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ABSTRACT. Invariance entropy for the action of topological semigroups acting
on metric spaces is introduced. It is shown that invariance entropy is invariant
under conjugations and a lower bound and upper bounds of invariance entropy
are obtained. The special case of control systems is discussed.

INTRODUCTION

Our aim is to introduce and to study a certain invariant for the action of topo-
logical semigroups on metric spaces. This is motivated by recent work on invariance
entropy for control systems. The original idea to use concepts close to topological
entropy for control systems is due to Nair, Evans, Mareels and Moran [15], who
studied feedback entropy in an engineering context. A related notion, called in-
variance entropy, has been considered in Colonius and Kawan [6]. It has proved
to be a fruitful approach for the study of control systems, cf. Kawan [11, 12, 13].
On the other hand, Hoffmann and Stojanov in [8] introduced a notion of topologi-
cal entropy for semigroup actions. Although topological entropy is rather different
from invariance entropy, we show in the present note that one can combine some of
their concepts, in particular, regular systems with the constructions of invariance
entropy. This results in a notion of (topological) invariance entropy for semigroup
actions.

The contents of this note is the following. Section 1 introduces weakly almost
invariant sets for topological semigroup actions on metric spaces and defines a cor-
responding invariance entropy. It is shown that this number is an invariant under
appropriately defined topological conjugacies. Section 2 gives upper bounds and a
lower bound for invariance entropy. Section 3 shows that for control systems, the
notion considered here is equivalent to the invariance entropy from [6]. Here the
main work consists in showing that arbitrary admissible families can be approxi-
mated by admissible families defined via controls.

We also remark that the notion of topological entropy for maps on noncompact
spaces (in particular for automorphisms of Lie groups) studied by M. Patrao [16]
is different from the one in [8]. For connections between semigroup actions and
control we refer to San Martin [17].
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Among the many problems left open in the present note is an Abramov-type
theorem: what happens, if we consider a subsemigroup, say, with compact left
cosets?

1. WEAK INVARIANCE AND INVARIANCE ENTROPY

In this section we introduce regular systems and admissible families for semigroup
actions. Then we define an invariance entropy for weakly almost invariant sets.

Let (S, -) be a topological semigroup acting on a metric space M, i.e., there is a
continuous map

(1.1) o:MxS—M, (x,5) — p(z,s) =x-s

satisfying = - e = x for the neutral element e € S and (2 - $1) - s2 = x - (81 - $2) for
all z € M and s1,s9 € S.

First, we slightly modify the notion of regular systems introduced in Hoffmann
and Stojanov [8].

Definition 1.1. A family of subsets A, C S, 7 € [0,00), is called a regular system,
if every set A, contains the neutral element e and

A Ays C Ay, for 7,0 € [0,00).

We also abbreviate A<, :=J )AJ for 7 > 0.

UE[O,T
The following definition of admissible (one-parameter) families is crucial.

Definition 1.2. A map v: I — S with I :=[0,00) or I :=[0,¢1],¢1 > 0, is called
an admissible family in the semigroup S, if

(i) the map (z,7) — x-v(7): M x I — M is continuous;

(ii) for all o,7 > 0 with o + 7 € I there is s € A, \A<, with (o) - s = y(o + 7)
and v(0) =e.

Throughout the rest of this paper, we keep a regular system (A;)-¢f,00) in a
semigroup S acting on M fixed. Note the following comments on these definitions.

Remark 1.3. For this definition of regular systems compare the notions of regu-
lar systems and one parameter semigroups of compact sets in Hofmann/Stojanov
[8]. Among other things, our definition of regular systems does not require that
U,>0Ar = S. This property would entail a closer connection between the regular
system and the semigroup.

Remark 1.4. Note that condition (ii) in Definition 1.2 with ¢ = 0 implies that for
all 7 > 0 one has y(r) = y(0) - s = s € A;\A-,. An immediate consequence is
that the regular family is strictly increasing with 7, if there is an admissible family.
Furthermore, the trivial map (t) = e does not define an admissible family.

Remark 1.5. One could also specify subclasses of admissible families. We will follow
this path only in Theorem 2.4, where we impose a Lipschitz condition.

