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Abstract. Invariance entropy for the action of topological semigroups acting
on metric spaces is introduced. It is shown that invariance entropy is invariant
under conjugations and a lower bound and upper bounds of invariance entropy
are obtained. The special case of control systems is discussed.

Introduction

Our aim is to introduce and to study a certain invariant for the action of topo-
logical semigroups on metric spaces. This is motivated by recent work on invariance
entropy for control systems. The original idea to use concepts close to topological
entropy for control systems is due to Nair, Evans, Mareels and Moran [15], who
studied feedback entropy in an engineering context. A related notion, called in-
variance entropy, has been considered in Colonius and Kawan [6]. It has proved
to be a fruitful approach for the study of control systems, cf. Kawan [11, 12, 13].
On the other hand, Ho¤mann and Stojanov in [8] introduced a notion of topologi-
cal entropy for semigroup actions. Although topological entropy is rather di¤erent
from invariance entropy, we show in the present note that one can combine some of
their concepts, in particular, regular systems with the constructions of invariance
entropy. This results in a notion of (topological) invariance entropy for semigroup
actions.
The contents of this note is the following. Section 1 introduces weakly almost

invariant sets for topological semigroup actions on metric spaces and de�nes a cor-
responding invariance entropy. It is shown that this number is an invariant under
appropriately de�ned topological conjugacies. Section 2 gives upper bounds and a
lower bound for invariance entropy. Section 3 shows that for control systems, the
notion considered here is equivalent to the invariance entropy from [6]. Here the
main work consists in showing that arbitrary admissible families can be approxi-
mated by admissible families de�ned via controls.
We also remark that the notion of topological entropy for maps on noncompact

spaces (in particular for automorphisms of Lie groups) studied by M. Patrao [16]
is di¤erent from the one in [8]. For connections between semigroup actions and
control we refer to San Martin [17].
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Among the many problems left open in the present note is an Abramov-type
theorem: what happens, if we consider a subsemigroup, say, with compact left
cosets?

1. Weak invariance and invariance entropy

In this section we introduce regular systems and admissible families for semigroup
actions. Then we de�ne an invariance entropy for weakly almost invariant sets.
Let (S; �) be a topological semigroup acting on a metric space M , i.e., there is a

continuous map

(1.1) ' :M � S !M; (x; s) 7! '(x; s) = x � s
satisfying x � e = x for the neutral element e 2 S and (x � s1) � s2 = x � (s1 � s2) for
all x 2M and s1; s2 2 S.
First, we slightly modify the notion of regular systems introduced in Ho¤mann

and Stojanov [8].

De�nition 1.1. A family of subsets A� � S; � 2 [0;1); is called a regular system,
if every set A� contains the neutral element e and

A� �A� � A�+� for �; � 2 [0;1):
We also abbreviate A<� :=

S
�2[0;�)A� for � > 0.

The following de�nition of admissible (one-parameter) families is crucial.

De�nition 1.2. A map  : I ! S with I := [0;1) or I := [0; t1]; t1 > 0, is called
an admissible family in the semigroup S, if
(i) the map (x; �) 7! x � (�) :M � I !M is continuous;
(ii) for all �; � � 0 with � + � 2 I there is s 2 A�nA<� with (�) � s = (� + �)

and (0) = e.

Throughout the rest of this paper, we keep a regular system (A� )�2[0;1) in a
semigroup S acting on M �xed. Note the following comments on these de�nitions.

Remark 1.3. For this de�nition of regular systems compare the notions of regu-
lar systems and one parameter semigroups of compact sets in Hofmann/Stojanov
[8]. Among other things, our de�nition of regular systems does not require thatS
��0A� = S. This property would entail a closer connection between the regular

system and the semigroup.

Remark 1.4. Note that condition (ii) in De�nition 1.2 with � = 0 implies that for
all � > 0 one has (�) = (0) � s = s 2 A�nA<� . An immediate consequence is
that the regular family is strictly increasing with � , if there is an admissible family.
Furthermore, the trivial map (t) � e does not de�ne an admissible family.

Remark 1.5. One could also specify subclasses of admissible families. We will follow
this path only in Theorem 2.4, where we impose a Lipschitz condition.

