CONTROL SYSTEMS WITH ALMOST PERIODIC EXCITATIONS

FRITZ COLONIUSTAND TOBIAS WICHTREY'

Abstract. For control systems described by ordinary differential equations subject to almost
periodic excitations the controllability properties depend on the specific excitation. Here these prop-
erties and, in particular, control sets and chain control sets are discussed for all excitations in the
closure of all time shifts of a given almost periodic function. Then relations between heteroclinic
orbits of an uncontrolled and unperturbed system and controllability for small control ranges and
small perturbations are studied using Melnikov’s method. Finally, a system with two-well potential
is studied in detail.
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1. Introduction. This paper analyzes controllability properties of control sys-
tems which are subject to almost periodic excitations. More precisely, we consider

i(t) = f(z(t), 2(t),u(t), uel, (1.1)

in an open set M C R with admissible controls in U = {u € Lo(R,R™), u(t) € U
for all t € R} and control range U C R™. We assume that z is an almost periodic
function with values in a compact subset Z C R*. In particular, this includes periodic
excitations and excitations with several incommensurable periods.

Instead of analyzing the behavior of system (1.1) for a single almost periodic
excitation, we allow time shifts of z and, more generally, all excitations in the set Z
of continuous functions which can uniformly be approximated by shifts of z (again,
all elements of Z are almost periodic). Observe that the trajectories of (1.1) are
determined by the initial states © = z(0) € M, the excitation z € Z, and the control
function v : R — R™.

There are various ways to look at this system:

(i) as a control system in M with states x € M;
(ii) as a control system in M x Z with extended states (z,z) € M x Z;

(iii) as a dynamical system in M x Z x U with states (z,z,u) € M x Z x U.

Observe that the control system in (i) is nonautonomous; the evolution of the
states x is only determined, if, in addition to the control function u € U, also the
phase of the almost periodic function z is known. Hence here we have to distinguish
between an analysis for fixed excitation z € Z and the projections to M. In (ii), we
can sometimes, if the almost periodic function is a solution of a differential equation
on a compact manifold Z (e.g. if Z is a k-Torus) replace Z by Z. Here, however,
exact controllability properties in the extended state space M x Z can only hold in
the very special case of a periodic function z. Furthermore, the dimension of the state
space of the control system is increased by k, which makes a global numerical analysis
much more difficult. The formulation (iii) results in a continuous dynamical system
(a control flow) provided that the system is control affine and the control range U is
compact and convex. The analysis of this dynamical system (including time shifts on
Z and on U) may yield structural insights and, in particular, sheds light on subsets
of complete controllability, i.e. control sets. In the present paper, we will analyze
system (1.1) employing all three points of view above.
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Note that for T-periodically excited control systems, controllability properties in
the extended state space (where also the phase in R/TZ is part of the state) can
to a large extent be characterized by a Poincaré section, i.e. the intersection with a
fiber over a fixed phase (compare Gayer [8]). We will generalize some of these results.
Using methods from ergodic theory, controllability properties of nonautonomous linear
control systems have also been discussed by Johnson and Nerurkar [10]. Many further
results in this direction have been obtained, in particular in connection with associated
Riccati equations. For a different line of research, see San Martin and Patrao [16],
who study control sets and chain control sets for semi-dynamical systems on fiber
bundles (related to the third interpretation above of system (1.1)).

The main topic of this paper are the relations between hetero- or homoclinic orbits
of an uncontrolled and unperturbed system and controllability for small control ranges.
Here Melnikov’s method plays an important role. In the case of a periodic excitation
this was discussed from a numerical point of view in Colonius, Kreuzer, Marquardt
and Sichermann [4]. In the present paper a characterization in the general almost
periodic case will be given (the result is also new in the periodic case). Melnikov’s
method for such differential equations was, in particular, developed by Palmer [15],
Scheurle [18] and Meyer and Sell [14]. Our paper is closer to the spirit of the latter
reference, since we consider the hull of an almost periodic excitation. We would like to
point out that we do not really need the strength of Melnikov’s result here; existence
of a chaotic set is not in our center of interest. Instead intersections of stable and
unstable manifolds are relevant here. Note that basic references for almost periodic
differential equations include Fink [7] and Levitan and Zhikov [12]; a nice discussion
of almost periodic and quasi-periodic functions can also be found in §II.1 of [14],
together with further references.

The paper is organized as follows: After preliminaries in §2, we analyze chain
control sets in §3. Section 4 introduces control sets and presents relations to chain
control sets and to almost periodic solutions of the uncontrolled system. Section
5 presents relevant results on almost periodic perturbations of hyperbolic equilibria
and Melnikov’s method. These results are essentially known in the literature (see
Palmer [15], Scheurle [18], and also Meyer and Sell [14]). However, for the reader’s
convenience, we have included some arguments from the proofs. This is used in
§6 to study the relation between heteroclinic orbits of an unperturbed system and
controllability for small control ranges. In the final section 7 we discuss a second order
system with M-potential modelling ship roll motion. Note that here the controls u
are interpreted as time-dependent perturbations.

2. Preliminaries. Consider the control system (1.1)

x(t) = f(:t(t),z(t),u(t)), uelU,

in an open set M C R? with admissible controls in I/ and assume that z is an almost
periodic function. That is, we assume (compare e.g. Scheurle [18], Definition 2.6)
that z : R — R” is continuous and that for every ¢ > 0 there exists an [ = [(¢) > 0
such that in any interval of length [ there is a so-called translation number T such
that

lz(t+ 1) — 2(t)|| < e for all t € R.

Define 0 as the time shift (6;2)(s) := z(t + s),s,t € R. Let Z be the closure in the
space Cy(R, R¥) of bounded continuous functions of the shifts of an almost periodic
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function. Then Z is a minimal set, i.e. every trajectory is dense in Z. Observe that
for z € Z it holds that z(t) = (6:2)(0). Assuming global existence and uniqueness,
we denote by ¢(t,to, z, z,u) the solution of the initial value problem

#(t) = f(2(t), 2(t), u(t)), (to) = = (2.1)

if tg = 0, we often omit this argument. The solution map of the coupled system is
denoted by

Ytz z,u) = (go(t,x,z,u),@tz).
We assume that the set of admissible controls is given by
U={u€ Lo(R,R™), u(t) € U for almost all ¢},

where U C R™. If we denote also the time shift on U by 6;, we obtain the cocycle
property

ot +s,x,z,u) = <p(s, o(t,z, z,u), 02, 9tu),t, seR.
Finally, the maps
O MxZxU—-MxZxU, O(z,z,u) = (@b(t,;v,z,u),ﬁm),t € R,

define a continuous flow, the control flow, provided that U C R™ is convex and
compact and

f(a:,z,u) = fo(:E,Z) + Zulfl(xvz)

i=1

with C!-functions f; : R?xR¥ — R% here i C Lo (R, R™) is endowed with the weak*
topology. This follows by a minor extension of Proposition 4.1.1 in [3]. Throughout
this paper, we assume that these conditions guaranteeing continuity of the control
flow are satisfied. For convenience, we also assume that 0 € U, and we call the
corresponding differential equation with u = 0 the uncontrolled system.

For periodic and for quasi-periodic excitations we may be able to replace Z by a
finite dimensional state space Z.

EXAMPLE 2.1. For a smooth periodic excitation let ¢ : S' — S' =: Z be the
solution map (zo = w(t+ 20),t € R, of 2 =w, 2(0) = zo; here w > 0 is the frequency
and (2.1) may be written as

(t) = f(z(t), Ge(20), u(t)), 2(0) = wo.

For a quasi-periodic excitation, let ¢ : S¥ — SF =: Z be the solution map (2o =
(wl(t +201) .-, wi(t+ zoyk)),t eR, of

21 = Wi1,22 = Ww,..., 5 = Wk,

with initial condition z(0) = (20,1,...,20k). Here wy,...,wi > 0 are the frequencies
and we assume that they are rationally independent, i. e. if ¢; € Q with gwi + -+ +
qrwi, = 0, then q; =0 for all i. Again (2.1) may be written as above.
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3. Chain Control Sets. In this section we define and characterize chain control
sets relative to a subset of the state space working in the general almost periodic case.

It will be convenient to write for a subset A C M x Z the section with a fiber
over z € Z as

A, =AN(M x {z}).