An example of a semigroup action with a regular system is given by a control
system Y on a differentiable manifold M of the form

(1.2) @(t) = f(x(t), ult)),
where u is in a set U of control functions defined on [0, co) with values in a set U and
J(x(t),u(t)) is a vector in the tangent space Ty, ;)M of M at x(t) (see Agrachev and
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Sachkov [2]). We assume that U/ is shift invariant, i.e., the classical shift function
O: Ry xU — U, (t,u) — u(t+-), is well defined. For a fixed u € U, we denote the
solution of (1.2) with initial condition z(0) = x¢ by ¢(t, xo,u),t > 0. We suppose
that unique global solutions exist for all controls v € U. Define the semigroup

(1.3) S :={(t, ¢(t,-,u)), t € [0,00) and v € U}
with semigroup operation given by

(t1,0(t1, -, u1)) - (t2, o(ta, -, u2)) = (t1 + to, p(t1 + to, -, u1 &y, usz)),

where u1&;, us stands for the concatenation

L U1 (t) ift e [O,tl];
(&t ug) (t) == { ug(t —ty) ift > ty.
Here we also assume that all these concatenations again are in U. The action
is defined by (z, (¢, 0(t, -, u))) — @(t,z,u) : M x S — M. Observe that ¢(t; +
to, z,u) 1= @(t2, p(t1, x,u), O(t1,u)) and that O(t1, u1&:s, uz) = us.
A regular system is given by

(1.4) A=At o(t,u)) €S, t€[0,7]}, 7 >0,

and it is straightforward to see that for a fixed u € U, the function defined by
v(1) == (1, ¢(7,-,u)), T > 0, is an admissible family. Note that not every admissible
family is of this form, since it may not correspond to a single control.

Remark 1.6. Often one associates a semigroup to a control systems by considering
the diffeomorphisms associated to piecewise constant controls (cf. Jurdjevic [9] or
Agrachev and Sachkov [2]). We use the alternative construction above, since we do
not want to restrict attention to these special controls (locally integrable controls
are a more natural choice.). Furthermore, the time ¢ is added in the semigroup
(1.3) in order to guarantee that we obtain admissible families.

Now we can introduce our notion of invariance.

Definition 1.7. Consider a semigroup action (1.1) endowed with a regular system
(Ar)r>0. A subset Q C M is called weakly almost invariant if for every z € @,
e >0 and 7 > 0, there is an admissible family v : [0, 7] — S such that

(1.5) d(z-~(0),Q) := 12(5{d(x -v(0),q)} <eforal oel0r7].
q
Next we define invariance entropy in the following steps.

Definition 1.8. Consider the semigroup action (1.1) endowed with a regular sys-
tem (Ar)re0,00)- Let @ C M be a weakly almost invariant set and consider a
subset K C . For ¢ > 0 and 7 > 0 a set R(7,¢, K, Q) of admissible families is
called (7,¢, K, Q)-spanning, if for every x € K there exists v € R(7,¢, K, Q) such
that d(x - v(t), Q) < ¢ for all ¢ € [0, 7].

There are always finite (7, ¢, K, Q)-spanning sets.

Lemma 1.9. Let K be a compact subset of a weakly almost invariant set () C M
and let 7,e > 0. Then there exists a finite (1,¢, K, Q)-spanning set.

Proof. Let © € K. Then there exists an admissible family v, such that d(z -
(1), Q) < € for all t € [0,7]. By continuity and compactness of [0,7], all y in a
neighborhood of z satisty d(y-v.(t), Q) < ¢ for all ¢ € [0, 7]. Then compactness of K
shows that finitely many admissible families form a (7, ¢, K, Q)-spanning family. O
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This lemma justifies the following definition which is the central notion of the
present note.

Definition 1.10. Counsider the semigroup action S on M of the form (1.1) endowed
with a regular system (A;)g[,00). Let K be a compact subset of a weakly almost
invariant set @ C M. We denote the minimal cardinality of a (7, ¢, K, Q))-spanning
set by r5 (7,¢, K, Q). The invariance entropy of (K, Q) is defined by

mnuv

1
hfm(s, K, Q) :=limsup — log rZ-Sm)(T7 e, K,Q),
T—o00 T
(1.6) hio (K, Q) = lim B3, (e, K, Q).
E—

Note that the limit for ¢ — 0 exists, since for 1 > &5 > 0 every (7,e2, K, Q)-
spanning set is also (7,1, K, Q)-spanning implying that b7, (¢, K, Q) is monoton-
ically increasing for ¢ — 0.

Remark 1.11. One can also define weakly invariant sets by requiring that for every
x € @Q and 7 > 0, there is an admissible family v with z - v(o) € @ on [0, 7].

An associated notion of strict invariance entropy hfﬁZ(K ,Q) can be based on the

S,
inv

exponential growth rate of the minimal number 7" (1, K, Q) of spanning admissible

families of this type. Obviously one has
hio (K, Q) > i, (K, Q).

muv

However, in general, we cannot guarantee that 75 (7, K, Q) is finite (but see Theo-
rem 2.3, and also Kawan [12] for results on strict invariance entropy in the control-

theoretic context.)

