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Abstract

A concept of ’almost invariance’ is developed starting from sets
that are actually invariant under smaller perturbations. This is based
on a theory for system dynamics of Markov diffusion processes illumi-
nating the idea of ’large’ noise perturbations turning invariant sets for
smaller noise ranges into transient sets. This also allows for numerical
computation of almost invariant sets, the exit times from these sets,
and the exit locations under varying perturbation ranges. The con-
trollability behavior of associated deterministic systems plays a crucial
role. Two examples, a perturbed version of the escape equation, and a
one degree of freedom system with double well potential and additive
perturbation are included.

1 Introduction

Almost invariance is an often used concept for stochastic dynamical systems
that intends to describe sets such that the system

e stays with a set in the state space for a ’long’ time,

e exits from the set only under ’large’ noise perturbations,



e and may return to this set at a later, much ’longer’ time.

Hence almost invariance tries to describe a transient phenomenon of
stochastic systems, but on ’large’ time intervals. The interpretation of ’large’
time intervals and ’large’ perturbations usually depends on the application
one has in mind.

Applications of almost invariance include, e.g., the analysis of molecu-
lar dynamics where they can symbolize conformations of a protein that are
essential for its chemical properties (see, for instance, Deuflhard, Huisinga,
Fischer, and Schiitte [8]); the study of set oriented numerical methods for
dynamical systems (see, e.g., Dellnitz and Junge [7]); the analysis of dynamic
reliability when one tries to estimate rare occurrences of system failure due
to large perturbations (see, e.g., Colonius et al. in [2]); and other models
in science, such as gender determination of turtles that develops during a
maturation time depending on varying temperature.

The goal of this paper is to develop a theory that

e defines a plausible concept of ’almost invariant sets’ based on the actual
system dynamics of Markov diffusion processes,

e illuminates the idea of 'large’ noise perturbations turning invariant sets
for smaller noise ranges into transient sets,

e explores the idea of invariance over ’large’ time intervals,

e and allows for numerical computation of almost invariant sets, the exit
times from these sets, and the exit locations under varying perturbation
ranges.

Our approach is, roughly, as follows:

e We consider Markov diffusion models (i.e. the system does not an-
ticipate future behavior of the noise) with perturbations entering as
parameter or additive noise into the system dynamics, which are mod-
eled as a set of ordinary differential equations

m

&= Xo(x) + Y &(t,w)X;(x) (1)

=1



on a finite dimensional C'*° manifold M, where the C* vector field X,
describes the unperturbed dynamics and £(¢,w) = (&(t,w), i = 1...m)
is the vector of random perturbation processes with C*° dynamics
Xi... X, We model € as a function £ = f(n) of a background noise
n, f: N — U, where N is the state space of the background noise
and U C R™ is the set of perturbation values. We assume 7 to be a
stationary, ergodic Markov process.

e We treat the noise range as a parameter p > 0 of the system by intro-
ducing a family f? : N — U?, p > 0 of functions such that the sets U”
of perturbation values increase with p. Setting U° = {0}, we recover
the unperturbed dynamics of the system 1.

e We identify the invariant sets of the stochastic system 1, depending on
the noise range. Under mild conditions, the invariant control sets of an
associated control are the supports of the invariant measures of 1 and
they form the cores of the invariant sets for the system.

e Analyzing the change of the invariant sets as the noise range p > 0
increases leads to the study of the loss of invariance, specifically to
the analysis of bifurcation points p, where an invariant set loses its
invariance and becomes transient or 'almost invariant’.

e Finally, we study the exit time distributions from invariant sets as they
become transient under the influence of larger perturbations.

This approach develops a concept for almost invariance starting from sets
that are actually invariant under smaller perturbations. In other approaches
the term ’almost invariance’ is used to describe the behavior in certain re-
gions, usually in relation to an invariant probability measure with support
on the whole state space, see e.g. Schiitte et al. in [23]. In the approach
outlined above, such a reference measure need not exist, and we suggest the
term ’near invariance’ for the concept developed here.

In Section 2 we describe the setup used in this paper and recall some
background material on Markov diffusion systems and their qualitative be-
havior, based on the analysis of associated control systems with varying con-
trol range. Section 3 presents the definition of near invariance together with
the main result on the existence of nearly invariant sets. Theorem 3.3 and
Corollary 3.4 describe the bifurcation points where an invariant and a vari-
ant set merge to generate an almost invariant set. The rest of this Section is



devoted to the study of the exit sets from variant sets. Section 4 discusses
the numerical computation of exit times for nearly invariants sets and the
corresponding exit locations. Section 5 analyzes two examples in some de-
tail: a perturbed version of the escape equation, see e.g., [26], [21], or [9] and
the references therein, and a one degree of freedom system with double well
potential and additive perturbation. The appendix 6 contains some back-
ground information on parameter dependent deterministic control systems
that is used throughout the paper.

2 Markov Diffusion Systems and Associated
Control Systems

In this section we recall some facts about Markov diffusion systems, their
relations to associated control systems, and the support theorem of Stroock
and Varadhan. We start from the system

& = Xo(x) + Z fi(n) Xi(x) (2)

on a finite dimensional, C'*® manifold M with C* vector fields Xy, ..., X,, as
in Section 1. First we specify our assumptions on the background noise 7.
Let N be a compact connected finite dimensional C'*°-manifold on which the
stochastic differential equation

I
dn = Yo(n)dt + ) Y;(n) o dW; (3)

j=1
is defined. Here W = () is an [-dimensional Wiener process, Yy, ..., Y] are

C*>-vector fields on N, and ‘o’ denotes the Stratonovich stochastic differen-
tial. The compactness of the noise space N rules out excitation processes
with Gaussian statistics and thus (3) can be regarded as a realistic model
of physical systems with bounded noise. We assume that equation (3) ad-
mits at least one stationary Markov solution. Imposing the Lie algebra rank
condition

dim LA{Y},..., Y }(¢) =dim N forallg € N (4)

as a nondegeneracy condition on N guarantees that this stationary solution is
unique (see Kunita [18]) and can be extended to a stationary Markov solution
n;,teR



The noise process & := f;(n;) in (2) is defined in the following way: Let
U C R™ be a compact, convex set with 0 €intU and U” =cl intU”. Let

f:N—=>U

be a continuous, surjective function such that there exists a closed, connected
subset L C N with f|; is C' and Df(n) has full rank for all n € L with
f(n) € U, see [4]. Then & := f(n;) is a stationary process with values in U.