Hence A = J,.z A.. Where convenient, we identify A, and {z € M, (z,2) € A.}.
A controlled (g,T)-chain along z € Z is given by Ty,...,T,—1 > T, controls
ug, .- ., Up—1 € U and points xg, ..., x, € M with

d(cp(Tj, 25, 07 1Ty, 2, uj),xj+1) <egforall j=0,...,n—1.

DEFINITION 3.1. A chain control set relative to a closed set Q C M x Z is a
nonvoid mazximal set E C M x Z such that
(i) forall (x,z),(y,w) € E and all e, T > 0 there exists a controlled (¢, T)-chain
in Q along z from x to (y,w), i.e. vo =z, zyp =y and d(Op,+..41,_, 2, W) < €, and

U(t, 2, 01411y, 2,u5) € Q for all t € [0,T;] and for all j; (3.1)

(i) for all (z,2) € E there is u € U with ¥(t,x,z,u) € E for all t € R.
The condition in (3.1) can be written as

(p(t, Lj, 9To+---+ij127 uj) € Qetzj'

Note that the three components z, z and u are treated in different ways: jumps
are allowed in z, approximate reachability is required for z and no condition on the
controls is imposed. Observe that also Meyer and Sell [14] do not allow jumps in the
almost periodic base flow. It is easy to show that chain control sets are closed.
Next we discuss the behavior for fixed ‘phases’ z € Z by looking at the fibers of
a chain control set.
LeEMMA 3.2. Suppose that E is a chain control set relative to Q. Then the fibers
E, =ENQ,,z € Z, satisfy the following properties:
(i) For every z € Z and all x,y € E, and all £,T > 0 there exists a controlled
(e,T)-chain in Q from x along z to (y, z).
(ii) For every z € Z and every x € E, there exists a control w € U such that

o(t,z,z,u) € Ep,, for all t € R.

(iii) If xy, € E,, with (x,2,) — (z,2) € M x Z, then x € E,.

Proof. Condition (iii) follows from closedness of F, (i) and (ii) are obvious. O

REMARK 3.3. In condition (ii) of Lemma 3.2 one does not have that a trajectory
exists which after an appropriate time comes back to E. (as for periodic excitations,
where one comes back into the same fiber after the period). In the general almost
periodic case the trajectory will never come back to the same fiber. Instead, the weaker
property formulated in (ii) holds together with condition (iii), which locally connects
different fibers and is an upper semi-continuity property of z — E,.

Next we discuss if the properties formulated in Lemma 3.2 characterize chain
control sets.

LeMMA 3.4. Suppose @ is compact and that E* C Q,,z € Z, is a family of sets
satisfying conditions (i), (ii), and (iii) in Lemma 3.2. Assume that

E:=JE cintQ.
zEZ
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Then E satisfies properties (i) and (ii) of chain control sets in Definition 3.1.

Proof. Let (x,2), (y,w) € E and ¢,T > 0. Then w(z) = Z and there is a control
u € Y such that ¢ (t,z,z,u) € E for all t € R. In particular, this proves property (ii)
of chain control sets. Furthermore, there are Sy > T such that for z; := g, z one has
d(zx, w) < 1/k and clearly yi := ¢(Sk,x,2,u) € E,,. By compactness of Q we may
assume that (yg, zi) converges to some (yo,w) € Q. By property (iii) it follows that
yo € E,. By property (i) there is a controlled (¢/2,T)-chain in @ from y, along w to
(y, w) satisfying zg = yo, 2, = y and d(01,4...47, _, w,w) < /2, and

Y(t, 2, 01411y w,uy) € Q for all t € [0,T;] and for all j.

Introducing, if necessary, trivial jumps, we may assume that T} € [T, 2T for all j. By
uniform continuity, there is § > 0 such that for all x € Q and all u € U

d(z,2") < 6 implies d(p(t, z, z,u), p(t, x,2",u)) < e/2, t € [0,27T]. (3.2)
Choose k large enough such that

d(zx, w) = d(0s,z,w) :=sup ||z2(Sk + t) —w(t)|| < 6 and d(o(Sk,z,z,u),y0) < €.
teR

Hence for all j

d(gp(Tj,a:j,9A5k+TO+...+ijlz,uj),:L“j+1)

< A(o(Tj, 25, 08,4 To 4151 2, U3), (T 5, Oz oy W0, 05)
+ d((Tj, 4, Oz 4y, W, ), 1)

<e/2+¢e/2=¢.

This shows that there is a controlled (e, T)-chain from x along z to (y,w). Since by
assumption E C int @ and by (3.2) this (¢,T')-chain is e-close to an (g,T)-chain in
@, we may choose € > 0 small enough, such that this is a chain in @. This proves
property (i) of chain control sets. O

The following result clarifies the relations between chain control sets and their
fibers.

ProposITION 3.5. Consider system (1.1) in a closed subset Q C M x Z.

(i) Suppose that Q is compact and let E* C Q,,z € Z, be a maximal family of
sets satisfying conditions (i) (iii) in Lemma 3.2. If E ==, .z E* C int Q, then E is
a chain control set.

(ii) Let E be a chain control set. Then the fibers E.,z € Z, are contained in a
mazimal family E* C Q.,z € Z, of sets satisfying conditions (i)—(iii) in Lemma 3.2.
IfE = U.cz E* CintQ, then E = E.

Proof. It only remains to discuss the maximality properties.

(i) The union E satisfies properties (i) and (ii) of chain control sets, since for
e < dist(F, Q) the controlled (g, T)-chains are in ). Hence E is contained in the
union E of all sets containing F and satisfying these properties. Then F is a chain
control set and its fibers E. contain the sets E* and satisfy properties (i)-(iii) in
Lemma 3.2. By maximality, it follows that E = E.

(ii) Let E be a chain control set. Then the fibers E. satisfy properties (i) (iii) in
Lemma 3.2. Clearly, the family E., z € Z, is contained in a maximal family £,z € Z,
with these properties. If F C int Q, the first assertion shows that E is a chain control
set and hence E = E. O
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It is of great interest to see if the behavior in a single fiber determines chain
control sets. In the periodic case, one can reconstruct chain control sets from their
intersection with a fiber. More precisely, the following is a minor modification of
Gayer [8], Taubert 21, Satz 2.2.5].

PROPOSITION 3.6. Assume that in system (1.1) the set Z consists of the shifts
of a T-periodic function and write Z := R/TZ. Let Q C M x Z be closed and pick
z0 € Z. Suppose that E* C Q,, is a mazimal set such that

(i) for all z,y € E* and all € > 0 there are (zj,2;) € Q X Z and controls
uj € U with (xo,20) = (2, 20), (Tn, 2n) = (Y, 20) such that for all 5 =0,...,n—1

d(1/J(T, (xj, 25, u5)), (xj+1,zj+1)) < e and Y(t,xj,z;,u;) € Q fort €[0,T],

(i) for all x € E* there is uw € U with (T, z, zp,u), p(—T, x, 29, u) € E?.
Then the set

o {(x,z)EMxZ, there are xg € E* u € U,t € [0,T) with }

(z,2) = ¥(t, xo, 20,u) and (T, zg, z0,u) € £

is a chain control set relative to Q.
Conversely, for a chain control set E C Q x Z, every fiber E,,,z0 € Z, is maximal
with properties (i) and (ii).

In order to derive an analogous result in the almost periodic case, we have to
modify property (ii) in Proposition 3.6, since it cannot be satisfied.

THEOREM 3.7. Consider system (1.1) and assume that Q C M X Z is compact.
For some zy € Z let E* C @Q x {20} be a nonvoid mazimal set such that for all
2o, Y0 € E* and all e, T > 0 there exists a controlled (,T)-chain in Q from zq along
20 to (Yo, 20)-

Then the set

for all e, T > 0 there are xo,yo € E*° and controlled
(e,T)-chains in Q from xq along zo to (yo,z0) such
that (x,z) = Y (t, x5, 01 4...y1,_, 20, uj) for some j
and t € [0, T}]

E:=cl{ (r,2) e M x Z,

is a chain control set relative to Q.

Proof. Consider the fibers E,,z € Z, of E. By closedness of E it is clear that
Xy € B, with (z,,2,) — (z,2) € M x Z implies 2 € E,. Since E* is nonvoid and E
is contained in the compact set (), hence also compact, every fiber E, of F is nonvoid.