In Section 3 we will show that for control systems of the form (1.3) the notion
of invariance entropy for semigroup actions coincides with the one considered in
Colonius and Kawan [6].

Next we introduce a notion of topological conjugation and study the behavior
of invariance entropy under these conjugations. A homomorphism 7g : St — 5?2 of
semigroups maps the neutral element e! € S! to the neutral element e € S? and
ms(s-s') =mg(s) - ws(s') for all 5,5’ € SL.

Definition 1.12. For i = 1,2, let ¢’ : M* x S* — M°® be semigroup actions with
regular systems A° = {A%, 7 > 0}. Let mps : M' — M? be a continuous map and
let g : ST — S? be a semigroup homomorphism such that

L7 e s) =mu(pl(z,5) = 9*(mur (@), ms(5)) = mar (2) - 7 (s)

for all (s,z) € S* x M'. Suppose, furthermore, that for all 7 > 0

(1.8) r5(AL) € A2 and (mg) ' (42) C AL

In this situation we say that the semigroup action ¢! is semiconjugate to ¢?2. If mys
is a homeomorphism and 7g is bijective, we say that these semigroup actions are
conjugate.

Next we show that conjugation preserves the invariance entropy.

Theorem 1.13. Let o' : M xS' — M and p? : M?xS? — M? be two semigroup
actions with reqular systems A' and A%, respectively. Assume that there exists a
semiconjugation (mar,s) from o' to p?. Let K C Q C M' and suppose that K is
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compact and @ is weakly almost invariant. If wpr is uniformly continuous on a 6-
neighborhood of Q, then 7y (Q) is weakly almost invariant and i, (7(K),7(Q)) <
hinv (Kv Q) .

In particular, if the semigroup actions are conjugate, the invariance entropy is
preserved.

Proof. Tt is clear that 7y (K) C mp(Q) are nonvoid sets and that mp (K) is com-
pact. First we show that 7y (Q) is weakly almost invariant for the semigroup action
2. In fact, this follows from equation (1.7): If y € 7/(Q), there is z € Q with
y = map(z). Let € > 0 and 7 > 0. Since 7y is uniformly continuous on a neigh-
borhood of @ there exists § > 0 with 7w/ (IN5(Q)) C Ne(mar(Q)), where N.(Q)
denotes the set of points with distance less than € to Q. Let v : [0,7] — S! be an

admissible family such that d(z - y(t),Q) < ¢ for all t € [0, 7]. Then by (1.7)
T (z) - s (y(t) = mar (- (1)) € mar(N5(Q)) C Ne(mamr (@),

and weak almost invariance of 7y (Q) follows. Now let 7, > 0. As above, there
exists § > 0 with 7/ (Ns(Q)) C Ne(mam(Q)). Let R C S* be a minimal (7,6, K, Q)-
spanning set of admissible families in A* and consider 7g(R). For any y € 7y (K)
there exists € K with my(z) = y. Let v € R such that d(z - v(¢),Q) < ¢ for all
t € [0,7]. Then mp(x) - w5(v(t)) € m7m(N5(Q)) C Ne(mar (Q)).

Furthermore, all maps mgovy € mg(R) satisfy the conditions on admissible families
in Definition 1.2. This is clear for (i), and using (1.7) one finds for o,7 > 0 an
element s € AL\ AL with

™ ((0)) - 7s(s) = T (v(0) - 8) = mar(v(0 + 7)) = (mar 07) (0 + 7).

By the first condition in (1.8) one has wg(s) € A2; if m5(s) € A2 for some o < 7, the
second condition in (1.8) yields the contradiction s € (75)~1(A2) C AL. This shows
property (ii). It follows that 7g(R) is an admissible family for ¢2. Consequently
the minimal cardinality of a (7, e, mp (K), mar(Q))-spanning set is not greater than
the cardinality of R and hence

hinv(gv W(K)7 W(Q)) S hinv(éa K7 Q) S hinv(Ka Q)
For € — 0, the assertion follows. O
Remark 1.14. Tt is not difficult to see that the invariance entropy is not an in-
variant under the more general topological conjugacies considered in Ayala et al.
[3] and Baratchart et al. [4]. These conjugacies, which are defined for skew prod-

uct flows resulting from control systems, would, in our framework, allow that the
homeomorphism 7,; also may depend on the semigroup elements.

2. UPPER AND LOWER BOUNDS FOR INVARIANCE ENTROPY

In this section we will prove upper bounds and a lower bound for invariance
entropy.

