 0.375, ω = 2.5, F = 6 and
ε = 0.1. 23




ontrol set (red). Compare this to Figure 7.2, where the stable and unstable manifoldsfor these parameter values are shown, again for ε = 0.1 and in phase 0.Next we examine quasi-periodi
 ex
itations of the form z(t) := F cosω1t +
F sinω2t for positive parameters F, ω1, ω2, whi
h leads to the system

ẋ1 = x2,

ẋ2 = −x1 + αx3
1 + µ

(

−β1x2 − β3x
3
2 + F cosω1t+ F sinω2t+ u(t)

)

.
(7.4)The ex
itation z again is C1 and its derivative is bounded. The Melnikov fun
tions

∆± of system (7.4) are
∆±(t0) = −2

√
2β1

3α
− 8

√
2β3

35α2
±

√
2πF√
α

(

ω1 cosω1t0
sinh πω1√

2

+
ω2 sinω2t0
sinh πω2√

2

)

.The Melnikov fun
tion ∆± has a simple zero if F > Fc := A−1(S1 + S2)
−1B for

A :=

√
2π√
α
, Si :=

ωi

sinh πωi√
2

, i = 1, 2, and B :=
2
√

2β1

3α
+

8
√

2β3

35α2
.Corollary 7.3. If F > Fc, system (7.4) has a hetero
lini
 
ontrol set forsu�
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