Let (z,2), (y,w) € E and ¢,T > 0. Then there exists a controlled (&, T)-chain in
Q from z along z to (y, w). This follows for elements on controlled chains from E*° to
E# by concatenating appropriate chains and using continuity (in order to guarantee
T; > T'). Again by continuity, this also follows for elements in the closure of the set of
these points. It remains to show that for every z € Z and every = € E, there exists
a control u € U such that

o(t,z,z,u) € Ep,, for all t € R.

For (z,2) € E and k € N choose controlled (1/k, T')-chains ¢* from z along z to (z, 2)
with controls uf € U. Then a subsequence of uf converges to some control vy € U

and, by continuity,

@(T,x,z,ug) — (T, x, z,vq) for k — co.
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Then one finds that o(T, z, z,v9) € Fy.,.., since E is closed. Iterating this procedure,
one constructs a control ut € U with (¢, z,u™) € E for all t > 0. For negative times,
consider the last members of the chains (*. We may assume that the corresponding
controls uﬁk converge to a control v € U and, by definition,

w(TnmxnkveT[{UrerTT’sza uﬁk) - ({E, Z) for k — oo.

By continuity, we may assume that Tffk € [T,2T], and hence that Tffk — S >T.
Then O« uﬁk — Bgv and continuity implies
Mg
k
w(Tnk - T, $nk,9T§+m+T£kz7 unk)
= (=T, w(Tnk7xnk79T§+m+T7’sz7 “ﬁk)a 9Tj§k UZ,C)

— (=T, x,z,0gv) for k — oo.

With v~ := 0sv one finds that o(—T,x,z,v1) € Ep,., since E is closed. Iterating
this procedure, one constructs a control u~ € U with p(¢t,z,z,u”) € E for all ¢ < 0.
Combining u* and u~ the desired control u is found. d

REMARK 3.8. Theorem 3.7 shows that, up to closure, one can find chain control
sets by looking at a single fiber, i. e. a single almost periodic excitation. This signif-
icantly simplifies numerical computations, since only one almost periodic excitation
z(t),t > 0, has to be considered. Then the resulting sets must be considered for those
times T where z and Oz are close. In the quasi-periodic case (cp. Example 2.1), one
has to look for (large) times t where all w;t are close to zero modulo 2.

In addition to chain control sets F, also their projection to M defined as

muE ={x e M, (z,z) € E for some z € Z}

is of interest. Obviously, for all (z1,z2) € mymFE there are 21,20 € Z such that
(x1,21), (x2,22) € E, hence there are controlled (e,T)-chains from z; along z; to

({EQ,ZQ).

4. Controllability and Chain Controllability. The main aim in this section
is to analyze, when an almost periodic solution of the uncontrolled system is contained
in the interior of a subset of complete controllability. For this purpose, we ask when
a reachable point is contained in the interior of the reachable set and discuss chain
controllability. This leads us to control sets and their relation to chain control sets.

Again, consider control system (1.1). For a closed subset Q@ C M x Z, a point
z € Q and z € Z we define the positive and negative orbits along z relative to @ as

Ot (2;2,Q) := {o(t,x, z,u), with (s, z,z,u) € Q,s € [0,t] for some t > 0,u € U},
O~ (x;2,Q) = {p(t, z,z,u), with (s, z,z,u) € Q, s € [t,0] for some t < 0,u € U}.

Observe that o(t,z,z,u) € Qp,.. Analogously O} (z;2,Q),O; (z;2,Q) etc. are de-
fined, if we restrict the times accordingly. If @Q = M, we omit the argument Q.
In addition to chain control sets it is also of interest to discuss control sets, i.e.
maximal subsets of approximate controllability.
DEFINITION 4.1. For a closed subset Q C M x Z a subset D C @ is a control set
relative to Q) if it is maximal with the following properties:
(i) For all (z,2),(y,w) € D there are T,, > 0,u, € U with Y(Ty,x,z,u,) —
(y,w) and Y(t,z, z,uy) € Q for t € [0,T,].
7



(ii) For every z € Z and every x € D, there exists a control w € U such that
U(t,x,z,u) € D for all t > 0.

In condition (i), it is clear that T,, — oo, unless the excitation is periodic. Condi-
tion (ii) immediately implies that the projection of the control set is dense in Z; the
inclusion may be rewritten as ¢(t,z, z,u) € D, ;4. for all ¢ > 0.

For periodic excitations, one can characterize control sets by looking at the dis-
crete time system defined by the Poincaré map (Gayer [8]). We will show that also in
the almost periodic case, it is possible to characterize control sets fiberwise.

LEMMA 4.2. Suppose that D C Q is a control set. Then the fibers D, := DNQ.,
z € Z, satisfy the following properties:

(i) For every z € Z and all x,y € D, there are T,, — oo and u, € U with
V(Th, &, 2, un) — (y,2) and (¢, z, z,u,) € Q for all t € [0,T,].
(ii) For every z € Z and every x € D, there exists a control uw € U such that

o(t,x, z,u) € Dy, for all t > 0.

Proof. This obviously follows from properties (i) and (ii) of control sets. O

The following lemma shows, that the properties in Lemma 4.2 characterize control
sets.

LeMMA 4.3. Suppose Q C M x Z is closed and that D* C Q,, z € Z, is a family
of sets satisfying conditions (i) and (ii) in Lemma 4.2 and, additionally,

(ili) For every (x,z) € D* and all T,, > 0 with 01,z — w € Z there are y € M
and u, € U such that v(T,,z,z,u,) — (y,w) € D¥ and (¢, z,z,u,) € Q for all
te€0,T,].

Then D = |
tion 4.1.

Proof. Property (ii) of control sets is clearly satisfied due to property (ii) of the
fibers. In order to prove property (i), let (x, 2), (y,w) € D. Since w(z) = Z there are
Sk — oo with g,z — w. By Property (iii) we may assume that, for some controls
ug € U and some (yo,w) € D

.cz D? satisfies properties (i) and (ii) of control sets in Defini-

W(Sk, x, z,u) — (yo,w) in Q. (4.1)
By property (i) of the fibers there are T,, — oo and v,, € Y with
Y (Th, Yo, w,vy) — (y,w) in Q. (4.2)

Let € > 0 and denote here and in the following the open e-ball around z by B.(z).
For every n € N there is an 7,, > 0 such that

w(T’IM Bnn (y07 w), Un) - Bs/2 (w(Tna Yo, W, 'Un)) (43)

due to continuous dependence on initial conditions. Convergence in (4.2) implies that
(T, yo, w,vn) € Beyo(y, w) for sufficiently large n. Together, this yields

1/)(Tm Bnn (y07 U}), ’Un) - Bs(ya w)

for n large enough.
By convergence in (4.1), there is a sequence (k;,)nen C N such that

w(Skn ? x’ Z’ ukn) e Bnn (y07 w)'
8



Let Tn =Sk, + T, and

Blt) = {un(t) if t < S,

| wn(t—Sk,) otherwise.

Then inclusion (4.3) implies ¢(Tn,x,z,&n) € B.(y,w) for all n € N. Since € > 0 is
arbitrary, this implies (T}, z, 2, 1,) — (y,w). Furthermore ¥ (t,z, z, @,) € Q for all
t €[0,T,], n € N, by construction. O
The following result clarifies the relations between control sets and their fibers.
THEOREM 4.4. Consider system (1.1) in a closed subset Q C M x Z.
(i) Let D* C Q,, z € Z, be a mazimal family of sets satisfying conditions (i)
and (ii) in Lemma 4.2 and condition (iii) in Lemma 4.3. Then D =], .z D? is a
control set.
(ii) Let D be a control set. Then the fibers D, form a mazimal family of sets
satisfying conditions (i) and (ii) in Lemma 4.2
Proof. By Lemmas 4.2 and 4.3 only maximality has to be shown.
(i) By Lemma 4.3 the set D := |J,.z D? satisfies the two defining properties

z€EZ

of control sets and is thus contained in a control set D. The fibers D, z € Z, satisfy
conditions (i) and (ii) in Lemma 4.2. So by maximality D, = D* for every z € Z,
which implies D = D.