Definition 2.1. If v; : [0,¢1] — S and 73 : [0,t2] — S are two admissible families
in a semigroup S, then the concatenation 7y -y : [0,¢1 + t2] — S is defined by

1() if tel0,ty];
(11 -72)(t) = { ,vyl(tl) Yot —ty) if t e (ty,ty +to].
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The concatenation is associative, but it does not necessarily give an admissible
family. In Theorem 2.3 we suppose that concatenations of admissible families again
form an admissible family. The following proposition shows that this is satisfied
under an additional assumption for the regular system, which for instance is satisfied
for control systems of the form (1.2) with regular system given by (1.4).

Proposition 2.2. Suppose that the reqular family satisfies (Ay \ A<y)-(Ar \ A<r) C
Agir \ Acoqr for all o,7 > 0. Then the concatenation vy := 71 - v2 of admissible
families v1 : [0,t1] — S and y2 : [0,t2] — S again is an admissible family.

Proof. It is clear that the continuity condition (i) in Definition 1.2 is satisfied.
Condition (ii) is certainly satisfied if o +7 € [0, ¢1]. Hence we may suppose o +7 >
t1. If 0 > t1, one finds s € A, \ A, such that

(M- 72)(@+7)=n(t1) v2(0+7—t1) =nt1) 1200 —t1) - s =7(0) - 5.
If 0 € [0,t1) one finds s1 € At, o \ A<t,—o such that with s :=s1 - y2(c + 7 — t1)

(- v2)(o+7)=7t) v20+7—t) =7(0) s1-n2(c+7—t) =7(0) s
Taking into account Remark 1.4 one sees that

§= 51" 72(0' +7 - tl) S (Atl—a \A<t1—ﬂ) : (Aa'+7'—t1 \A<O'+T—t1) - A‘r \ A<T'

The same remark shows the assertion for o = ;. ([

Recall the definition of weakly invariant sets and of strict invariance entropy in
Remark 1.11.

Theorem 2.3. Let ¢ : M xS — M be a semigroup action with reqular system
{A;}r>0. Let K C M be a compact subset and suppose that K = Ufil C; with
admissible families ; : [0, T;] — S,T; > 0,5 =1,..., N, such that C; -;(t) € K for
every t € [0,T;]. Assume, furthermore, that any (repeated) concatenation of the ~;
again yields an admissible family. Then K is weakly invariant subset and the strict
imwvariance entropy satisfies

(2.1) B (K, Ky < 208V

inv = HllIl7 ,T7

Proof. Let T := min;—,  nT;. For 7 > 0 there are k € N and o € (0,7] with
7= (k—1)T+0o. We claim that for every z € K, there exist an k-tuple (i1,...,i;) €
{1,...,N}* such that @ - (5, - Yip - - - - - Yi, ) (t) € K for every t € [0,kT]. In fact, if
x € Cy,, notice that = - v;, (t) € K for every ¢t € [0,T},]. Now z - ~;, (T3,) € C;, for
some iz € {1,...,N} and = - (4, - 7i,)(t) € K for every t € [0,T;, + T;,]. We can
proceed in this way up to time 7 < kT < T;, + ... +1T;, and the claim follows.
For every k-tuple (i1,...,ix) € {1,..., N}*, the concatenation v;, - ...-~;, is an
admissible family. Moreover, the set K is weakly invariant and

(7,0, K, K) <72 (kT,0, K, K) < N*.

inv — "inv

We conclude

1 1 1
B (K, K) = lim =logri® (7,0, K, K) < lim 7TlogNk = log V.

T—00 T k—o0 (k) — ].)

O
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The assumptions of Theorem 2.3 guarantee finiteness of the strict invariance
entropy hfﬁ:(K , K) which is an upper bound for the invariance entropy h, (K, K),
cp. Remark 1.11. In the following, we prove an upper bound for the invariance
entropy under weaker assumptions. We will use arguments similar to Katok and
Hasselblatt [10, Theorem 3.2.9] establishing an upper bound for the topological
entropy of Lipschitz continuous maps, see also [6]. In our context, we have to
sharpen our assumption on invariance of () by considering Lipschitz continuous
admissible families defined as follows:

For constants L,c > 0 the set I'(L, ¢) consists of all admissible families v such
that for all z,y € @

(2.2) d(z - (t),y - v(t)) < celtd(x,y) for all t > 0.

We say that a set @ is weakly invariant with admissible families in I'(L, ¢) if for
every ¢ € Q and 7 > 0, there is v € I'(L, ¢) with = - v(0) € Q for o € [0,7], and
similarly for weak almost invariance.