An example of a semigroup action with a regular system is given by a control
system � on a di¤erentiable manifold M of the form

(1.2) _x(t) = f(x(t); u(t));

where u is in a set U of control functions de�ned on [0;1) with values in a set U and
f(x(t); u(t)) is a vector in the tangent space Tx(t)M ofM at x(t) (see Agrachev and
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Sachkov [2]). We assume that U is shift invariant, i.e., the classical shift function
� : R+ �U ! U ; (t; u) 7! u(t+ �), is well de�ned. For a �xed u 2 U , we denote the
solution of (1.2) with initial condition x(0) = x0 by '(t; x0; u); t � 0. We suppose
that unique global solutions exist for all controls u 2 U . De�ne the semigroup
(1.3) S := f(t; '(t; �; u)); t 2 [0;1) and u 2 Ug
with semigroup operation given by

(t1; '(t1; �; u1)) � (t2; '(t2; �; u2)) := (t1 + t2; '(t1 + t2; �; u1&t1u2));
where u1&t1u2 stands for the concatenation

(u1&t1u2) (t) :=

�
u1(t) if t 2 [0; t1];
u2(t� t1) if t > t1:

Here we also assume that all these concatenations again are in U . The action
is de�ned by (x; (t; '(t; �; u))) 7! '(t; x; u) : M � S ! M . Observe that '(t1 +
t2; x; u) := '(t2; '(t1; x; u);�(t1; u)) and that �(t1; u1&t1u2) = u2.
A regular system is given by

(1.4) A� := f(t; '(t; �; u)) 2 S; t 2 [0; � ]g; � � 0;
and it is straightforward to see that for a �xed u 2 U , the function de�ned by
(�) := (�; '(�; �; u)); � � 0, is an admissible family. Note that not every admissible
family is of this form, since it may not correspond to a single control.

Remark 1.6. Often one associates a semigroup to a control systems by considering
the di¤eomorphisms associated to piecewise constant controls (cf. Jurdjevic [9] or
Agrachev and Sachkov [2]). We use the alternative construction above, since we do
not want to restrict attention to these special controls (locally integrable controls
are a more natural choice.). Furthermore, the time t is added in the semigroup
(1.3) in order to guarantee that we obtain admissible families.

Now we can introduce our notion of invariance.

De�nition 1.7. Consider a semigroup action (1.1) endowed with a regular system
(A� )��0. A subset Q � M is called weakly almost invariant if for every x 2 Q,
" > 0 and � > 0, there is an admissible family  : [0; � ]! S such that

(1.5) d(x � (�); Q) := inf
q2Q

fd(x � (�); q)g < " for all � 2 [0; � ] :

Next we de�ne invariance entropy in the following steps.

De�nition 1.8. Consider the semigroup action (1.1) endowed with a regular sys-
tem (A� )�2[0;1). Let Q � M be a weakly almost invariant set and consider a
subset K � Q. For " > 0 and � > 0 a set R(�; ";K;Q) of admissible families is
called (�; ";K;Q)-spanning, if for every x 2 K there exists  2 R(�; ";K;Q) such
that d(x � (t); Q) < " for all t 2 [0; � ].
There are always �nite (�; ";K;Q)-spanning sets.

Lemma 1.9. Let K be a compact subset of a weakly almost invariant set Q � M
and let �; " > 0. Then there exists a �nite (�; ";K;Q)-spanning set.

Proof. Let x 2 K. Then there exists an admissible family x such that d(x �
x(t); Q) < " for all t 2 [0; � ]. By continuity and compactness of [0; � ], all y in a
neighborhood of x satisfy d(y �x(t); Q) < " for all t 2 [0; � ]. Then compactness ofK
shows that �nitely many admissible families form a (�; ";K;Q)-spanning family. �
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This lemma justi�es the following de�nition which is the central notion of the
present note.

De�nition 1.10. Consider the semigroup action S onM of the form (1.1) endowed
with a regular system (A� )�2[0;1). Let K be a compact subset of a weakly almost
invariant set Q �M . We denote the minimal cardinality of a (�; ";K;Q)-spanning
set by rSinv(�; ";K;Q). The invariance entropy of (K;Q) is de�ned by

hSinv(";K;Q) := lim sup
�!1

1

�
log rSinv(�; ";K;Q);

hSinv(K;Q) := lim
"!0

hSinv(";K;Q):(1.6)

Note that the limit for " ! 0 exists, since for "1 > "2 > 0 every (�; "2;K;Q)-
spanning set is also (�; "1;K;Q)-spanning implying that hSinv(";K;Q) is monoton-
ically increasing for "! 0.