(ii) By Lemma 4.2 the fibers D, satisfy conditions (i) and (ii) and are thus
contained in a maximal family D?, z € Z, of sets satisfying these properties. By
Lemma 4.3 the set D := U.cz D? is a control set. Clearly D C D. Maximality
implies D = D and so D, = D? for all z. ad

We note the following simple property of control sets.
PROPOSITION 4.5. Let D1 and Do be control sets relative to QQ and assume that
there are z € Z, times Ty > T1 > 0, a point © € D7, and a control w € U such that

o(T1, 2, z,u) € Dy 1,y and o(T1 + To, 2, 2,u) € D1 (1, 4+154.)5
and Y(t,z1,2z,u) € Q for all t € [0, + T3].

Then Dl = Dz.
Proof. This follows by maximality of D1, since Dy U{¢(t,x, z,u),t € [0,T1 + To]}
satisfies properties (i) and (ii) of control sets. O

Our next aim is to prove that under an inner-pair condition every almost periodic
solution of the uncontrolled equation is contained in the interior of a control set. For a
periodic excitation as considered in Example 2.1, the state space Z = S! is (trivially)
completely controllable. However, already for a quasi-periodic excitation with two
noncommensurable (i. e. rationally independent) frequencies wi, ws, this is no longer
true. Hence it does not make sense to consider exact controllability properties in
the z-component. This is different in the z-component as shown by the following
proposition.

PROPOSITION 4.6. Let 1(t,2°,2°,0) € Q,t € R, be an almost periodic solution of
the uncontrolled system and define A := cl{1(t,2°,2°,0),t € R}. Assume that there
are €, T > 0 such that for every (z,z) € A

B. (cp(T, z, 7, 0)) C OJTr(x; z,Q).

Then for all (z,z),(y,w) € A there is 7 > 0 such that B, 5 (y) C Of (x;2,Q) and for
every yo € B.2(y) there are 7, > 0 and u, € U with ©(Ty, 2, z,u,) = yo in Q and
0:,2z — w.



Proof. Let (z, 2), (y,w) € A. Note that by uniform continuity, there is § > 0 such
that

d((xlazl)v (‘IQVZQ)) <9 1mp11es d(w(Tv'rlelvO)aw(Ta :17272250)) < 6/2

By almost periodicity one has w(z,z) = A, hence there are S,, — oo such that
Y(Sp,x,2,0) — Y(=T,y,w,0) in A C Q. Choose n large enough such that for
SQ = Sn

d(w(_Tuyawao)adj(SOu:E?Z?O)) < d. (44)
This implies
d((y7 lU), 1Z)(SO + Ta z,z, O)) = d(/l/}(Ta ¢(—T7 Yy, w, 0)7 0)7 w(Ta 11[}(807 Z,z, 0)5 O)) < 5/2

and we conclude for € > 0, small enough,

B.,2(y) C B: (gp(So +T x, 2, 0)) =B, (QD(T, ©(So, z, 2,0), HTZ))
C int OJTr (cp(S’o,x, z,0); 07z, Q) C int (’);LOJFT(:E; z,Q).

This yields the first assertion with 7 = Sy 4+ T and the second assertion follows with
Tn = Sy + T if we consider 0, — 0 in (4.4). O

This proposition allows us to show that almost periodic solutions of the uncon-
trolled system are contained in the interior of control sets. In other words, around an
almost periodic solution we have complete controllability along the almost periodic
excitations.

THEOREM 4.7. Let ¥(t,2°,2°,0) € Q,t € R, be an almost periodic solution of
the uncontrolled system and let A := cl{1(t,2°,2°,0),t € R}. Assume that there are
e, T > 0 such that for every (z,z) € A

B.(p(T,z,2,0)) C OJTF(:E;Z,Q) and B (¢(—=T,z,2,0)) C Op(z;2,Q). (4.5)

Then there exists a control set D such that for every (z,z) € A one has x € int DZ.

Proof. 1t is clear that the set A satisfies properties (i) and (ii) of Definition 4.1.
Hence it is contained in a maximal set with these properties, i.e. a control set D. The
assertion follows, if we can show that for all (z, ) € A the neighborhoods B, 5(z) also
satisfy these properties. Let (z, 2), (y,w) € A. For property (i) it suffices to show that
for 29 € B./2(),y0 € B./2(y) there are T, > 0 and u,, € U with (T, yo, w, u,) —
(%0, 2) in Q. Since ¥(T, z, z,0) € A, condition (4.5) implies

B, )2(z) C OF (¢(T, z, 7, 0))

Hence for every (xo,2) € B./2(7) x {z} there is a control ug € U with ¢(T',x,z,0) =
WU(T, zg, z,up). Similarly, (=T, y,w,0) € A implies

B€/2(y) - O;: (7/1(—T7 Yy, w, O))a

and hence there is a control vg € U with (yo, w) = (T, (=T, y,w,0),vo).
Since (T, x,2,0),¢%(-T,y,w,0) € A there are S,, > 0 and v,, € Y with

U (Sn, (T, 2,2,0),v,) — Y(=T,y,w,0) in Q.
10



By continuity, this implies

’@[J(Taw(snaw(T?xazao)aUn)a“O) - ¢(T7¢(_Tay7w70)avo) = (y07w)'

Define the concatenated controls

uo(t) for te[0,T)
up(t) :=< v (t—=T) for te (T,T+ S,]
vt =T —S,) for te(T+5,,2T+5S,].

Then, with T, := 2T + S,

w(Tnaanzuun) ¢(2T+Sn7x072aun)

zw(T (S, (T, w0, 2, u0), Un), ’Uo)
:1/)(T 0 Sn,i/} (T,z,2,0), vn) vo)
= (Yo, w).

This proves property (i). Then property (ii) is obvious. O
REMARK 4.8. Condition (4.5) is analogous to the inner-pair condition (but
slightly stronger) for autonomous control systems, see Definition 4.1.5 in [3]
Assumption (4.5) in Theorem 4.7 can be guaranteed for a large class of systems,
as shown by Gayer [8]: Counsider the following nth order systems on R™

Ign) fl(taza"'vx(nil)) bl(taza"wx(nil)) ul(t)
: + : = : . (4.6)
%(g) fm(t,z, ... ,x("’l)) b (t,x,. .. ,x("’l)) U (t)

Here z = (x;) € C" 1(R,R™), its nth derivative exists but is not necessarily con-
tinuous, and z(*) denotes its kth derivative. Assume f; : R x R — R and
b; : R x R™ — R are C! and consider controls

u=(u;) €U’ :={u:R —R™, u(t) € U for all t}.

We assume that the control ranges U” are compact and convex and that mapping
p — UP is strictly increasing, i.e. UP* C int UP2 for 0 < p; < pa. As before, assume
that for all initial values and all controls the solutions are unique and exist for all
times.

We consider the associated first order systems. So for initial values yg,...,y,—1 €
R™ at time ¢ty = 0 and a control u € U” denote by A(t,yo,- .., Yn—1,u) the correspond-
ing solution of (4.6). We set y° := (yo,...,yn—1) € R™ and define the set reachable
from 4° at time T > 0 by

O () = (zoy- .-, Z"_l,) € R there is u € U '
T with z; = AO(¢,9°) for 0 <i<n—1

ProPOSITION 4.9. Consider system (4.6) and assume that there is some o > 0
such that |b;(t,y)| > a for alli € {1,...,m} and all (t,y) € RxR™. Let 0 < p1 < po

11



and consider a compact subset B C R™. Then for every T > 0 there is € > 0 such
that for all (y°,u) € B x U

BT,y u),. . A D(T g%, w)ie) € 057 ().

Proof. This follows from [8, Theorem 3] and its proof. Here arbitrary time
dependence of the right hand side is allowed and the theorem is formulated a bit
differently (in terms of inner pairs for varying control range), but the proof shows the
stronger result formulated above. O

In particular, under the assumptions of Proposition 4.9, one obtains for p; =
0 that condition (4.5) is satisfied (applying the theorem also to the time reversed
system).

Next we generalize Theorem 4.7 in order to show a relation between chain con-
trollability and controllability. We begin with the following lemma.

LeMMA 4.10. Let 0 < p; < po and consider a compact subset Q C M x Z. Let
EPt be a chain control set relative to Q for system (1.1) with controls in UP*. Assume
that there are €,T > 0 such that for every (x,z) € EP* and u € U™

B.(¢(T,2,2,u)) C Op"(x;2,Q). (4.7)

Then for all (z,z), (y, w) € E* there is T > 0 such that B, 5(y) C Of*2(x;2,Q) and
for every yo € B./2(y) there are 7, > 0 and u,, € UP?* with (7,1, 2,un) = yo in Q
and 0., u, — w.