We model variations in the size of the noise by introducing a parameter
p > 0 and the noise ranges U”, satisfying the same assumption as U above.
We consider the process n; as a background noise, which for every p is mapped
into the stochastic perturbation space U” = {u : R — U?, measurable} by a
continuous surjective function

fP:N = U?,

that satisfies the assumptions on f above. Combining this perturbation
model with system (1), we arrive at the Markov diffusion system

dy = Yo(n)dt+ 35 Yi(n)odWj, no=n;, (5)
i = Xo(o)+ X0 ff(n)Xi(x)

on the state space M x N, for which we assume the existence and unique-
ness of a strong solution for all ¢ > 0. This system is degenerate since the
Wiener process acts only on the second component. Note that, in general,
the component z(t) by itself is not Markovian. The pair process (z(t), n;) is,
however, a Markov diffusion process for all p, if the initial random variable
xo in M is independent of the increments of the Wiener process. Compare
especially [16] for results on degenerate diffusions along these lines, and [4]
and [5] for more details on our setting in general.

The system (5) can be analyzed using control theory via the support
theorem presented by Stroock and Varadhan in [24]. To make this more
precise, we set up the control system associated with (5) to be

n o= YE)(U)_FZ?:l w]’(t)Yi(n)a (6)
b= Xo(w) + 2L, 7 (m) Xi(x)
where w € W := {w : [0,00) — R/, piecewise constant}, and assume the

Lie algebra rank condition (4) for the n—component. Furthermore, we want
the pair system (5) to be regular, i.e. we want the topological support of
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its transition probabilities from each point (z,p) € M x N to have nonvoid
interior in M x N. This is guaranteed by

: Xo + > mi Xi(z) I T\ _ o :
d1rn£A{< Yo+ 3w, Y ,weR 0 =dimM +dim N (7)

for all (x,n) € M x N (see Meyn and Tweedie [20] for a relaxation of this
condition). Instead of (6) it will be sufficient to consider the system

i(t) = Xo(x(t)) + Zui(t) Xi(z(t), wel’, (8)

see the appendix, Section 6 for definitions and notations of control systems.
Note that the condition (7) implies local accessibility for the z— component
(8).

We fix p > 0 for the remainder of this section, and drop it in the notation.
For all (x,n) € M x N the orbits Ot (z,n) of system (6) are of the form
clO*(x,n) = clOT(x) x N, where O (z) is the forward orbit of the system
(8) from = € M. In particular, the invariant control sets C C M x N of
(6) correspond one-to-one to the invariant control sets C' C M of (8) via
C' = C x N. This follows from Lemma 3.17 in [4]. (We remark that in the
statement of that lemma one has to add the surjectivity assumption for f
which is used in the proof). Therefore the global control structure of the
x—component (8) determines the control structure of the pair process (6).

The natural probability space to work in is Q = C(Rf, M x N) =
{w: Ry — M x N, continuous} and for fixed initial conditions (z,q) €

~

M x N the pair process (5) induces a probability measure P, on €.
By I—C’(m,n*) we denote the measure corresponding to the stationary Markov
solution {n;,¢ > 0} in the n—component. Its marginal distribution on
Q = C(Ry, M) will be denoted by P,,z € M. The trajectories of the
pair process are (p(t,(z,q),w),n(t,q,w)) for (z,q) € M x N, and we will
write the z—component under {n;,t > 0} as p(t,z,w), x € M. Then the
‘transition probability’ from x € M to a set A C M in time ¢t > 0 is

P(t,z, A) = Py(p(t,z,w) € A). 9)

Using the tube method introduced by Arnold and Kliemann in [1], it follows
(compare [15]) from the support theorem that

supp P(t,z,") = cl{ y € M | there is a piecewise continuous } . (10)

u € U such that p(t,z,u) =y

6



It now follows from [16] and [4] that the invariant Markov probability
measures i of (5) have support given by suppy = C' x N, where C' is an
invariant control set of (8), and these measures are unique on each set of this
form. We call ergodic sets those invariant control sets C' of (8) such that
C' x N is the support of some invariant Markov measure, which includes, in
particular, all bounded invariant control sets. All other points in M x N are
transient.

To describe the consequences of the support theorem for the relationship
between the Markov diffusion process (5) and the control system (8) in more
detail, we define the first entrance time of (5) to a set A C M from a point
x € M as the random variable

7.(A) :==inf{t > 0, p(t,z,w) € A},

and the first exit time of (5) from a set A C M starting at a point x € M as
the random variable

0. (A) :=inf{t >0, ¢(t,z,w) ¢ A}.
The corresponding exit location is given as

JyeM, y=y9(0,(A),z,w) for o,(A)(w)
ha(A) (W) = { 0 for oy (A)(w)

A

0
0.

Due to Theorem 3.19 in [4], for invariant control sets C' C M of system (8)
the equation P,(0,(C) < oo) = 0 holds for all z € C'. For bounded variant
control sets D C M on the other hand, it holds that P,(0,(D) < c0) =1 for

all z € D. Under the measure P, we even have that the expectation of the
sojourn time F,[o,(D)] is finite (see [2], Theorem 11).

3 Near Invariance and Mergers of Control
Sets

If a bounded invariant control set C? for p < pg becomes variant for p > py,
then the corresponding ergodic set of the Markov process disappears and
becomes transient. Nevertheless, although the disappearance of an ergodic
set changes the global behavior of a stochastic system considerably, we expect
the system to experience large exit times from the resulting variant control
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set as long as p is close to py (see [14] for an example that can serve as a
prototype of this phenomenon). This behavior is captured more generally in
the following definition.