Remark 1.11. One can also de�ne weakly invariant sets by requiring that for every
x 2 Q and � > 0, there is an admissible family  with x � (�) 2 Q on [0; � ].
An associated notion of strict invariance entropy hS;�inv(K;Q) can be based on the
exponential growth rate of the minimal number rS;�inv(�;K;Q) of spanning admissible
families of this type. Obviously one has

hS;�inv(K;Q) � hSinv(K;Q):
However, in general, we cannot guarantee that rSinv(�;K;Q) is �nite (but see Theo-
rem 2.3, and also Kawan [12] for results on strict invariance entropy in the control-
theoretic context.)

In Section 3 we will show that for control systems of the form (1.3) the notion
of invariance entropy for semigroup actions coincides with the one considered in
Colonius and Kawan [6].
Next we introduce a notion of topological conjugation and study the behavior

of invariance entropy under these conjugations. A homomorphism �S : S
1 ! S2 of

semigroups maps the neutral element e1 2 S1 to the neutral element e2 2 S2 and
�S(s � s0) = �S(s) � �S(s0) for all s; s0 2 S1.

De�nition 1.12. For i = 1; 2, let 'i : M i � Si ! M i be semigroup actions with
regular systems Ai = fAi� ; � � 0g. Let �M : M1 ! M2 be a continuous map and
let �S : S1 ! S2 be a semigroup homomorphism such that

(1.7) �M (x � s) = �M ('1(x; s)) = '2(�M (x); �S(s)) = �M (x) � �S(s)
for all (s; x) 2 S1 �M1. Suppose, furthermore, that for all � � 0

(1.8) �S(A
1
� ) � A2� and (�S)

�1
(A2� ) � A1� :

In this situation we say that the semigroup action '1 is semiconjugate to '2. If �M
is a homeomorphism and �S is bijective, we say that these semigroup actions are
conjugate.

Next we show that conjugation preserves the invariance entropy.

Theorem 1.13. Let '1 :M1�S1 !M1 and '2 :M2�S2 !M2 be two semigroup
actions with regular systems A1 and A2, respectively. Assume that there exists a
semiconjugation (�M ; �S) from '1 to '2. Let K � Q �M1 and suppose that K is
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compact and Q is weakly almost invariant. If �M is uniformly continuous on a �-
neighborhood of Q, then �M (Q) is weakly almost invariant and hinv(�(K); �(Q)) �
hinv(K;Q).
In particular, if the semigroup actions are conjugate, the invariance entropy is

preserved.

Proof. It is clear that �M (K) � �M (Q) are nonvoid sets and that �M (K) is com-
pact. First we show that �M (Q) is weakly almost invariant for the semigroup action
'2. In fact, this follows from equation (1.7): If y 2 �M (Q), there is x 2 Q with
y = �M (x). Let " > 0 and � > 0. Since �M is uniformly continuous on a neigh-
borhood of Q there exists � > 0 with �M (N�(Q)) � N"(�M (Q)), where N"(Q)
denotes the set of points with distance less than " to Q. Let  : [0; � ] ! S1 be an
admissible family such that d(x � (t); Q) < � for all t 2 [0; � ]. Then by (1.7)

�M (x) � �S((t)) = �M (x � (t)) 2 �M (N�(Q)) � N"(�M (Q));

and weak almost invariance of �M (Q) follows. Now let �; " > 0. As above, there
exists � > 0 with �M (N�(Q)) � N"(�M (Q)). Let R � S1 be a minimal (�; �;K;Q)-
spanning set of admissible families in A1 and consider �S(R). For any y 2 �M (K)
there exists x 2 K with �M (x) = y. Let  2 R such that d(x � (t); Q) < � for all
t 2 [0; � ]. Then �M (x) � �S((t)) 2 �M (N�(Q)) � N"(�M (Q)):
Furthermore, all maps �S� 2 �S(R) satisfy the conditions on admissible families

in De�nition 1.2. This is clear for (i), and using (1.7) one �nds for �; � � 0 an
element s 2 A1� nA1<� with

�M ((�)) � �S(s) = �M ((�) � s) = �M ((� + �)) = (�M � )(� + �):