Recall that the upper ball dimension of K C M is

i ) Inb(4, K)
2.3 dimp K :=limsup ————,
(2:3) s 0. In(1/0)

where b(d, K) is the minimal cardinality of a cover of K by Jd-balls.

Theorem 2.4. Let ¢ : M x S — M be a semigroup action with reqular system
{A;}r>0. Suppose that K C @Q is a compact subset of M and suppose that Q is
weakly invariant with admissible families in T'(L,c) for some fized L,c > 0. Then
the invariance entropy satisfies

he

muv

(K,Q) < Ldimg K.

Proof. Let e,7 > 0. Since @ is weakly invariant one finds for every x € K an
admissible family v € T'(L, ¢) with x-v(¢) € @ for all t € [0, 7]. Consider a set Ry of
pairs (x,~) of points in K and admissible families v € I'(L, ¢) having the property
that z - y(t) € Q for all ¢ € [0, 7] and for every y € K there is (z,7v) € Ry with

d(z-~(t),y-v(t)) <e forall t €[0,7].

Then, by compactness of K and continuity there exists such a set Ry with finite
cardinality. Choose a set Ry with minimal cardinality r. Then one easily sees that r
is greater than or equal to the minimal cardinality 5, (¢, 7, K, Q) of a (1, ¢, K, Q)-
spanning set R(7,¢, K, Q).

Define for (x;,v;) € Ro,i =1, ...,r, the sets

N; ={z e K, d(z-;(t),z; - v:(t)) < e for all t € [0, 7]}.

Then K is contained in |J;_; N;.
Let z € M be a point with d(z,z;) < e L7¢/c for some i € {1,...,r}. For all
t € [0, 7], it follows that

d(z -y (t), i - vi(t) < ceMd(z,z;) < e.

Hence = € N; and thus N; contains the ball B(z;;e %7¢/c).

Next we claim that 7 < b(e £7e/c, K). Assume to the contrary that there exists
a cover C of K consisting of e"L7¢/c-balls such that n := #C < r. Let these balls
be centered at points Z1, ..., £, € Q. By weak invariance of ) we can assign to Z; an
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admissible family 4; with Z; - 7;(t) € @ for all ¢ > 0. Then the ball B(Z,;e L7 /c)
is contained in the set
Vi={x e M, dlx-7;(t),z; -7,;(t)) < e for all t € [0,7]}.
Thus the set {(Z1,71), -, (Zn,Jn)} also has the property that for every © € K
there is (Z;,%;) with
d(z-7;(t),z; - ;(t)) < e forall t € [0, 7].
This contradicts the minimality of r. It follows that
rine(E T K, Q) <1 < b(e” e /e, K).
Observe that
In(1/(e *¢/c) = In(e*"c/e) = LT + Inc — Ine.
We find, with § := e £7¢/c — 0 for 7 — o0,

muv
T—00 T—00

1 1
limsup ~ In75  (e,7, K,Q) < limsup ~ Inb(e L7¢/c, K)
T T
Jim s Lt +Inc—Ine Inble L"¢/c, K)
= lim .
P T In(1/(e~L7¢/c)
, Inb(e L7e/C, K)
= Llims
P (1 /(e Lme/C)
< Ldimp K.

Now the assertion follows by letting & tend to 0. (]

Next we turn to derive a lower bound for the invariance entropy with arbitrary
admissible families. The following definition introduces rates of expansion for a
semigroup action.

Definition 2.5. Consider a semigroup action ¢ : M x .S — M with regular system
{A;}r>0. Let Q C M be a weakly almost invariant set and K C @ a compact sub-
set. Let p be a finite Borel measure on an e-neighborhood Q. = {x € M;d(z,Q) <
e} of . The rate of expansion of ¢ with respect to (Q., ) is at least E if for
every Borel subset D C K and every admissible family v : [0,7] — S such that
D -~([0,7]) C Qe, we have that p(D - v(t)) > exp(Et) - u(D) for every ¢ € [0, 7].