Definition 3.1 Consider the family of Markov diffusion systems (5)°. A
closed set A C M with intA # @& is nearly invariant in xq € intA for p > po

if

(i) o8 (A) < oo with positive probability for p > po, and

(ii) for all x € A one has c?(A) /oo almost surely for p ™\ py and o?°(A) =
oo almost surely.

If A is nearly invariant in every xo € intA, the set A is called nearly invari-
ant.

The following theorem reduces the search for nearly invariant sets to the
search for closed sets A which are invariant for the control range U”° and
lose their invariance under increased control ranges.

Theorem 3.2 Suppose the Markov diffusion systems (5)° satisfy the Lie
algebra rank conditions (7) and (4) and that U? increases upper semicontin-
uously with respect to p € (p«, p*). Let xo € intA for some closed set A C M,
intA # @& and consider py € (ps, p*). Then the set A is nearly invariant in
xo if and only if the set A is positively invariant for py, and for each p > pg

int(O”* (z9) N A) # 0 for all p > py. (11)

Proof. First we show that from positive invariance of A and upper semicon-
tinuity of U” at p = pg property (ii) of Definition 3.1 follows. By Lemma 6.1,
also intA is positively invariant and hence 0?°(A) = oo almost surely. Now
assume contrary to the other assertion that there are x € A, a positive time
T > 0 and p, N\ po such that P.(c?*(A) < T) > 0. Then from (10) it follows
that for all p, there is a control u, € U with o(T,z,u,) ¢ A, and due
to continuity, there are positive times ¢, < T such that ¢(t,,z,u,) € 0A.
Since U” is increasing, we can look upon the sequence u,, as a sequence in
the compact set U”* endowed with the weak* —topology. Then there are sub-
sequences, called t,, and u, again, such that ¢, — t, and u, — u,. By (19)
it follows that o(t,,z,u,) — ©(t., z,u.). Now observe that on a bounded
interval weak* —convergence in L., implies weak convergence in Ls; and here
a subsequence of a weakly convergent sequence converges pointwise. Hence
upper semicontinuity of the closed sets U” implies that u, € U”°, because



if u,(t) was not in U” for some ¢, this would contradict w,(t) € UP» for all
n. Then by continuity it follows that ¢(t., z,u.) € 0A, contradicting the
positive invariance of intA.

Next we prove that assumption (11) implies property (i) of near invariance
by showing that P, (0% (A) < oco) > 0 for all p > py. Pick p > pg, then there
are some open set V' C int(O”*(xy) \ A), a positive time ¢, < oo, and a
piecewise constant control uy € UP such that p(ty, o, ug) € V. By continuous
dependence of the solutions of (8)” on w, there is an open neighborhood
V(ug) C UP such that ¢(tg, zg, u) € V for all u € V(ug). The support theorem
implies that P(n € C(RJ, N), f?(n) € V(up)) > 0. Since the trajectories of
(5) are continuous, we obtain

Pro(04,(A) < 00) = Ppo(0,(A) < to)

(12)
> P(n € C(RY,N), f*(n) € V(yy)) > 0.

For the converse implication assume that A is nearly invariant in oy € intA
for p > py. Then 0% (A) < oo with positive probability for p > py. Thus
for every p > po there is a realization of n and a time 7' such that with
uf = fr(n) € U”

QO(T, To, up) € A.

Thus ¢(T, g, u”) € OP(xy) N A. Local accessibility of (8) implies that
O *(xg) C el intO”* (zp).

Since A is closed, we see that for every p > py condition (11) holds.

It remains to show that the set A is positively invariant for pg. This follows
from 0#°(A) = oo almost surely. In fact, if A is not positively invariant, we
obtain a contradiction using the same reasoning as above in the proof that
(11) implies property (i) of near invariance . m

This result shows that we have to look for closed sets which are positively
invariant for py and lose their invariance for p > py. Naturally, the sets A
that are nearly invariant for all xy € intA, are of particular interest. These
sets are specified in the following theorem. Recall from Section 6 that A™(T)
denotes the largest invariant set in the domain of attraction of a set I.

Theorem 3.3 (i) Let the assumptions of Theorem 3.2 be satisfied and let
C? be a compact invariant control set for py. For each p > py denote by



C? the unique control set of (8)° for which CP° C C?. Suppose that there is
x € intC*° with

int(O”*(z) . C?) £ 0 for all p > py. (13)

Then the invariant control set C'*° is nearly invariant for p > py.

(ii) For every compact set K C M the intersection A" (C?) N K is
nearly invariant for py, if the intersection is positively invariant for py.

(1ii) If the invariant control set CP° is nearly invariant for p > py and
bounded, then P, {of (C*) < oo} =1 for all zy € C* and all p > py.

(iv) Condition (13) is satisfied, in particular, if C* merges with a variant
control set DP° with nonvoid interior, i.e., DP° C C* for all p > py, or if all
(u,z) € UP* x CP° are inner pairs of system (8)° for every p > po, compare
the appendiz, Section 6.

Proof. (i) We show that C*° is nearly invariant for p > py. Since int(C? \
C?) # () and C” is a control set, there are y € int(C? \. C?) and = € intC
such that y € O”*(z). Due to continuity, it follows that there is an open
neighborhood V' (y) C int(C”? ~. C?) of y such that V(y) C O (C*°) and
therefore condition (11) holds.

(ii) Condition (13) implies that (11) is satisfied for every xzy € A :=
A (CPo), since

O (z) € 0P (zp) for all mg € A™ (C™).

(iii) According to [16], all points x € M are either recurrent or transient
and points in variant control sets are transient. Furthermore, the first exit
time from bounded sets of transient points is a.s. finite.