By the �rst condition in (1.8) one has �S(s) 2 A2� ; if �S(s) 2 A2� for some � < � , the
second condition in (1.8) yields the contradiction s 2 (�S)�1(A2�) � A1�. This shows
property (ii). It follows that �S(R) is an admissible family for '2. Consequently
the minimal cardinality of a (�; "; �M (K); �M (Q))-spanning set is not greater than
the cardinality of R and hence

hinv("; �(K); �(Q)) � hinv(�;K;Q) � hinv(K;Q):

For "! 0, the assertion follows. �

Remark 1.14. It is not di¢ cult to see that the invariance entropy is not an in-
variant under the more general topological conjugacies considered in Ayala et al.
[3] and Baratchart et al. [4]. These conjugacies, which are de�ned for skew prod-
uct �ows resulting from control systems, would, in our framework, allow that the
homeomorphism �M also may depend on the semigroup elements.

2. Upper and lower bounds for invariance entropy

In this section we will prove upper bounds and a lower bound for invariance
entropy.

De�nition 2.1. If 1 : [0; t1] ! S and 2 : [0; t2] ! S are two admissible families
in a semigroup S, then the concatenation 1 � 2 : [0; t1 + t2]! S is de�ned by

(1 � 2)(t) =
�
1(t) if t 2 [0; t1];
1(t1) � 2(t� t1) if t 2 (t1; t1 + t2]:
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The concatenation is associative, but it does not necessarily give an admissible
family. In Theorem 2.3 we suppose that concatenations of admissible families again
form an admissible family. The following proposition shows that this is satis�ed
under an additional assumption for the regular system, which for instance is satis�ed
for control systems of the form (1.2) with regular system given by (1.4).

Proposition 2.2. Suppose that the regular family satis�es (A� nA<�)�(A� nA<� ) �
A�+� n A<�+� for all �; � > 0. Then the concatenation  := 1 � 2 of admissible
families 1 : [0; t1]! S and 2 : [0; t2]! S again is an admissible family.

Proof. It is clear that the continuity condition (i) in De�nition 1.2 is satis�ed.
Condition (ii) is certainly satis�ed if �+ � 2 [0; t1]. Hence we may suppose �+ � >
t1. If � > t1, one �nds s 2 A� nA<� such that

(1 � 2)(� + �) = 1(t1) � 2(� + � � t1) = 1(t1) � 2(� � t1) � s = (�) � s:

If � 2 [0; t1) one �nds s1 2 At1�� nA<t1�� such that with s := s1 � 2(� + � � t1)

(1 � 2)(� + �) = 1(t1) � 2(� + � � t1) = 1(�) � s1 � 2(� + � � t1) = (�) � s:

Taking into account Remark 1.4 one sees that

s = s1 � 2(� + � � t1) 2 (At1�� nA<t1��) � (A�+��t1 nA<�+��t1) � A� nA<� :

The same remark shows the assertion for � = t1. �

Recall the de�nition of weakly invariant sets and of strict invariance entropy in
Remark 1.11.

Theorem 2.3. Let ' : M � S ! M be a semigroup action with regular system
fA�g��0. Let K � M be a compact subset and suppose that K =

SN
i=1 Ci with

admissible families i : [0; Ti]! S; Ti > 0; i = 1; : : : ; N , such that Ci � i(t) 2 K for
every t 2 [0; Ti]. Assume, furthermore, that any (repeated) concatenation of the i
again yields an admissible family. Then K is weakly invariant subset and the strict
invariance entropy satis�es

(2.1) hS;�inv(K;K) �
logN

mini Ti
:

Proof. Let T := mini=1;:::;N Ti. For � > 0 there are k 2 N and � 2 (0; T ] with
� = (k�1)T+�. We claim that for every x 2 K, there exist an k-tuple (i1; : : : ; ik) 2
f1; : : : ; Ngk such that x � (i1 � i2 � : : : � ik)(t) 2 K for every t 2 [0; kT ]. In fact, if
x 2 Ci1 , notice that x � i1(t) 2 K for every t 2 [0; Ti1 ]. Now x � i1(Ti1) 2 Ci2 for
some i2 2 f1; : : : ; Ng and x � (i1 � i2)(t) 2 K for every t 2 [0; Ti1 + Ti2 ]. We can
proceed in this way up to time � � kT � Ti1 + ::: + Tik and the claim follows.
For every k-tuple (i1; : : : ; ik) 2 f1; : : : ; Ngk, the concatenation i1 � : : : � ik is an
admissible family. Moreover, the set K is weakly invariant and

rS;�inv(�; 0;K;K) � r
S;�
inv(kT; 0;K;K) � Nk:

We conclude

hS;�inv(K;K) = lim
�!1

1

�
log rS;�inv(�; 0;K;K) � lim

k!1

1

(k � 1)T logN
k =

1

T
logN:

�
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The assumptions of Theorem 2.3 guarantee �niteness of the strict invariance
entropy hS;�inv(K;K) which is an upper bound for the invariance entropy h

S
inv(K;K),

cp. Remark 1.11. In the following, we prove an upper bound for the invariance
entropy under weaker assumptions. We will use arguments similar to Katok and
Hasselblatt [10, Theorem 3.2.9] establishing an upper bound for the topological
entropy of Lipschitz continuous maps, see also [6]. In our context, we have to
sharpen our assumption on invariance of Q by considering Lipschitz continuous
admissible families de�ned as follows:
For constants L; c > 0 the set �(L; c) consists of all admissible families  such

that for all x; y 2 Q

(2.2) d(x � (t); y � (t)) < ceLtd(x; y) for all t � 0:

We say that a set Q is weakly invariant with admissible families in �(L; c) if for
every x 2 Q and � > 0, there is  2 �(L; c) with x � (�) 2 Q for � 2 [0; � ], and
similarly for weak almost invariance.
Recall that the upper ball dimension of K �M is

(2.3) dimBK := lim sup
�&0

ln b(�;K)

ln(1=�)
;

where b(�;K) is the minimal cardinality of a cover of K by �-balls.

Theorem 2.4. Let ' : M � S ! M be a semigroup action with regular system
fA�g��0. Suppose that K � Q is a compact subset of M and suppose that Q is
weakly invariant with admissible families in �(L; c) for some �xed L; c > 0. Then
the invariance entropy satis�es

hSinv(K;Q) � LdimBK:

Proof. Let "; � > 0. Since Q is weakly invariant one �nds for every x 2 K an
admissible family  2 �(L; c) with x �(t) 2 Q for all t 2 [0; � ]. Consider a set R0 of
pairs (x; ) of points in K and admissible families  2 �(L; c) having the property
that x � (t) 2 Q for all t 2 [0; � ] and for every y 2 K there is (x; ) 2 R0 with

d(x � (t); y � (t)) < " for all t 2 [0; � ]:

Then, by compactness of K and continuity there exists such a set R0 with �nite
cardinality. Choose a set R0 with minimal cardinality r. Then one easily sees that r
is greater than or equal to the minimal cardinality rSinv("; �;K;Q) of a (�; ";K;Q)-
spanning set R(�; ";K;Q).
De�ne for (xi; i) 2 R0; i = 1; :::; r; the sets

Ni := fx 2 K; d(x � i(t); xi � i(t)) < " for all t 2 [0; � ]g:

Then K is contained in
Sr
i=1Ni.

Let x 2 M be a point with d(x; xi) < e�L�"=c for some i 2 f1; :::; rg. For all
t 2 [0; � ], it follows that

d(x � i(t); xi � i(t)) < ceLtd(x; xi) < ":

Hence x 2 Ni and thus Ni contains the ball B(xi; e�L�"=c).
Next we claim that r � b(e�L�"=c;K). Assume to the contrary that there exists

a cover C of K consisting of e�L�"=c-balls such that n := #C < r. Let these balls
be centered at points ~x1; :::; ~xn 2 Q. By weak invariance of Q we can assign to ~xj an
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admissible family ~j with ~xj � ~j(t) 2 Q for all t � 0. Then the ball B(~xj ; e�L�"=c)
is contained in the set

Vj := fx 2M; d(x � ~j(t); ~xj � ~j(t)) < " for all t 2 [0; � ]g:
Thus the set f(~x1; ~1); :::; (~xn; ~n)g also has the property that for every x 2 K
there is (~xj ; ~j) with

d(x � ~j(t); ~xj � ~j(t)) < " for all t 2 [0; � ]:
This contradicts the minimality of r. It follows that

rSinv("; �;K;Q) � r � b(e�L�"=c;K):
Observe that

ln(1=(e�L�"=c) = ln(eL� c=") = L� + ln c� ln ":
We �nd, with � := e�L�"=c! 0 for � !1,

lim sup
�!1

1

�
ln rSinv("; �;K;Q) � lim sup

�!1

1

�
ln b(e�L�"=c;K)

= lim sup
�!1

�
L� + ln c� ln "

�
� ln b(e

�L�"=c;K)

ln(1=(e�L�"=c)

�
= L lim sup

�!1

ln b(e�L�"=C;K)

ln(1=(e�L�"=C)

� LdimBK:
Now the assertion follows by letting " tend to 0. �
Next we turn to derive a lower bound for the invariance entropy with arbitrary

admissible families. The following de�nition introduces rates of expansion for a
semigroup action.