Theorem 2.6. Suppose that we are in the setting of Definition 2.5 and let K C @

be a compact subset with u(K) > 0. Assume that the rate of expansion of ¢ with
respect to (Qe, ) is at least E. Then

i (K, Q) > max{0, E}.
Proof. Abbreviate r := ri (1,6, K,Q). Let {v; : [0,7] — S, i =1,...,7} be a

minimal (7, ¢, K, Q)-spanning set. Then the sets U; := {z € K, z-v([0,7]) C Q:}
form an open cover of K. Then one can construct a partition {D;};=1, ., of K by
Borel subsets D; C U;. By hypothesis we have that pu(D; - v;(t)) > exp(tE) - p(D;)

for every t € [0, 7]. Observe that
rop(Qe) = > pu(D; - i(t) > exp(tE) - p(K)
i=1

implying
exp(TE) - p(K)

Tiv(T7E,K7Q):T2 Q)
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Then it follows that
1 1
limsup ~ log 73, (7,6, K,Q) > limsup — [7E + log u(K) — log (Q.)] = E
T

muv
T—oo T T—00

and hence )
hi (K, Q) = lirr(l)limsup logrs (1,e,K,Q) > E.

inuv _ inv
T—oo T

3. CONTROLLED INVARIANCE AND INVARIANCE ENTROPY FOR CONTROL
SYSTEMS

This section shows that the invariance entropy introduced above coincides with
the invariance entropy for controlled almost invariant sets considered in the context
of control systems. The difficulty lies in the fact that the definitions of weak almost
invariance and of invariance entropy given in Definitions 1.7 and 1.10, respectively,
consider arbitrary admissible families, not just admissible families generated by
control functions.

For simplicity, we consider controls given by

U :={u:R — U, locally integrable}

with a subset U C R™. Let M be a Riemannian manifold. Controlled almost
invariance of control systems is defined as follows.

Definition 3.1. For a control system X of the form (1.2) a compact subset @ C M
is called controlled almost invariant, if for all x € @, €,7 > 0 there is a control
u € U such that the corresponding solution satisfies d(p(¢, z,u), Q) < e for every
te0,7].

Invariance entropy in this context is defined as follows (cp. Colonius and Kawan
[6]).

Definition 3.2. Let K be a compact subset of a controlled almost invariant set
Q C M. Fore, 7 >0a (7,¢, K, Q)-spanning set is a set R C U of control functions
such that for every x € K there is u € R with d(¢(t,z,u), Q) < ¢ for all ¢ € [0, 7].
Denote the minimal cardinality of a (7, ¢, K, Q)-spanning set by r¥(7,¢, K, Q) and
let
b . 1 b
h*(e, K,Q) := limsup — logr*(7, ¢, K, Q).
T—o0 T

The invariance entropy is defined by

hipo (K, Q) = lim h™(2, K, Q).

Note that here spanning sets are determined by controls, not by admissible
families.

Example 3.3. Suppose that system (1.2) is control-affine, i.e., it has the form
&= folx)+ Y uit)fi(x),u = (w) €U,
i=1
with compact and convex control range U. If the system is locally accessible and

D is a bounded control set, then @ := clD = cl(intD) is controlled invariant; cp.
Colonius and Kliemann [5, Lemma 3.2.13(i) and Proposition 4.3.3].
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We begin our analysis with the following crucial lemma relating arbitrary ad-
missible families to trajectories corresponding to a control u.

Lemma 3.4. Consider control system (1.2) with semigroup S and regular system
(Ar)r>0 given by (1.8) and (1.4), respectively. Let 7,C > 0 and let N C M be
an open subset such that, for every x € M and u € U with p(t,x,u) € N for all
t €0, 7], the trajectory satisfies

(3.1) d(p(t, z,u), o(ta, z,u)) < Clty — ta] for all ty,ts € [0, 7].
Let v : [0,7] — S be an admissible family and let K C N be a compact set such

that x-v([0,7]) C N for every x € K. Then for every n > 0 and every x € K there
exists a control & € U with

d(z-~(t),o(t,z,0)) <n forallte0,7].

Proof. Observe that K - v([0,7]) C N is a compact subset and we can take n <
d(K - ~v([0,7]), M\N). Analogously observe that there exists a d; > 0 such that
|t1 — ta| < 61 implies d(zq - y(t1), 2o - Y(t2)) < n/2 for every zy € K. Property (3.1)
shows that, if p(t,zo,u) € N for t € [0, 7] and ty,ts € [0, 7] with |t; —t2| < n/(2C),
then

d(p(t1, 70, ), plt2, 30, 1)) < 1.
Let k € N be such that 7/k < min(d;,n/(2C)). We will inductively construct a
control @ : [0,7] — U in U such that

(3.2) xo - y(iT/k) = (it [k, xq, )

for every ¢ = 1,...,k. Since 7 is an admissible family, property (ii) in Definition
1.2 shows that v(7/k) € A-/; \ A<r /i, and there is 51 € A7/, \ Aoy /i with