(iv) If C*° merges with a variant control set D?° with nonvoid interior,
one has D N C? = () and D’ C C” for p > pg, and therefore condition
(13) is satisfied. Finally, from the assumption that all (u,z) € U x C*° are
inner pairs of system (8)” for p > py it ensues that C?° C intC” according to
Theorem 6.4. Therefore there is some open set V' C C? ~. C*° and condition
(13) holds. m

This theorem shows that control sets C'?° that are invariant for the per-
turbation range py, but variant for p > pg, are the key nearly invariant sets of
a stochastic system. They are contained in the variant control sets D? D> ('
as 'almost invariant’ sets. If these nearly invariant sets are also bounded,
then Property (i) of 3.1 holds with probability 1. In this situation, we also
have the following consequence.
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Corollary 3.4 Let the assumptions of Theorem 3.2 be satisfied and let CP°
be a compact invariant control set for py. For each p > py denote by C? the
unique control set of (8)F for which CP* C C*. Assume that CP° merges with
a variant control set DP° with nonvoid interior, i.e., DP* C C? for all p > py.
If C? is bounded, then P,{c?(C*) < oo} =1 for all z € C?, p > py, and
0.(C?) has finite expectation. This holds, in particular, for x € CP.

The proof of this lemma is a direct consequence of Theorem 11 in [2].

We now analyze how the stochastic system can exit from variant control
sets. The following propositions show how the continuity results for exit-
boundaries of control sets (see Section 6) can be translated to the stochastic
situation.

Proposition 3.5 Suppose the family of Markov diffusion systems (5)° fulfills
the Lie algebra rank conditions (4) and (7) for all p € [ps, p*].

Let D? C M be a bounded variant control set of (8)° with nonvoid interior
such that DP~ C D*, and let x € DP. For each p we define a probability
measure on M via

Q:(D?)(A) :== Py(w € Q, hy(D?)(w) € A)  for all Borel sets A C M,

with support clOe, D?. If the mapping p — clD? is continuous in the Hausdorff
distance at py and if the perturbation range UP increases lower semicontinu-
ously at py, then the support of Q.(D?) changes continuously.

Proof. Recall that P,(0,(D) < co) = 1 for a bounded variant control set
D with z € D and since all trajectories ¢(t, x,w) are continuous, Q,(D") is
a probability measure. Equation (10) implies that supp@,(D*) = cld., D?
by definition of d,,D”. The desired continuity follows from the deterministic
situation in Theorem 6.5. m

Finally, we study the exit locations when an invariant control set merges
with a variant control set. The deterministic situation is described in Theo-
rem 6.5.

Proposition 3.6 Suppose the family of Markov diffusion systems (5)° fulfills
the Lie algebra rank conditions (4) and (7) for all p € [ps,p*]. For p, €
(ps, p*) let CP and DP be an invariant and a variant control set, respectively,
that satisfy the conditions of Theorem 6.6.

11



Then for the stochastic system (5)P° we have for the first entrance time
7:(CP) to the set C*° that the probability p, = Py(1,(C*) < o00) < 1 for
x € DP. By

Quzpceo (DP)(A) = ﬁ P(w e, hy(D?) €A and 1, (C*) = oc)
for all Borel sets A C M

a probability measure is defined on M with support clo®*”*C*° D?. Further-
more, for the variant control set F* D C? U DP° we have that

suppQy (F") = suppQz pceo (D) for p N\ po

in the Hausdorff metric.

Proof. We first show that p, < 1 for x € D?°. Since it is assumed that the
exit boundary of D can be non-trivially decomposed into 9¢*2¢"° Dro and
0er7C* Dro it follows that clg®@” " Do = (). Then (10) implies p, < 1.

Thus Qupceo (D) is well defined and Qpce0 (D)(M) = 1. As be-
fore due to (10) and the continuity of the trajectories, suppQysceo (D?°) =
clger#C* Dro Now the asserted right continuity follows from Theorem 6.6.
[

4 Computation of Exit Times and Exit Loca-
tions for Nearly Invariant Sets

In this section we present an algorithm to compute exit times of stochastic
systems from sets, based on set oriented methods as they were developed
for dynamical systems by Dellnitz, Hohmann, and Junge (see [6], [7]), and
for control systems by Szolnoki (cf. [25]). We start from the setup in The-
orem 3.3 and Corollary 3.4: For the parameter interval [p,, p*] we assume
that there is a ’bifurcation point’ py such that C*° is an invariant control
set that is contained in a variant control set C” for p > py. According to
Theorem 3.3, points x in the set C”° and in A™(C?) N K of the stochastic
system (5)”° can be expected to be identified in the analysis of system (5)”
for p > py, with p — pg small, by significantly large first exit times. How-
ever, it is impossible to analytically compute o,(C”) in general. We know,
however, that for bounded, variant C* we have P,(0,(C?) < oo) = 1 for all
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x € C*. For more detailed information on exit time distributions, one has to
use numerical methods.

The following algorithm produces a numerical approximation to the dis-
tribution of exit times from sets in the state space. We will concentrate here
on the distribution P,{0,(C?) < t}, t > 0, for bounded, variant control sets
C? of the system (5)”.

Algorithm

Step 1 Compute the bounded variant control set C? C M of the control
system (8)”.

Step 2 Choose a compact set K C M with clC” C intK and define a
partition P of K into finitely many boxes B;. Define the collection C =
{By, By, ...,By} of all boxes in P that have nonvoid intersection with C?,
and denote by Byy; the ’sink box’ which symbolizes the area outside of
Ui]\il B;. Since C? C UZN:1 B;, and we are interested in the first exit time, one
box suffices to cover the area of 'no return’.

Step 3 Choose a discretization time 7" > 0, and compute the ’transition
probabilities’ p;; = m fBi P(T,y, B;) dy for the ensuing discretized sys-
tem, with P(T,y, B;) as defined in (9) for ¢ = 1...N. Here m(-) denotes the
Lebesgue measure. We set pyy1; = 1 for j = 1...N 4 1. The resulting matrix
P = (p;;) € RVHDXIN+D) g yow stochastic and hence the transition matrix
of a certain Markov chain on the box space.