De�nition 2.5. Consider a semigroup action ' :M �S !M with regular system
fA�g��0. Let Q �M be a weakly almost invariant set and K � Q a compact sub-
set. Let � be a �nite Borel measure on an "-neighborhood Q" = fx 2M ; d(x;Q) <
"g of Q. The rate of expansion of ' with respect to (Q"; �) is at least E if for
every Borel subset D � K and every admissible family  : [0; � ] ! S such that
D � ([0; � ]) � Q", we have that �(D � (t)) � exp(Et) � �(D) for every t 2 [0; � ].
Theorem 2.6. Suppose that we are in the setting of De�nition 2.5 and let K � Q
be a compact subset with �(K) > 0. Assume that the rate of expansion of ' with
respect to (Q"; �) is at least E. Then

hSinv(K;Q) � maxf0; Eg:
Proof. Abbreviate r := rSinv(�; ";K;Q). Let fi : [0; � ] ! S, i = 1; : : : ; rg be a
minimal (�; ";K;Q)-spanning set. Then the sets Ui := fx 2 K; x � i([0; � ]) � Q"g
form an open cover of K. Then one can construct a partition fDigi=1;:::;r of K by
Borel subsets Di � Ui. By hypothesis we have that �(Di � i(t)) � exp(tE) � �(Di)
for every t 2 [0; � ]. Observe that

r � �(Q") �
rX
i=1

�(Di � i(t)) � exp(tE) � �(K)

implying

rSinv(�; ";K;Q) = r �
exp(�E) � �(K)

�(Q")
:
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Then it follows that

lim sup
�!1

1

�
log rSinv(�; ";K;Q) � lim sup

�!1

1

�
[�E + log�(K)� log�(Q")] = E

and hence

hSinv(K;Q) = lim
"!0

lim sup
�!1

1

�
log rSinv(�; ";K;Q) � E:

�

3. Controlled invariance and invariance entropy for control
systems

This section shows that the invariance entropy introduced above coincides with
the invariance entropy for controlled almost invariant sets considered in the context
of control systems. The di¢ culty lies in the fact that the de�nitions of weak almost
invariance and of invariance entropy given in De�nitions 1.7 and 1.10, respectively,
consider arbitrary admissible families, not just admissible families generated by
control functions.
For simplicity, we consider controls given by

U := fu : R! U; locally integrableg
with a subset U � Rm. Let M be a Riemannian manifold. Controlled almost
invariance of control systems is de�ned as follows.

De�nition 3.1. For a control system � of the form (1.2) a compact subset Q �M
is called controlled almost invariant, if for all x 2 Q, "; � > 0 there is a control
u 2 U such that the corresponding solution satis�es d('(t; x; u); Q) < " for every
t 2 [0; � ].

Invariance entropy in this context is de�ned as follows (cp. Colonius and Kawan
[6]).

De�nition 3.2. Let K be a compact subset of a controlled almost invariant set
Q �M . For "; � > 0 a (�; ";K;Q)-spanning set is a set R � U of control functions
such that for every x 2 K there is u 2 R with d('(t; x; u); Q) < " for all t 2 [0; � ].
Denote the minimal cardinality of a (�; ";K;Q)-spanning set by r�(�; ";K;Q) and
let

h�(";K;Q) := lim sup
�!1

1

�
log r�(�; ";K;Q):

The invariance entropy is de�ned by

h�inv(K;Q) := lim
"!0

h�(";K;Q):

Note that here spanning sets are determined by controls, not by admissible
families.

Example 3.3. Suppose that system (1.2) is control-a¢ ne, i.e., it has the form

_x = f0(x) +
mX
i=1

ui(t)fi(x); u = (ui) 2 U ;

with compact and convex control range U . If the system is locally accessible and
D is a bounded control set, then Q := clD = cl(intD) is controlled invariant; cp.
Colonius and Kliemann [5, Lemma 3.2.13(i) and Proposition 4.3.3].
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We begin our analysis with the following crucial lemma relating arbitrary ad-
missible families to trajectories corresponding to a control u.