Proof. Let (x, 2), (y,w) € EP'. By uniform continuity, there is § with 0 < § < /2
such that for all u

d((xluzl)v (.’L’g, 22)) <9 implies d(¢(T7 T1, 21, ’U,), ¢(T1 T2, 22, u)) < 8/2

There is ug € UP* such that (=T, y,w,up) € E*. By chain controllability, there
exists a controlled (§,T)-chain in @ along 2z from z to ¥(—T,y,w,up), i.e. xg =
Ty Ty = @(_T7y7w7u0)7 and

d(9T0+...+Tn712,9,T’w) < 5, d((ﬂ(Tj,Ij,9T0+...+Tjilz,ij),Ij+1) < ¢ for all 7
U(t, 2,01, 4.1, 2,v5) € Q for all t € [0,T;] and for all j;
For every j one finds by induction
Tj+1 € Bts((p(ij Ljs 9T0+"'+Tj—127 Uj))
=B; (‘P(Ta @(TJ -T, Zj, 9TD+"'+T]‘—12’ vj)v 9TD+"'+Tj—1+Tj*TZ) eijT'Uj)
- O;7p2 (SD(TJ - T7 Ly, 9T0+"'+Tj71 2, Uj); 9T0+"'+Tj—1+Tj_TZ7 Q)
- O;[;Tm+Tj (w052, Q).
Hence there is a control v € UP? with
xn=9(To+ -+ Th-1,2,2,v) and d(Ory+...41,_,2,0-TW) < 0. (4.8)
By choice of § we find

d(w(Ta T, 0TO+"'+T77,712’ H*Tuo)v (ya w))
= d(w(T7 Tn, 9T0+>~+Tn7127 H—TUO)a w(T7 w(_T; Yy, w, UO), H_T’U,O)> < 5/2
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We conclude for € > 0, small enough,
B./2(y) C Be(@(T, &, 01 1gm,, 2, 0-1000))
- BE( (T, @(To+ - + Tn 1,2, 2,0), 01+ 475,12, 6‘_Tu0)>
O%Lof AT 1+T(I;ZaQ)'

This yields the first assertion with 7 = Tg + --- + T,,_1 + T. The second assertion
follows with 7,, =Ty + - - - + T),—1 + T if we consider §,, — 0 in (4.8). a

This lemma allows us to show that chain control sets are contained in the interior
of control sets for larger control ranges.

THEOREM 4.11. Let 0 < p1 < po and consider a compact subset Q C M x Z. Let
EPv be a chain control set relative to Q for system (1.1) with controls in UP*. Assume
that there are e, T > 0 such that for every (z,z) € EP' and u € UP*

B. (¢(T,z,2,u)) C 03" (z;2,Q) and B.(p(~T,z,2,u)) C O3 (2;2,Q). (4.9)

Then there exists a control set DP? such that for every (x,z) € EP' one has © €
int D22,

Proof. The assertion follows, if we can show that for all (x,z) € E?* the neigh-
borhoods B, /() satisfy conditions (i) and (ii) in Definition 4.1 for controls in 2/*2.
Then E*' is contained in a maximal set with these properties, i.e. a control set D2,
Let (2, 2), (y, w) € EP'. For property (i) it suffices to show that for zo € B, 2(x), 0 €
B, /2(y) there are T, > 0 and u,, € U** with ¢(T,, yo, w, un) — (20, 2) in Q. There is
a control vy € UP* with (T, x, z,v9) € EP*, hence condition (4.5) implies

B.)2(x) C Op " (Y(T,z, 2, v0)).

Hence for every xzg € B(x,2/2) there is a control ug € UP? with (T, z,z,v9) =
(T, x0, z,up). Similarly, there is a control v; € UP* with (=T, y,w,v1) € EP' and

B./2(y) C 0572 (Y(=T,y,w,v1)),

and hence there is a control u; € UP? with (yo,w) = 1/)(T,1/)(—T, Y, w,v1), ul).
Since (T, xz, z,v), (=T, y, w,v1) € EP', Proposition 4.10 implies that there are
7 > 0 and v,, € UP? with 1/)(Tn,1/J(T,z,z,v0),vn) —Y(-T,y,w,v1) in Q.
Together, one obtains
(T (7 (T, 2,00, 0) 01 ) = (T (=T, w,01), 01) = (o, w):
Define the concatenated control u,, € UP? by

uo(t) for te€]0,7T)
up(t) :=< v, (t=T) for te (T,T + 7,
u(t =T —7,) for te€[T+7,,2T+ 71,

Then, with T, := 2T + 7,
W(Tn, o, 2, upn) = V(2T + T, X0, 2, Un)
= (T v Tn,1/) (T, zo, 2, up), 9Tun),9T+Tnun)
(T ) Tn,1/) (T, zo, z,up),v ),ul)

— (yo,w).
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This proves property (i) of control sets. Now property (ii) is obvious. O

REMARK 4.12. Using this theorem we can, as in [3, Theorem 4.7.5], show that
for all up to at most countably many p-values the closures of control sets and the chain
conirol sets coincide. The proof is based on Scherbina’s Lemma [17] for continuity of
monotonically increasing set valued functions. Hence, by Theorem 3.7 one may also
determine the fibers of control sets via the fibers of the chain control sets. For this
purpose, one has to consider ‘long’ times, since these fibers are determined only on
long time intervals, cp. Remark 3.8. At first sight, this is different, if the excitation is
periodic; here only the Poincaré map, and hence the period length, is needed, Propo-
sition 3.6. Nevertheless, also in this case approzimate controllability is relevant (the
entrance boundary of a control set is reached from the interior only for time tending
to infinity), and hence also these objects are only determined on long time intervals.

5. Almost Periodic Solutions and Heteroclinic Orbits. In this section we
recall results on almost periodic perturbations of hyperbolic equilibria and Melnikov’s
method. Since in the literature they are not precisely stated in the form needed here,
we recall the relevant concepts and some arguments for the proofs.

It is well-known that, under small periodic perturbations, a hyperbolic fixed point
of an autonomous differential equation becomes a periodic solution, see e.g. [1, The-
orem 25.2| for details on this result, which is known as Poincaré continuation. This
result can be generalized to almost periodic perturbations, in which case the existence
of an almost periodic solution can be shown. Consider the differential equation

&= g(x) + ph(t, z, 1) (5.1)

for g : R - R? and h : R x R? x R — R%. The parameter ;1 € R is interpreted as
a small perturbation. Setting p = 0 in system (5.1) leads to the equation & = g(x)
which will be referred to as the unperturbed system. Throughout we assume that (5.1)
satisfies the following conditions:

The function g is C! and h is continuous and h, exists and there are a bounded
and open subset V' C R? containing xy and a constant i > 0, such that h and h, are
almost periodic in ¢, uniformly with respect to (z,u) € clV x [—f, ii], and solutions
of (5.1) exist for all starting points in V', all u € [—f, ] and all times.

As noted in Scheurle [18], Remark 2.7, almost periodicity of h, uniformly with
respect to (z, p) is equivalent with h, being uniformly continuous on RxclV X [—f, fi].

Next recall the notion of exponential dichotomies, which generalize the idea of
hyperbolicity to nonautonomous systems, cf. Coppel [5].

DEFINITION 5.1. Consider the system

i=At)x (5.2)

for a piecewise continuous matriz function A : J — R¥9 defined on an interval
J C R and let X(t) be a fundamental matriz function for (5.2). System (5.2) has
an exponential dichotomy on J if there is a projection P : R* — R® and constants
K >1, a> 0 such that

[ X&) PX(s)| < Ke (=) for s <t,
| X () (I —P)XY(s)|| < Ke~ (%) for s > t.
Then the following perturbation result (Lemma 2.4 in [18]) holds.