Step 4 Compute the cumulative distribution function (cdf) of the first exit
time 0, (C?) for x € B;: P{o,(C?) < nT} is approximated by the i —th entry
in the last column (pgz\),ﬂ) of P™. Specifically, for a given time T,,; we find
ne with (ne — 1)T < Topyy < n.T, and the last column of P™ approximates
the probability to exit C? from B; until time T,,;.

For the approximation of the control sets, numerical methods have been
developed by Szolnoki (cf. [25]). They rely on subdivision techniques for the
numerical analysis of dynamical systems developed by Dellnitz, Hohmann,
and Junge (see [6], [7]). These references also describe the generation of a
partition P and of the boxes.

For the approximation of the dynamics of (5)” we have created a Markov
chain on a finite box partition. After choosing a discretization time 7" in
Step 3, the transition probabilities between the states are computed by Monte
Carlo simulation. This idea is rather old and goes back to Ulam, Metropolis,
and von Neumann (see [19]). Although in the meantime many sophisticated
variants for different disciplines have been developed, there are no general
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error estimates available, hence one can never be sure that the Monte Carlo
simulation recognizes all relevant behavior of the stochastic system. This is
especially problematic if one wants to compute stationary measures or long
time simulations of stochastic processes that visit certain areas of the state
space only infrequently. There have been some developments to overcome
these problems for specific systems. For instance, for systems with purely
additive noise, the deterministic part and the noise influence can be decoupled
as has been done by Fischer in [9] and [10] following some work by Froyland
[11]. Subsequent application of the so-called exhaustion algorithm produces
some error bounds for such systems. In the algorithm described above we
start from a given partition P, a fixed discretization time 7T, and several
starting points within each box B;. Hence this algorithm does not follow a
simulated trajectory of one initial point over a long time period, and it has
proven to be quite reliable.

To approximate the dynamics of (5)?, in Step 3 we first simulate a large
number of trajectories ', [ = 1,..., s, of the background noise process 7.
For this we choose initial values in the compact space N according to the
stationary solution n* (provided this is known) and approximate solutions
of the stochastic differential equation (3) until time 7. Strong schemes are
the methods of choice for the approximation because information about the
whole solution path of (3)” is needed for solving the z—component of (5)”
(see Kloeden and Platen [17] for an introduction to numerical methods for
stochastic differential equations).

Subsequently, s, starting points z* are picked in each box B;. From each
starting point, the solution of the x—component of (5)? is approximated for
all samples 7! generating s;s, target points, denoted by @(T, 2%, 7'). The
transition probability from box B; to B; is then approximated by

1 1 . .
Dij = m /;l P(T,l‘,B])dl' ~ — ZXZ:XBj (QO(T, CUka??l)) )

where xp, denotes the characteristic function of the set B;. The question
as to how many boxes, starting points, and sample paths of the background
process should be used, depends on the properties of the system, the time
length 7', and the box size—and, of course, on availability of computing
resources. While the number of boxes N + 1 is mainly limited by available
memory (note that it is necessary to multiply full matrices with (N + 1)?
entries in Step 4), we have observed that the algorithm is more sensitive to
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a change of the noise realization than to a change of the initial values within
a box. It seems that the solution trajectories n(w) of (3) are less smooth
then the solutions of the system (2). Therefore it is reasonable to increase
the number of realizations of the background noise at the expense of initial
values in each box when computing resources become an issue.

Repeated multiplication of the matrix P with itself in Step 4 may pose
a problem for fine partitions, particularly in higher dimensions. When com-
puting the cdf of the first exit time, this problem cannot be avoided. If one
is interested mainly in the probability of exit until some large time T,,;, one

can save certain iterations: Instead of performing n, = % multiplications

with P, we find 72 = max{n € N,2" < n,} and compute P?" in 7 steps. If
2" < n,, we continue the same process with n, — 27, etc., until P" is com-
puted. (Of course, bases other than 2 can be used and sometimes lead to less
factors in the decomposition of n..) For T,z;; = 10* and T = 102, this pro-
cess results in 25 matrix multiplications instead of 10°. If the cdf of the first
exit time is not required in a resolution corresponding to n. time intervals,
one can proceed similarly by expressing the size of the desired resolution in
powers of a prime, e.g., of 2. In our example, choosing a resolution of 103T,
we compute P9 with 14 multiplications, and then P'%% L = 2..1000,
resulting in 1013 steps.

Recall that for bounded, variant control sets C'*” the expected exit time
from a point x € C” is finite and given by

Elo,(C7)] = / " rap,

where P, is the distribution of o,. This expected value can be approximated
by

oo
E[Ux(cp)] = TZ n (p%H - pfﬁv‘ﬂ) for x € B;.
n=1
For the actual computation, naturally an upper limit n,,,, on n has to be
chosen, which results in an approximation of the expected exit time before
nmaxT-
To compute the exit locations for the system (2), we again approximate
its dynamics by the Markov chain defined in Step 3. For an initial value

x € C* we identify the box B; with x € B;. As before, pZ(Z-) is the probability

to reach the state B; from B; in n steps. If B; # By, and if pf]\ﬁ)l > 0,

then the Markov chain exits from C in step n+ 1. In this case the state B; is
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an exit state for the chain, starting from B;. Let h; denote the corresponding
random exit location. We then have

P{h;=B;} =Y p\"p(i, N +1),

n=0

and this distribution approximates the one of h,(C?) as defined in Section 2.
In practice, one will have to choose again a maximal time T,,; € N, and the
finite sum with 7,,;; + 1 terms is computed