Lemma 3.4. Consider control system (1.2) with semigroup S and regular system
(A� )��0 given by (1.3) and (1.4), respectively. Let �; C > 0 and let N � M be
an open subset such that, for every x 2 M and u 2 U with '(t; x; u) 2 N for all
t 2 [0; � ], the trajectory satis�es

(3.1) d('(t1; x; u); '(t2; x; u)) � Cjt1 � t2j for all t1; t2 2 [0; � ]:

Let  : [0; � ] ! S be an admissible family and let K � N be a compact set such
that x � ([0; � ]) � N for every x 2 K. Then for every � > 0 and every x 2 K there
exists a control ~u 2 U with

d(x � (t); '(t; x; ~u)) < � for all t 2 [0; � ]:

Proof. Observe that K � ([0; � ]) � N is a compact subset and we can take � <
d(K � ([0; � ]);MnN). Analogously observe that there exists a �1 > 0 such that
jt1� t2j < �1 implies d(x0 � (t1); x0 � (t2)) < �=2 for every x0 2 K. Property (3.1)
shows that, if '(t; x0; u) 2 N for t 2 [0; � ] and t1; t2 2 [0; � ] with jt1� t2j < �=(2C),
then

d('(t1; x0; u); '(t2; x0; u)) <
�

2
:

Let k 2 N be such that �=k � min(�1; �=(2C)). We will inductively construct a
control ~u : [0; � ]! U in U such that

(3.2) x0 � (i�=k) = '(i�=k; x0; ~u)

for every i = 1; : : : ; k. Since  is an admissible family, property (ii) in De�nition
1.2 shows that (�=k) 2 A�=k nA<�=k, and there is s1 2 A�=k nA<�=k with

(0) � s1 = (0 + �=k):

Using that the regular system is de�ned by (1.4), one �nds a control u1 2 U such
that s1 = (�=k; '(�=k; �; u1)) and hence

x1 := x0 � (�=k) = x0 � s1 = x0 � (�=k; '(�=k; �; u1)) = '(�=k; x0; u1):

Observe that the curve '(t; x0; u1); t 2 [0; �=k], remains inside N due to (3.1),
the choice of k and the range of variation of t. Proceeding inductively, let for
i 2 f1; : : : ; k � 1g

xi := x0 � (i�=k) 2M:
One �nds an element si 2 A�=k nA<�=k with

((i+ 1)�=k) = (i�=k) � si:

Thus there is a control ui+1 2 U with si = (�=k; '(�=k; �; ui+1)) satisfying

xi+1 := x0 � ((i+ 1)�=k) = x0 � (i�=k) � (�=k; '(�=k; �; ui+1))
= xi � (�=k; '(�=k; �; ui+1))
= '(�=k; xi; ui+1)):

Now de�ne a control u 2 U by

u(t) = ui+1(t� i�=k) for t 2 [i�=k; (i+ 1)�=k); i = 0; 1; :::; k � 1:
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By construction, the corresponding trajectory '(t; x; u); t 2 [0; � ] satis�es (3.2).
Finally observe that for t 2 [0; � ] with i�=k � t � (i+ 1)�=k

d(x0 � (t); '(t; x0; u))
� d(x0 � (t); x0 � (i�=k)) + d(x0 � (i�=k); '(i�=k; x0; u))

+ d('(i�=k; x0; u); '(t; x0; u))

<
�

2
+ 0 +

�

2
= �:

�

The next theorem shows that for control systems, weak almost invariance (de-
�ned via admissible families) is equivalent to controlled almost invariance.

Theorem 3.5. Consider control system (1.2) with semigroup S and regular system
(A� )��0 given by (1.3) and (1.4). Consider a compact subset Q � M and "0 > 0.
Suppose that for every � > 0 and every trajectory with supt2[0;� ] d('(t; x; u); Q) < "0
there exist a constant C > 0 such that

(3.3) d('(t1; x; u); '(t2; x; u)) � Cjt1 � t2j; 0 � t1; t2 � �:
Then Q is weakly almost invariant i¤ it is controlled almost invariant.