7(0) - s1 =70+ 7/k).
Using that the regular system is defined by (1.4), one finds a control w; € U such
that s1 = (7/k,o(7/k,,u1)) and hence
w1 = w0 - Y(T/k) = w0 - 81 = w0 - (T/k, 9(7/k; -, u1)) = @(7/k, 20, ua).
Observe that the curve ¢(t,zg,u1),t € [0,7/k], remains inside N due to (3.1),
the choice of k£ and the range of variation of ¢. Proceeding inductively, let for
ie{l,....,k—1}
x; = xo - y(iT/k) € M.
One finds an element s; € A, /5, \ A,/ with
(i + 1)7/k) = 4(7/k) - s
Thus there is a control u;+1 € U with s; = (7/k, o(7/k, -, ui4+1)) satisfying
zip1 = w0 - (0 + D7/k) = o - y(im/k) - (7/k, (7 /k; -, wit1))
=T (T/k7 QO(T/k? 'aui-‘rl))
= @(1/k, x5, uit1)).
Now define a control u € U by
u(t) = wip1(t —it/k) for t € [it/k, (i + 1)7/k), i=0,1,....k — 1.
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By construction, the corresponding trajectory ¢(t,z,u),t € [0, 7] satisfies (3.2).
Finally observe that for ¢ € [0, 7] with i7/k <t < (i + 1)7/k

d(zo - ¥(t), ¢(t, zo, 1))
< d(wo - (), w0 - Y(iT/k)) + d(zo - y(iT/k), p(iT/k, 0, 1))
+ d(@(”—/kv Zo, u)a Qo(tv Zo, U))
<34+0+7=n.
[l

The next theorem shows that for control systems, weak almost invariance (de-
fined via admissible families) is equivalent to controlled almost invariance.

Theorem 3.5. Consider control system (1.2) with semigroup S and regular system
(Ar)r>0 given by (1.8) and (1.4). Consider a compact subset Q C M and g > 0.
Suppose that for every T > 0 and every trajectory with sup,c(o - d(p(t, z,u), Q) < €9
there exist a constant C' > 0 such that

(3.3) d(p(ty, x,u), p(ta, x,u)) < Cltp —ta], 0<ty,t2 < T
Then @Q is weakly almost invariant iff it is controlled almost invariant.

Proof. Clearly, every controlled almost invariant set is weakly almost invariant.
Conversely, suppose that @ is weakly almost invariant. Consider x € @, 7 > 0
and € € (0,e0). There exists an admissible family 7 such that d(z - y(t), Q) < /2
for every t € [0,7]. Lemma 3.4 states that there exists a control u € U such that
d(p(t,z,u),z - y(t)) < /2 for every t € [0,7]. Thus d(¢(t,z,u),Q) < e for every
t € [0,7] and @ is controlled almost invariant. O

Remark 3.6. Observe that inequality (3.3) provides a very mild restriction on (1.2).
For instance if || f(z, u)|| < C for every u € U and every x € @, then (3.3) is satisfied.

Next we turn to analyze invariance entropy. The following lemma will be used
to show that a (7,¢, K, Q)-spanning set remains a (7, e, K, Q))-spanning set under
small deformations. It is a special case of a general result about shrinking of covers;
see, e.g., Engelking [7, Theorem 7.1.5]. We include the short proof for the reader’s
convenience.

Lemma 3.7. Let {Ox}xea be an open cover of a compact metric space (M,d).
Given a € > 0, define

Ox(—¢) :={z € M, d(xz, M\O,) > }.
Then there exists € > 0 such that {Ox(—¢)}xen is still an open cover of M.

Proof. Since M is compact, it is enough to prove the lemma for a finite open cover
{O;}i=1,... k- We claim that there exists £1 > 0 such that {O1(—¢1)} U{O;}i=2... &
is an open cover of M. In fact, notice that Cy := M\ Ui:Q,...,k O; C Oy is a compact
subset of M and that Dy := M\O; is also compact. We have that d(C1,D;) > 0
because C1 N Dy = (). For &1 := d(C1, D1)/2. Then O1(—¢1) D Cy and {O1(—¢1)} U
{O;}i=2,... k is an open cover of M. Now consider the open cover {O;(—¢e1)} U
{Oi}izg,_“’k, and find a €5 > 0 such that {01(—61)} U {OQ(—EQ)} U {Oi}izg,_“’k
covers M. Repeating this construction one ends up with an open cover given by
{O;(—¢€;)}i=1,... k. The assertion follows with € := min,—; __xe;. O
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The next theorem shows that for control systems, the invariance entropy for
the associated semigroup action coincides with the invariance entropy for control
functions given in Definition 3.2. Thus the notion of admissible families and the
associated invariance entropy, which appear adequate in the context of semigroup
actions, are natural generalizations from the situation of control systems.