5 Examples

5.1 A Perturbed Escape Equation

As first example we will present some results for the perturbed escape equa-
tion. It describes the movement of a particle with unit mass in the potential
V(z) = 32% — 32® with inertia and linear viscous damping under the influ-
ence of some perturbation. This equation has attracted great interest and
has been analyzed thoroughly (see e.g., [26], [21], or [9] and the references

therein). We consider the perturbed escape equation
&4 yi+x —2® = psinn,

with a background noise process 1, on the one-dimensional sphere S'. The
Wiener process on this sphere is considered as the one dimensional Wiener
process on R modulo 2r. For ¢ > 0 and %, € S! and 2,4 € R such
that £ = x mod27 and § = y mod27, the transition densities of this process,
resulting from the corresponding normally distributed process on R, are given
by

o0

1 (y—x—|—2n7r)2).

t7,q) = -
p(t, ,7) %nz exp( 5

=—00

The sum on the right hand side converges uniformly and absolutely. Then
for an integrable nonnegative function f : S — R it holds that

Uif(z) = [qp(t,7,9) f(7) dF 2
= g o (S0 enp(= =) ) £(y) dy

= 7 o exp(—Y520) f(ymod2r) dy.
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The function f(z) = 5= fulfills U, f(z) = f(&). Thus f(Z) is the unique
stationary density of the noise process because (4) obviously holds.

The perturbed escape equation driven by this background process is given
by

i(t) = y(2)
(1) = =y y(t) — z(t) + x(t)* + psin(n,) (14)
dn; = dWymod2m,

As we saw, the stationary process n; has the uniform distribution on S' as
its one-dimensional distribution.
The associated controlled version of this equation on R? reads

< 28 ) B ( —7y(?) —yfct()t) + z(t)? ) + < u(()t) ) (15)

where u(t) € U? := [—p, p|]. For our computations we set the damping coef-
ficient v to 0.1. Computation of the control sets using the method described
in 4, yields for p = 0.04 the existence of one invariant control set C%%* that
contains the stable fixed point (0,0) of the uncontrolled equation and one
variant control set D%% containing the hyperbolic fixed point (1,0) of the
uncontrolled equation (cf. Figure 1). Increasing the control range one finds
that the two control sets merge for some py close to 0.0411 (see [12]) to form
one variant control set. The assumptions of Theorem 6.6 are satisfied for this
example.

For the computation of the exit times from the merged control set we set
p = 0.15 and distinguish two different scenarios. The first one explores the
exit time distribution for very short time, i.e. T, < 1.0. In this case we
choose a fine partition of the compact set K containing D%!°. The second
one aims at long times, and we choose a coarser partition to accelerate the
computation time. In both cases we pick only the center of each box as initial
value because the system (14) proves to be more sensitive to a variation in
the noise sample than to a small change of the initial value.

In order to approximate the background noise process in the short time
case (Topr < 1.0), we choose nb = [ -27/100 for [ = {0,1,...,99} as ini-
tial values to represent the uniform distribution of ;. Then the background
noise part of (14) is solved for each of these initial values with step size 0.1
until time 1.0, generating 100 sample paths 7' of the Wiener process on S.

17



Figure 1: Control sets for the controlled escape equation for p = 0.04 (left)
and p = 0.045 (right)

For this integration, a simple Euler scheme can be used efficiently because
drift and diffusion coefficients are both constant. The exit probability from
a box B; is then approximated directly by solving the (x,y)-component for
each sample 7' starting at the center of B;. That way, the upper left sketch
in Figure 2, was produced where different colors represent different exit prob-
abilities until time T,,; = 1.0. The other three graphs in Figure 2 follow the
same procedure for T,,; = 5, 30, and 220.

To compute the distribution of the exit times o,(D%!), which requires
large time intervals, we follow the same scheme to integrate the Wiener
process but compute more samples by starting from 7} = [ - 27/10000 for
[ =1{0,1,...,9999} to compensate for the increased box sizes. Once again,
the approximation of the (z,y)-component for each sample /' starts at the
center of B;. Here the limiting factor for the number of boxes is the multi-
ples of the transition matrix P that are to be computed. Multiples P" of P
are computed for n = 2,...,1500. The minimum over all boxes of the exit
probabilities min; pg}]f,(fi until 7,,;; = 1500 is then 0.98, and the computation
was terminated. The left hand graph in Figure 3 shows the distribution of
the exit probability until time n = 1500 for the initial value (0,0), and Fig-
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Figure 2: Exit probabilities from D%!® for p = 0.15 until T,
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ure 4 shows the distribution for the initial values (0.0, —0.5) and (0.9, —0.1),
now on a logarithmic scale. Both graphs show an exponential tail for the
exit time distribution. Indeed, these numerically computed distributions (af-
ter some oscillations during the initial settling-in period) closely resemble a
3-parameter Weibull distribution, which is the standard model for lifetime
distributions in reliability theory. The oscillations stem from the determinis-
tic dynamics of system (14). Computing an unperturbed solution that starts
not too far away from (0,0) on the positive x-axis, one obtains roughly a
time of 6.5 before the trajectory intersects the positive x-axis again. This is
exactly the average distance between two maxima in the histograms of the
distributions. The right hand graph in Figure 3 shows the expected value
of the exit time from all boxes in D%!5. These expected times reflect the
separation between long sojourn times in the formerly invariant region and
short ones outside this area, compare Figure 1.

5.2 A System with Perturbed Double Well Potential

Next we investigate a particle in a two-well potential and consider the fol-
lowing equation:

(t) = y(t)
G(t) = —yy(t) — 2°(t) («*(t)/2 + 2 2(t) /3 — 2) + psin(n,) (16)
dn; = dWymod?2m,

with associated control system

< zg; ) N < —yy(t) — 2*(t) (xg((:))/2+2x(t)/3—2) ) * < u(()t) ) (17)

where again u(t) € U? := [—p, p| and the damping coefficient - is set to 0.1.
For p = 0.07 there are two invariant control sets C?-7 and C9-°7 that contain
the stable fixed points (1,0) and (—2,0), respectively, of the uncontrolled
equation and one variant control set D%%7 containing the hyperbolic fixed
point (0,0) of the uncontrolled equation. Increasing the control range, one
finds that the control sets C¥° and D?° merge for some py close to 0.085 and
form one variant control set (see Figure 5). Note that before the merger of
the control sets, the variant control set increases discontinuously and forms
a ring around the invariant control set.
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Figure 5: Control sets for the double well potential at p = 0.085
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Figure 6: Control sets for the double well potential at p = 0.19
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Figure 7: Control sets for the double well potential at p = 0.2
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p=0.04

Figure 8: Control sets for the double well potential at p = 0.4
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Figure 9: Exit probabilities from the colored region around C?° until time
T = 10 (right) and from the colored region around C5° until time 7" = 1000
(left) for p = 0.4. Parts of the the invariant domains of attraction A™*(C?)
and A" (C%°) become visible.