LEMMA 5.2. Let g(t,x) and h(t, z) be functions which are defined and continuous
on R x V with values in R?, where V is an open subset of R¢. Furthermore, assume
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that the partial derivatives g, and h, exist and that g, is uniformly continuous and
he continuous in R x V. Finally assume that the equation & = g(t,x) has a solution
x = x0(t) defined and contained in'V for all t € R, and strictly bounded away from the
boundary of V', such that the variational equation & = g, (t, o) (t))x has an exponential
dichotomy on R with constants K and «. Then there exist a positive constant ng and
a function 1m1(n) depending only on g, K, and « such that, if 0 <n < no,

sup  [h(t,2)| <m(n) and sup [ho(t,2)]| < K a/2,
(t,z)eERXV (t,x)eERXV

then the equation & = g(t,z) + h(t,x) has a unique solution x(t) satisfying ||x(t) —
xO(t)” < UB teR.
A slight modification of Bohr’s proof for the boundedness of almost periodic
functions in [2] shows uniform boundedness of uniformly almost periodic functions.
LEMMA 5.3. Let A be a compact topological space, M a normed vector space with
norm || - || and f: R x A — M continuous and almost periodic in t uniformly with
respect to x € A. Then

sup (t,m)ERXAHf(ta I)H < 0.

Proof. Since f is uniformly almost periodic, there is an interval length L such
that for every interval J C R of length L there exists a translation number 7(J) € J
satisfying || f(t + 7(J),z) — f(t,x)|| < 1 for all (t,z) € R x A. Here L and 7 are
independent of x due to uniformity.

Since f is continuous and A compact, ¢ := sup( ,)eo,z)xa || f (£, @)[| < co. For
every t € R any translation number 7; in the interval J = [—t,—t + L] satisfies
t+ 7 € |0, L]. Therefore for every t € R and x € A

If &l < WfE+mll + 7@ = fE+7)| <c+1. O

The previous lemmas imply the following result (this is essentially Lemma 2.8 in
18)).

PROPOSITION 5.4. Suppose that the unperturbed system corresponding to (5.1)
has a hyperbolic fized point xq, i. e. g(xg) = 0 and the real parts of the eigenvalues of
9z (o) are different from 0. For all (small) n > 0 there is po = po(n) > 0 such that for
|| < po there exists a unique solution C*(t) of system (5.1) satisfying ||C*(t)—xol <
for all t € R. This solution is almost periodic.

Proof. First we show that system (5.1) satisfies the assumptions of Lemma 5.2.
The functions g and h are continuous and the derivatives g, and h, exist and g,
is uniformly continuous on the compact set clV. As z( is a hyperbolic equilib-
rium of the unperturbed equation, the corresponding linearized equation & = g, (zo)x
trivially has an exponential dichotomy on R. Finally, sup(; ,)erxy l#h(t, z, )| and
SUP(¢,2)erx v |[1the (t, @, 1)|| can be made arbitrarily small by choosing p small enough,
since h and h, are uniformly almost periodic and thus uniformly bounded, due to
Lemma 5.3.

This means that for sufficiently small perturbations p there is a unique solution
¢* which stays near the original fixed point z( for all times. For sufficiently small p
the equation

& = [g2(CH(8)) + pha (t,C(8), 1) |2

has an exponential dichotomy on R. This follows from roughness of exponential
dichotomies with respect to small perturbations; see Proposition 2.2 in [18] or [5,
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p. 34]. Finally, it remains to show almost periodicity of the perturbed solution (*.
For this purpose consider the shifted system

& =g(x) + ph(t+ 1,2, 1) (5.3)

for 7 € R. Lemma 5.2 applied to (5.3) shows that for small n and |u| < po(n) there
is a unique solution (¥(t) which satisfies ||C¥(t) — zo|| < n for all ¢ € R. Obviously
CH(t)=CH(t +T) for all t,7 € R.

Now we apply Lemma 5.2 to (5.3) again, setting g(¢t,z) = g(z) + ph(t,x, n),
h(t,z) = plh(t + 7,2, 1) — h(t,z, 1)) and xo(t) = ¢#(¢). For sufficiently small p and
n > 0 there is an € = (i, n) > 0 such that ||¢*(¢) — ¢#(¢)]| < 7, provided that

Wl sup () — ()| < <
(t,x)ERXV

and

lul  sup  he(t, @, 1) = he(t + 7,2, 1) < €.
(t,x)eERXV

Hence uniform almost periodicity of h and h, implies almost periodicity of ().
d
If we suppose that in our setting there exist two hyperbolic fixed points z4 € R?
of the unperturbed system, Proposition 5.4 implies the existence of almost periodic
solutions ¥ near x4 for sufficiently small p. If there is a heteroclinic orbit ¢ from z_
to x4, the question arises how the system behaves near ( for small perturbations pu.
For time-periodic perturbations Melnikov’s method gives a handy criterion for
the existence of transversal heteroclinic points. K.J. Palmer has developed a gener-
alization of Melnikov’s method in [15] which, in our setting, yields the following.
THEOREM 5.5. Consider the system & = g(x) + ph(t,x, 1) and let the following
assumptions be satisfied:
(i) There is a bounded and open subset V C R? and a constant i > 0 such that
g:V =R isC? and h: Rx V x [—fi, i] — R? is continuous. The partial derivatives
My, hay Py Paxs Pop, Pue, huu exist, are bounded, continuous in t for each fized x, u
and continuous in x, it uniformly with respect to t,x, p.
(ii) The functions h and h, are almost periodic in t, uniformly with respect to
(2,11) € 1V X [—fa, ]
(iii) The unperturbed equation & = g(x) has hyperbolic fixed points x4 € V with
stable and unstable manifolds of the same dimensions.
(iv) There is a heteroclinic orbit ¢ from x_ to x4 contained in V.
(v) The function

A(tg) = /Oo o(t) - h(t +to,¢(t),0) dt

— 0o

has a simple zero at some ty € R, where ¢(t) is the unique (up to a scalar multiple)

bounded solution of the adjoint system & = g, (C(t))Taj and “” denotes the inner
product in R?.

Then there exists g > 0 such that for sufficiently small p the perturbed sys-
tem (5.1) has a unique solution x(t,p) satisfying ||z(t,u) — C(t — to)|| < o for all
t € R. Furthermore

sup [[z(t, ) — C(t — to)l| = O(u) for p—0
teR
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and

& = [ga(w(t, 1) + pho (t, 2(t, ), 1)@

has an exponential dichotomy on R.
Finally, it holds that

Jim_lz(t, ) = (0] = 0 (5.4

for sufficiently small p1, where (! are the almost periodic solutions near T .

Proof. This follows from [15, Corollary 4.3] and the remark on pp. 251 252
in [15] combined with the ideas of the proof of [15, Corollary 4.4] using the fact,
that @ = g,({(¢))z has an exponential dichotomy on both half-lines and that the
dimensions of the stable and unstable subspaces sum up to d.

More precisely, Corollary 4.4 in [15] shows (5.4) for the periodic case. But in
fact, periodicity is only needed there to prove periodicity of ¢%. So (5.4) holds for
the almost periodic case, too, cf. Remark 2.9 in [18]. In detail, there is a § > 0
independent of p such that if

ll(t, p) — CE@)] <6 (5.5)

for sufficiently large |¢| (positive for “+”, negative for “—"), then (5.4) holds, cf. [9,
Theorem 3.1]. For sufficiently small p and large |¢|

l(t, p) = CE@ON < le(t, m) = ¢ = to) | + 1€ — to) — x|l + [lz+ — CE@)] < 0,

hence (5.5) holds.

The fact, that the variational system z = g, (((t))x has an exponential dichotomy
and that the dimensions sum up to d, follows from standard perturbation theory, and
from the assumption that the stable and unstable manifolds of x_ and z; have the
same dimensions. O

REMARK 5.6. This theorem is also applicable to homoclinic orbits by letting
T = T4.

REMARK 5.7. If in the two-dimensional case g is Hamiltonian, A(ty) coincides
with the Melnikov function up to a scalar multiple, Marsden [13].

6. Heteroclinic Orbits and Controllability. In this section, we show that
existence of a heteroclinic solution of the unperturbed uncontrolled equation implies
a controllability condition for perturbed systems with small control influence. Con-
versely, if the controllability condition holds for small control influence, existence of
a heteroclinic solution of the unperturbed equation follows. These results are used to
relate heteroclinic cycles to the existence of control sets.