Proof. Clearly, every controlled almost invariant set is weakly almost invariant.
Conversely, suppose that Q is weakly almost invariant. Consider x 2 Q, � > 0
and " 2 (0; "0). There exists an admissible family  such that d(x � (t); Q) < "=2
for every t 2 [0; � ]. Lemma 3.4 states that there exists a control u 2 U such that
d('(t; x; u); x � (t)) < "=2 for every t 2 [0; � ]. Thus d('(t; x; u); Q) < " for every
t 2 [0; � ] and Q is controlled almost invariant. �

Remark 3.6. Observe that inequality (3.3) provides a very mild restriction on (1.2).
For instance if kf(x; u)k � C for every u 2 U and every x 2 Q, then (3.3) is satis�ed.

Next we turn to analyze invariance entropy. The following lemma will be used
to show that a (�; ";K;Q)-spanning set remains a (�; ";K;Q)-spanning set under
small deformations. It is a special case of a general result about shrinking of covers;
see, e.g., Engelking [7, Theorem 7.1.5]. We include the short proof for the reader�s
convenience.

Lemma 3.7. Let fO�g�2� be an open cover of a compact metric space (M;d).
Given a " > 0, de�ne

O�(�") := fx 2M; d(x;MnO�) > "g:
Then there exists " > 0 such that fO�(�")g�2� is still an open cover of M .

Proof. Since M is compact, it is enough to prove the lemma for a �nite open cover
fOigi=1;:::;k. We claim that there exists "1 > 0 such that fO1(�"1)g [ fOigi=2;:::;k
is an open cover ofM . In fact, notice that C1 :=Mn

S
i=2;:::;k Oi � O1 is a compact

subset of M and that D1 := MnO1 is also compact. We have that d(C1; D1) > 0
because C1\D1 = ;. For "1 := d(C1; D1)=2. Then O1(�"1) � C1 and fO1(�"1)g[
fOigi=2;:::;k is an open cover of M . Now consider the open cover fO1(�"1)g [
fOigi=2;:::;k, and �nd a "2 > 0 such that fO1(�"1)g [ fO2(�"2)g [ fOigi=3;:::;k
covers M . Repeating this construction one ends up with an open cover given by
fOi(�"i)gi=1;:::;k. The assertion follows with " := mini=1;:::;k "i. �
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The next theorem shows that for control systems, the invariance entropy for
the associated semigroup action coincides with the invariance entropy for control
functions given in De�nition 3.2. Thus the notion of admissible families and the
associated invariance entropy, which appear adequate in the context of semigroup
actions, are natural generalizations from the situation of control systems.

Theorem 3.8. Consider control system (1.2) and the associated semigroup action
given by (1.3) and (1.4). Fix compact sets K � Q � M and suppose that Q
is controlled almost invariant. Assume that for every � > 0 there are constants
C; "0 > 0 such that (3.3) holds for every trajectory with supt2[0;� ] d('(t; x; u); Q) <
"0. Then Q is weakly almost invariant for the semigroup action and

hSinv(K;Q) = h
�
inv(K;Q):

Proof. The inequality hSinv(K;Q) � h�inv(K;Q) holds, because t 7! (t; '(t; �; u)) is
an admissible family for every u 2 U . Therefore rSinv(�; ";K;Q) � r�inv(�; ";K;Q)
for every �; " > 0 and the inequality follows.
In order to prove the converse inequality, let figi=1;:::;k be a minimal (�; ";K;Q)-

spanning set of admissible families for the semigroup action (1.3). Set Oi := fx 2
K; d(x � i(t); Q) < " for every t 2 [0; � ]g. Then fOigi=1;:::;k is an open cover of K.
By Lemma 3.7, there is � > 0 such that fOi(��)gi=1;:::;k is also an open cover of
K. The family fOi(��)gi=1;:::;k also covers K and we may assume that it consists
of compact sets. Then

P := fx � i(t); x 2 Oi(��) and t 2 [0; � ] for some i = 1; :::; kg
is a compact subset of N"(Q) = fy 2M; d(y;Q) < "g. Set

� := d(MnN"(Q); P ) > 0:

Using Lemma 3.4, for every i, there exist ui 2 U such that
d(x � i(t); '(t; x; ui)) < �

for every x 2 Oi(��) and every t 2 [0; � ] implying '(t; x; ui) 2 N"(Q). Therefore
fu1; : : : ; ukg � U is a (�; ";K;Q)-spanning set for control system (1.2). It follows
that r�inv(�; ";K;Q) � rSinv(�; ";K;Q) and hence h�inv(K;Q) � hSinv(K;Q). �
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