At some p; close to p = 0.2 the remaining control sets C5* and D”' merge
in a similar way (see Figures 6, 7, and 8).

Thus the corresponding stochastic system (16) possesses one nearly in-
variant region C!° and one nearly invariant region C%'. Figure 9 shows
the exit probabilities until the given exit times from the colored subsets for
p = 0.4. Again, a comparison of the regions of large exit time in Figure 9
with the invariant control sets C7° in Figure 5 and C%* in Figure 7 show re-
markable agreement. Also the invariant domains of attraction of the control
sets become visible in Figure 9 as regions, whose exit times are rather large.
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6 Appendix: Some Background on Nonlinear
Control Systems

In this appendix, we recall some facts on nonlinear control systems. See for
example [3] for more information.

6.1 Accessibility and Control Sets
Consider the control-affine system (8) given by

(1) = Xo(2(1)) + ) uilt) Xi(x(1)) (18)
i=1
with C*-vector fields Xg, ..., X,, on a C'"*°-manifold M of dimension d < oc.
We obtain a family of systems by specifying an increasing family of compact,
convex control ranges 0 € ntU? C R™ with U? = clintU? for all p €
[p«, p*] and define corresponding sets of control functions U” = {u : R — U?,
measurable}. Setting u = 0 models the uncontrolled system. We assume that
there exists a unique solution ¢(t, z,u) of (18) for each p, for every u € U”,
for every initial state x € M, and for all ¢t € [—00, c0]. If the dependence on
p is not important, we will simply omit the notation of p in the following.
The positive and negative orbits at time ¢ > 0 are

O/ (x) = {p(t,z,u), we U}, Of(z) = {p(=t,z,u), ueU},

and we set

OJ<FT U O (x a U O,

te[0,T] te[0,T]
= U of@, 0= U o
te[0,00) te[0,00)

respectively. A set D C M with nonvoid interior is a control set if it is a
maximal set with the property D C clO*(z) for every x € D. A control
set C' with C' = clO*(x) for every x € C is an invariant control set, the
others are called variant. Throughout we assume that system (8) is locally
accessible, i.e.,

intOZ,(z) # @ and intO_p(x) # & for all T > 0.
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This is guaranteed by the Lie algebra rank condition dim LA{ Xy, ..., X;, }(x) =
d for all x € M. We endow the set of control functions U C L. (R, R™) with
the weak* (or L;—) topology, which makes U a compact metric space. Then
for t, —t,x, — x, and u,, — u in U it follows that

O(tn, T, Uy) = @(t, z,u). (19)

We note the following lemma which states that the interior of a positively
invariant set is positively invariant.

Lemma 6.1 Suppose that I C M is closed and satisfies o(t,x,u) € I for all
t>0,x€l,ucl. Then p(t,z,u) € intl for all z € intI,u € U and t > 0.

Proof. Suppose that there are x € int/,t > 0 and u € U with ¢(t,z,u) ¢
int/. Then 7 := sup{s € (0,t], ¢(t,x,u) € intl} satisfies p(7,z,u) € OI.
Hence there is a neighborhood V' of ¢(7,z,u) with V.n (M \ I) # @. Con-
tinuous dependence on initial conditions implies that there are y € int/ with
o(1,y,u) ¢ I contradicting positive invariance of 7. m

Invariant control sets and hence their interiors are positively invariant.
For a set I C M with nonvoid interior the domain of attraction is

A(Il)={z e M, O™ (z)Nint] # 2} .

Domains of attraction are open, since by local accessibility clO*(z) = cl intO*(z).
We define the invariant domain of attraction as the largest invariant set con-
tained in A(7) (sometime called its invariance kernel).

Definition 6.2 For I C M the invariant domain of attraction is
A™(I) = {z € A(I), o(t,z,u) € A(I) for allu €U and t € R, }.

Here we require implicitly, that all trajectories exist on R, . This set is
related to invariant control sets by the following observation.

Proposition 6.3 Assume that A(I)NK is positively invariant for a compact
set K. Then

. - + . . .
A™(HNK = {x e A()NK, if C C clO*(x) is an invariant } (20)

control set, then C' Nintl # &

and this set is compact. Furthermore, int [A™(I) N K] is positively invari-
ant.
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Proof. Let z € A™(I) N K and suppose that C' C clO"(z) is an invariant
control set. Then intC C Ot (z). If C Nint/ = &, invariance of intC'
implies that we can find y € C' N O (z), which is not in A(I) contradicting
x € A (). For the converse, let z € A(I)NK be in the set on the right hand
side of (20). Consider (¢, z,u) with u € U and t € Ry. Then by [3, Theorem
3.2.8] there is an invariant control set C' C clO*(z) N K. Then C'Nint!] # &
and it follows that o(t,z,u) € A(I) and hence x € A™(I)N K. This
proves the other inclusion. In order to see closedness, let x, € A" ()N K
with z, — 2. Then x € K and, again by [3, Theorem 3.2.8], there is an
invariant control set C' C clO"(x) N K. We find T" > 0 and u € U with
o(T,z,u) € intC. Then for n large enough, also ¢(T,z,,u) € intC and
hence C' C clO"(z,). Now (20) implies C Nintl # & and v € A™([)N K
follows. Invariance of the interior follows by Lemma 6.1. =

Note also that every invariant control set C satisfies C' ¢ A™(C), but
not necessarily C' C intA™(C).