Consider the following family of control systems depending on a parameter p

& = g(x) + ph(z, z(t), p,u(t)),u € U, (6.1)

with continuous functions g and h and control range U C R™ containing the origin;
the functions z are in the hull Z of a single almost periodic function. We refer to
& = g(x) and & = g(x)+ph(t, x, u,0) as the unperturbed uncontrolled system and the
perturbed uncontrolled system, respectively. For fixed p this is a special case of the
control system (1.1); we use the notation introduced in §2, §3 and §4 with a superfix
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1 to indicate dependence on this parameter. In particular, solutions (whose existence
we always assume) are denoted by (¢, zg, z,u),t € R,z ERY, 2 € Z,u € U.

PRrROPOSITION 6.1. Assume that system (6.1) with control u = 0 satisfies the
assumptions (i) to (v) of Theorem 5.5. Let i be the almost periodic solutions near
the hyperbolic equilibria xy of the unperturbed uncontrolled system and let x(t, p) =
©H(t,aH, 20,0) be the solution near the heteroclinic orbit ¢ from x_ to x4 for some
a* € RY, 29 € Z. Let pu be a parameter value such that the conclusions of Theorem 5.5
hold, and assume that there are ¢ = e(u), T = T(u) > 0 such that for every (z,z) €
Q:=cVxZ

B.(p"(T,x,2,0)) C O%’Jr(:b;z,Q) and B.(¢" (=T, z,2,0)) C OF ™ (x;2,Q). (6.2)

Then there are a control function u* € U and times t" < t‘i such that the correspond-
ing solution " (t,x", z0,u*) of (6.1) satisfies

¢E@t) ift<it,

Ch(t) ift >t

wu(ta Iuv 205 UN) = {

Proof. Pick p as stated and denote the constants from condition (6.2) by e,T > 0.
The solution z(t, ) for the uncontrolled system satisfies (5.4). In particular, there
are times t* < 0 < t/, arbitrarily large, such that

(2, ) = R < e and [Jo(th, ) — KL <e.
Together with (6.2) and the cocycle property this means
CE(t) € Be(p!(t2, 2", 20,0))
= B (¢! (=T, p"(t2 + T, 2", 20,0), 20(t2 + T +),0))
C O™ (Mt + T, 2", 20,0); 20(t" + T + ), Q)
and, analogously,
Ch(th) € Be(p! (2", 20,0))
= BE(SD#(TJ spﬂ(ti - TJ xl" 20, 0)7 Zo(ti -T + '); 0))
C O%’Jr(gp“(ti —T,2",20,0); 20(t" =T+ ), Q)

This ensures the existence of control functions v/} € U satisfying

Cﬁ(tli) = @(_Ta @#(tli + Tv xﬂszaO)sz(tli +T+ ')auli)v
Ci(ti) = @(Tv <P'u(ti - T7 'I#aZOaO)?ZO(ti =T+ )7ul-|t-)

Setting

u_(t—t" —T) iftetht" +1T],
uy(t) == quy(t -t +T) iftelth —T,t],
0 otherwise

completes the proof. a
The previous proposition shows that existence of a heteroclinic orbit for the un-
perturbed uncontrolled equation implies the existence of a control steering the system
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with almost periodic excitation from the almost periodic solution near one equilibrium
to the almost periodic solution near the other equilibrium. The following result con-
siders a converse situation where the unperturbed equation has equilibria x; and x_
and we want to conclude from existence of controlled trajectories of the perturbed sys-
tem from points near z_ to x4 that a heteroclinic orbit of the unperturbed equation
exists.

PROPOSITION 6.2. Suppose that g and h(x, z(t), u,0) satisfy assumptions (i) and
(i) of Theorem 5.5 for all z € Z, i. e. these assumptions hold for system (6.1) with
u = 0. Moreover, assume that the chain recurrent set of the unperturbed uncontrolled
system & = g(x) relative to clV is equal to {x4,z_}.

Suppose furthermore that the control range U is bounded and there are p,, — 0,
almost periodic excitations z, € Z, control functions u, € U , times t” < t7, and
points x, € clV such that the solution p,(t) := " (t,Tn, 2n,un),t € R, of (6.1) is
contained in clV and satisfies ¢, (t") — x_ and there is 6 > 0 with ||on(t) —x_|| > 0
for allt >t and all n.

Then the unperturbed, uncontrolled system has a heteroclinic orbit from x_ to
Ty

Proof. For every n € N let T,, > t" be the largest time satisfying ¢, (T},) €
clB,(z_), where r > 0 is chosen such that B,(z_) C clV. We may assume the
limit & = limy, 00 on(Th) € clB,(x_) exists. It suffices to prove that & lies on a
heteroclinic orbit in clV from z_ to x.

By compactness of Z, we may assume that z, (T, + ) converges to some 2" € Z.
In order to show that the orbit through & lies in clV, fix ¢t € R and ¢ > 0. By
assumption

<Pn(Tn) = 4%7#" (Tnaxnvznaun) - 50)

and pn,h(x, z, pn, u) converges to zero, uniformly in (z,z,u) by continuity of h and
boundedness of U. Then continuous dependence on the right hand side and the initial
value implies

SDHn (Tn +t,$n,zn,un)
=t (t, ' (Tny Ty 20y Un)s 20 (Tn + )y un (T + ) — <P0(tv§0a ZO, 0).

Hence the orbit through &j is contained in clV. Since the a- and w-limit sets of xq
are connected and in the chain recurrent set, they consist either of z_ or z. Since
P (T + t, T, 20, up) € clBy(z-) for ¢ < 0, it follows that the a-limit set of & is
given by x_. Similarly, o#"(T), + t,Zpn, 2n, un) & clB,.(z_) for ¢ > 0, by maximality
of T,,. Thus the w-limit set is given by x. O

Next we discuss consequences of these results for control sets of systems with
almost periodic excitations. Roughly, the results above imply that the existence
of a heteroclinic cycle of the unperturbed, uncontrolled system is equivalent to the
existence of a control set containing all almost periodic solutions near the equilibria
for the systems with almost periodic excitation and small control ranges.

Recall that a heteroclinic cycle of the unperturbed equation is given by a finite

set xg,x1,...,Tn = xg of equilibria together with heteroclinic solutions (; from x;
to x;4+1 for © = 0,...,n — 1. Existence of heteroclinic cycles can be expected in the
presence of symmetries.

THEOREM 6.3. Let xg,21,...,T, = To be pairwise different hyperbolic equilibria

of the unperturbed uncontrolled system © = g(x) and consider control system (6.1)
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with a bounded control range U containing the origin. For |u| # 0, small, and z € Z
denote the almost periodic solutions near x; for excitation z by (!'(z). Assume that
system (6.1) with u = 0 satisfies assumptions (i) and (ii) of Theorem 5.5 for all z € Z
on an open set V containing all equilibria x;.

(i) Assume that for all i there are open subsets V; C R containing the equilibria
x_ =x; and T4 = ;41 such that assumptions (iii) to (v) of Theorem 5.5 are satisfied
for (6.1) with u = 0, and let z;(t,p,z) = pH(t,zl',2,0) be the solution near the
heteroclinic orbit (;(z) from z; to x;11 . Assume that for all sufficiently small |p| # 0
there are e;,T; > 0 such that for every (z,z) € Q; :=clV; x Z

B., (¢*(T;,,2,0)) C Oé,ﬁf(x;z,@i) and B, (¢! (—=T;, 2, 2,0)) C OF (x5 2, Qy).
(6.3)
Then for all |u| # 0, small, there exists a control set D* such that for all z € Z and
all i the almost periodic solution satisfy C!'(t) € DZ(H_) and the heteroclinic solutions
satisfy z;(t, p, z) € D=+,

(ii) Conversely, suppose for all i there are open subsets V; containing x; and
ZTit+1 such that the chain recurrent set of the unperturbed uncontrolled system @ =
g(x) relative to clV; is equal to {x;,x;11}. Furthermore, suppose that for a sequence
0 # pn — O there are control sets D'~ containing the almost periodic solutions ¢!
near x; for almost periodic excitations z, € Z. Then the unperturbed system has a
heteroclinic cycle through the x;.

Proof.