Theorem 3.8. Consider control system (1.2) and the associated semigroup action
given by (1.3) and (1.4). Fix compact sets K C Q C M and suppose that Q
is controlled almost invariant. Assume that for every T > 0 there are constants
C,e0 > 0 such that (3.3) holds for every trajectory with sup,co 1 d(¢(t, 7, u), Q) <
€g- Then Q is weakly almost invariant for the semigroup action and

h‘fm} (K’ Q) = hiznv(K7 Q)
Proof. The inequality b7, (K, Q) < hi (K, Q) holds, because t — (t,¢(t,-,u)) is

an admissible family for every u € U. Therefore r, (1,¢,K,Q) < 1%, (1,¢, K, Q)
for every 7, > 0 and the inequality follows.

In order to prove the converse inequality, let {7;};=1,... % be a minimal (7, ¢, K, Q)-
spanning set of admissible families for the semigroup action (1.3). Set O; := {z €
K, d(z-7(t),Q) < ¢ for every t € [0,7]}. Then {O;}i=1,... x is an open cover of K.
By Lemma 3.7, there is n > 0 such that {O;(—n)}i=1,.. & is also an open cover of

K. The family {O;(—n)}i=1,... & also covers K and we may assume that it consists
of compact sets. Then

P:={z (), x € O;(—n) and t € [0, 7] for some i =1, ..., k}
is a compact subset of N.(Q) = {y € M, d(y,Q) < €}. Set
B :=d(M\N.(Q),P) > 0.
Using Lemma 3.4, for every ~;, there exist u; € U such that
A 7(t), (b 3, u) < B

for every x € O;(—n) and every ¢ € [0, 7] implying (¢, z,u;) € N.(Q). Therefore
{u1,...,up} C U is a (1,¢, K, Q)-spanning set for control system (1.2). It follows
that v (1,6, K,Q) <73, (7,6, K,Q) and hence b3, (K,Q) < h$ (K, Q). O

REFERENCES

[1] R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114
(1965), 61-85.

[2] A. A. Agrachev and Y. L. Sachkov, Control Theory from a Geometric Viewpoint, Springer-
Verlag, New York, 2004.

[3] V. Ayala, F. Colonius and W. Kliemann, On topological equivalence of linear flows with
applications to bilinear control systems, J. Dynamical and Control Systems 13 (2007), 337-
362.

[4] L. Baratchart, M. Chyba, and J.-P. Pomet, A Grobman-Hartman theorem for control systems,
J. Dynamics and Differential Equations, 19 (2007), 95-107.

[5] F. Colonius and W. Kliemann, The Dynamics of Control. Birkhduser, 2000.

[6] F. Colonius and C. Kawan, Invariance entropy for control systems, SIAM J. Control Optim.
48 (2009), 1701-1721.

[7] R. Engelking, General Topology, Polish Scientific Publishers, Warszawa, 1977.

[8] K. H. Hofmann and L. N. Stojanov, Topological entropy of group and semigroup actions,
Advances in Mathematics, 115 (1995), 54-98.

[9] V. Jurdjevic, Geometric Control Theory, Cambridge University Press, 1997.

[10] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems
Cambridge University Press, 1995



[11]
[12]

[13]

DE

INVARIANCE ENTROPY FOR TOPOLOGICAL SEMIGROUP ACTIONS 13

C. KAWAN, Invariance entropy of control sets, SIAM J. Control Optim., 49 (2011), pp. 732~
751.

, Lower bounds for the strict invariance entropy, Nonlinearity, 24 (2011), pp. 1909—
1935.

, Upper and lower estimates for invariance entropy, Discrete Contin. Dyn. Syst.-A, 30
(2011), pp. 169-186.

J. R. Munkres, Topology, Prentice Hall, 2000.

G.N. Nair, R. J. Evans, I.M.Y. Mareels, and W. Moran, Topological feedback entropy and
nonlinear stabilization, IEEE Trans. Aut. Control, 49 (2004), 1585-1597.

M. PATRAO, Entropy and its variational principle for non-compact metric spaces, Ergodic
Theory and Dynamical Systems, 30 (2010), 1529-1542.

L. SAN MARTIN, Invariant control sets on flag manifolds, Mathematics of Control, Signals,
Systems, 6(1993), 41-61.

(F. Colonius) INSTITUT FUR MATHEMATIK, UNIVERSITAT AUGSBURG, AUGSBURG, GERMANY

(R. Fukuoka and A.J. Santana) DEPARTAMENTO DE MATEMATICA, UNIVERSIDADE ESTADUAL
MARINGA, MARINGA, BRAZIL,