6.2 Parameter Dependent Control Systems

In this section we describe the behavior of control sets under perturbations of
the control range. Here, in addition to control sets, also chain control sets are
needed. A nonvoid set £ C M is a chain control set for (18) if it is a maximal
set such that for all # € E there is a control u € U with ¢(t,z,u) € E for all
t € R, and for every £ > 0,7 > 0 any two points z,y € F can be connected
by controlled (e, T)—chains, i.e., there are

neNzy=x .2, =1y, Uy..u,_1 €U, and Ty, ..., T,_1 > T

with
d(p(T}, x4, u;), vi41) < e for all i = 0...n — 1.

For a given interval [p,, p*| of parameters, we denote by (18)” the correspond-
ing control system with control range U?, p € [p., p*]. For every control set
DrP+ and every chain control set E?< of the system (18)7* there are unique
control sets D? and unique chain control sets E” for each p € [p., p*] such that
D?+ C DP and EP- C E”. If all involved sets are bounded, it is well known
that the increasing, compact-valued mappings p — clD? and p — clE” are
continuous with respect to the Hausdorff-metric at all but countably many
p—values (Scherbina’s Lemma, [22]).
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In order to obtain stronger results on the behavior of control sets and
chain control sets, the following inner-pair condition is needed. A pair
(x,u) € M xU is called an inner pair of the control system (18) if there exists
T > 0 such that ¢(T,z,u) € intO* (x). The family of systems (18)7 is said to
satisfy the inner-pair condition if for all p; < py each pair (z,u) € M x U”
is an inner pair of the py-system (18)P2. We say that a set K C M fulfills the
no-return-condition if x € O*(K) N K¢ implies that O"(z) N K = (), where
K¢ denotes the complement of K in M.

The following theorem (see [3, Lemma 4.7.3, Lemma 4.7.4, and Theo-
rem 4.7.5]) describes the close relation between control sets and chain control
sets if the inner-pair condition holds.

Theorem 6.4 Consider the family of control affine systems (18)° for p €
[p«, p*| where p — UP is continuous with respect to the Hausdorff-metric.
Let DP- be a control set and EP* be a chain control set of (18)°* such that
Dr= C EP~. Then for all p it holds that D? C E? where the sets D? and E*
are defined as above. Suppose EP" C K for a compact set K C M that fulfills
the no-return condition for the p*—system, and assume that the family (18)°
satisfies the inner-pair condition in [p., p*|.

Then for p1 < ps in (ps, p*] it holds that c1DP* C EP* C intD?? and for all
up to at most countably many p—values, the equation clD? = EP is satisfied.
The map (ps, p*) = C(K) : p — clD? is continuous at p iff clD? = EP; the
same is true for the map p — EP. Here C(K) denotes the space of compact
subsets of K.

In [13] it is shown that the inner-pair condition holds for an important
class of systems that includes, in particular, the escape equation (15) and
the double well equation (17).

We also need some results on the boundaries of control sets D. Define
the entrance and exit boundaries by

0D := {x € 9D | there is y € intD such that z € O (y)}, (21)
0D := {x € 9D | there is y € intD such that y € O (z)},

and the tangential boundary 0¥ D := 9D\ (9°*D U 3°" D). The sets 9°* D and
0°"D are disjoint and open in D, and 0D is closed in 0D. Furthermore,
0D = cl3°*DNcl 9" D and intyp 0™ D = (). The following theorem from [13]
shows that exit and entrance boundaries change continuously if the control
range U” increases lower semicontinuously and if the control sets themselves
change continuously.
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Theorem 6.5 Consider the set-valued mapping [p., p*] — C(M), p — clD?,
as in the previous theorem, where now DP* is a control set of (18)* and
D? denotes the unique control set of (18)° with D~ C DP. If this map
is continuous in the Hausdorff distance at py € (ps,p*), D’ is bounded
and if the control range U? increases lower semicontinuously at py, then the
mappings p — 0DP, p — clo““D?, and p — cl0"D? are continuous in the
Hausdorff distance at pg.

Next we will examine more closely how an invariant control set C loses
its invariance when merging with a variant control set D while the control
range U” is increased. For this we introduce two further specifications of exit
boundaries: the part from where under all admissible controls exactly one
invariant control set C' can be reached, and the part from where C' can not
be reached at all. We denote the first set by

5er=C ) { x € 0°°D | OF(x) bounded and if for some invariant }

control set C" C M we have C' N O (z) # () then C' = "
and the second one by
0°"’D .= {x € 9°°D | 0" (2) N C = P}.

Note that from [3, Theorem 3.2.8] it follows that O (z) C O~ (C) N O* (D)
for all z € 9°°~CD.

If the exit boundary of D? can be decomposed into 9°*~¢”° Dfo and
0°*#*C* Do then the exit boundary of the merged set is continuous in the
following sense [13].

Theorem 6.6 Let K C M be a compact set such that all control sets of the
control systems (18)P have void intersection with the boundary of K. Assume
that system (18)" has precisely one invariant control set C* C K and one
variant control set D C K such that C? NclD? # (). For each p > py let
there be precisely one variant control set F* C K of (18)° and CP U D C
F?. Suppose that clF? are chain control sets of (18)° for each p > po and
cl(Oro=(CPo) N OPF(DP)) is a chain control set of (18)°°. Finally, assume
that U? depends continuously on p with respect to the Hausdorff metric at py
and let §¢*=C*° DPo and §¢7C*° D0 be a non-trivial decomposition of §¢*DPo.
Then cl0°*FP — cl9°7#C* Dro in the Hausdorff metric for p \, po.
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Acknowledgement. The algorithms used have been implemented into the
MATLAB version of the program package GAIO from Junge. Thus the box
handling algorithms from Junge could be used. The control sets are found
by methods based on Szolnoki [25]. The necessary solvers for stochastic
differential equations and the routines for the computation of the transition
matrix were added into the GAIO structure.
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