(i) For all i, Theorem 4.7 implies that there are control sets D! such that the
almost periodic solutions ¢(z) are contained in the interior of DJ’,. It remains to
show that all D! coincide. Fix z € Z and consider the almost periodic solutions (;(z)
near x; (we suppress dependence on g in our notation). By Proposition 6.1 there are
Yy € R%, a control function u; € U, and times ¢; < ¢ such that the corresponding
solution ¢(t,y1,z,u1) of (6.1) satisfies

Gty ift <t
Co(t) if t > ty.

go(tvyluzuul) = {

There are y5 € Rd, a control function us € U, and times 75 > to and t3 > 75 such that
the corresponding solution (-, ya, z,u1) of (6.1) satisfies

t7 9 9 = .
ot y2, 2 u2) G(t) if t > ts.

{gg(t) if t < 7,

Proceeding in this way and using z,, = xg, one finds times T > T7 > 0, a point
x € D7, and a control u € U such that

@(Tla z,z, U) € D2,z(T1+») and <P(T1 + 13, x, 2, U) € Dl,Z(T1+T2+')7
and ¥(t,x1,z,u) € Q for all t € [0, T} + T5].

Then Proposition 4.5 shows D1 = Dy and, repeating this argument, one concludes
that all control sets D; coincide.

(ii) The assumptions allows us to apply Proposition 6.2. Hence, for all i, the
unperturbed uncontrolled system has a heteroclinic orbit from x; to ;1. 0
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7. An Oscillator with M-Potential. In this section we will apply our results
to a second order system with M-potential, which models ship roll motion.
Consider the system

&4 i + pBsi® +x — ax® = pz(t) + pu(t) (7.1)

with positive parameters «, 51 and (3, a small perturbation parameter y € R, almost
periodic excitations z : R — R and control functions u : R — [—p, p] for a control
radius p > 0. This model, proposed in Kreuzer and Sichermann [11], has been studied
in Colonius, Kreuzer, Marquardt and Sichermann [4] without time-dependent excita-
tion z. Note that in this application the terms u(-) are interpreted as time-dependent
perturbations (not as controls) where only the range [—p, p] is known. Here the con-
trol sets give information on the global stability behavior: An invariant control set
around the origin indicates stability. If (for large perturbation amplitudes) it has
merged with a variant control set and itself becomes variant, stability is lost. Hence
it is of interest to compute all control sets.

System (7.1) is a special case of system (4.6). Hence, Proposition 4.9 shows that
assumption (4.9) in Theorem 4.11 is satisfied for all po > p; > 0. Thus every compact
chain control set E* is contained in the interior of a control set D”? and hence, for
all up to countably many p > 0, Remark 4.12 shows that the compact chain control
sets coincide with the closures of control sets.

Writing (7.1) as a first order system yields the two-dimensional perturbed Hamil-
tonian system

T = X2,
L , , (7.2)
Bo = —x1 + ax} + p(—Lrze — Psas + 2(t) + u(t)).

Denote by ¢*(t,x, z,u) the solution of this system and let

1/)“(t,:z,z,u) = (@H(tvxvzvu)aetz)-

In the unperturbed and uncontrolled case p = 0 system (7.2) has a fixed point in the
origin and two hyperbolic fixed points at (£1/+/a,0). The hyperbolic fixed points are
connected by two heteroclinic orbits given by «'t(t) := +(z1(t), z2(t)), where

_ 1 ) t

x1(t) == \/_ tanh — \/_ xo(t) = Taa sech 75 t e R,
cp. Simiu [19, p. 131]. In the perturbed, uncontrolled case u = 0 denote by AL the
Melnikov functions of system (7.2) with respect to % and denote by ¢4 the almost
periodic solutions near (+1/1/c,0), which exist for sufficiently small u (see Proposi-
tion 5.4). Let zg € Z be the corresponding excitation and & () := (CL(t), 6:20).

PROPOSITION 7.1. Assume that the almost periodic excitation z is continuously
differentiable with bounded derivative. If the functions Ay have simple zeros and i is
small enough, then system (7.2) has a control set D containing ! (R). Then D will
be called a heteroclinic control set.

Proof. This essentially follows from Proposition 6.1. To be precise, system (7.2)
satisfies assumptions (i) to (v) of Theorem 5.5 for u = 0: Assumption (i) is satisfied
for every bounded open set V' C R? and every i > 0. Property (ii) is clearly satisfied,
because z does not depend on x and u. Assumptions (iii) and (iv) are true for a
suitable bounded and open set V' C R?. Property (v) holds by assumption.
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Furthermore, property (6.2) is satisfied, as can be shown by Proposition 4.9. So
for sufficiently small ¢ Proposition 6.1 implies the existence of points x/; € R?, control
functions u{ € U and times s} < ¢/ such that

Ch(t) ift< s

Mt# my
L, 20, u%) {Cﬁ@) i1 >

and

" ; w
Spu(taxi,zo,uu) _ {Cl(t) Tf t < S:_:
<+(t) ift >t
The set D 1= (R, ", 29, u' ) U (R, 24, 20, u! ) UEH (R)UEL (R) satisfies properties
(i) and (ii) of control sets and is thus contained in a control set D. This implies
H(R)cDcD. O
First we study the periodic case and choose z(t) := F coswt for positive parame-
ters I’ and w, which leads to the system

1 = T2,

] 3 3 (7.3)

iy = —x1 + azi + p(—Pixs — B3xs + Feoswt + u(t)).
The excitation z is C! and its derivative is bounded, so Proposition 7.1 is applicable.
The Melnikov functions Ay of system (7.3) can easily be computed using the residue
theorem:

_ V26 8V26; | V2mwF

- 3 7w - coswtiy.
3a 35 Vasinh NG

AL(to) =
The Melnikov functions A4 have simple zeros if and only if F' exceeds a certain critical
amplitude F,,i.e.if F > F,:= A~1B for

_ _2V2B1 | 8V2Ps
Vasinh =2 ' 3 3502

COROLLARY 7.2. If F > F,, system (7.3) has a heteroclinic control set for
sufficiently small p.

Proof. This follows from Proposition 7.1. O

As the excitation is T-periodic for T := 27 /w, it is possible to compute fibers of
control sets by looking at the discrete control system given by the time-7T map. For the
following computations we restrict our view to the parameter values o = 0.674, 0, =
0.231 and 33 = 0.375 (see [11] for a discussion of these parameters and this choice) and
choose w = 2.5 and p = 1.0. Then F,. ~ 5.62880, so let F' := 6 > F,. Figure 7.1 shows
the fiber in phase 0 for ¢ = 0.1. The control sets were approximated with the graph
algorithm (see Dellnitz/Junge [6], Szolnoki [20]) using the implementation in GATO'.
For a spatial discretization into boxes, this algorithm computes strongly connected
components of an associated graph whose nodes are given by the boxes and whose
edges indicate reachability. The union of the resulting boxes is an approximation to
a chain control set; as noted above, for system (7.1) the chain control sets typically
coincide with the closures of control sets. Note that this figure shows the fiber of two
control sets: an invariant control set around the origin (black) and the heteroclinic
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FI1GURE 7.1. Fiber of control sets for the periodically excited system (7.3). Computed in phase
0 for o« = 0.674, 51 = 0.231, B3 =0.375, w =2.5, p=1.0, F =6 and ¢ = 0.1.

Ficure 7.2. Stable and unstable manifolds for the uncontrolled periodically excited sys-
tem (7.3). Computed in phase 0 for oo = 0.674, 1 = 0.231, B3 = 0.375, w = 2.5, F = 6 and
e=0.1.
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control set (red). Compare this to Figure 7.2, where the stable and unstable manifolds
for these parameter values are shown, again for € = 0.1 and in phase 0.

Next we examine quasi-periodic excitations of the form z(t) := Fcoswit +
F sin wot for positive parameters F, w1, w2, which leads to the system

T1 = T2,

7.4
T9 = —x1 + ax? + u(—ﬂlxg — 6390% + Fcoswit + Fsinwat + u(t)) (74)

The excitation z again is C' and its derivative is bounded. The Melnikov functions
Ay of system (7.4) are

3 3502 Va sinh ’T—\‘/‘% sinh ”—\752

2\/551 8\/553 \/§7TF w1 COS wlto w2 sin LUQtO
Ay (to) = —

The Melnikov function A has a simple zero if F > F, := A=Y(S; + S2) !B for

2 i ) 2v/2 8v/2
A:: Q,SZ = %7121,27 andB::ﬁ_i_@'
Va sinh 222 3 35a2

COROLLARY 7.3. If F > F., system (7.4) has a heteroclinic control set for
sufficiently small .
Proof. This follows from Proposition 7.1. O
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