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Abstract

Using methods from topological dynamics a dynamical character-
ization of the Lyapunov form for matrices is given. It is based on an
analysis of the induced �ows on the projective space, the Grassman-
nians, and the �ag manifold.

1 Introduction

Spectral properties of matrices can be characterized in various ways: The al-
gebraic approach via the characteristic polynomial yields the eigenvalues and
corresponding (generalized) eigenspaces resulting in the Jordan normal form.
The linear-algebraic approach using similarity of matrices again results in a
characterization via the Jordan form. Furthermore, the dynamical approach
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via di¤eomorphic conjugacy of linear �ows eAtx and eBtx again implies sim-
ilarity of the matrices A and B. If one weakens �di¤eomorphic conjugacy�to
�homeomorphic conjugacy� (or homeomorphic equivalence), homeomorphic
conjugacy of eAtx and eBtx is equivalent (in case there are no eigenvalues on
the imaginary axis) to the dimensions of the stable (or unstable) subspaces
of A and B being equal.
In applications, such as nonlinear di¤erential equations, one is often in-

terested in matrix normal forms that are �rougher� than the Jordan form,
and �ner than the characterization via stable subspaces: typical examples
are the idea of invariant manifolds in dynamical systems theory, or stabil-
ity and stabilizability of control systems. These approaches work with the
exponential growth behavior of a �ow eAtx and are thus interested in the
real parts of the eigenvalues and the corresponding subspace decomposition
(Lyapunov normal form). While this form can, of course, be derived from the
Jordan form, there is no obvious dynamical characterization of the Lyapunov
normal form in Rd.
In this paper we derive a dynamical characterization of the Lyapunov

form for matrices. In Section 2 we start with a short review of known results
on dynamical characterizations of spectral properties of matrices via their
linear �ows in Rd. Then we introduce the Lyapunov normal form in Section
3. Section 4 recalls some general facts on conjugacies and equivalences. Then
Sections 5 and 6 contain the main results on dynamical characterizations of
the Lyapunov form, using the induced �ows on the projective space, the
Grassmannians, and the �ag manifold.

2 Conjugacy and Equivalence for Linear Flows
in Rd

In this section we review some of the known concepts and results for the
dynamical characterization of matrices. We denote the set of d� d matrices
with real entries by gl(d;R), and the set of invertible matrices by Gl(d;R):
The space of vector �elds on a manifold M is denoted by X (M).
Recall the following de�nitions on conjugacy and equivalence for vector

�elds, compare, e.g., Palis/de Melo [5], Wiggins [7], Arrowsmith/Place [8].

De�nition 2.1 Two vector �elds X; Y 2 X (M) are:
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(i) Ck�equivalent (k � 1) if there exists a (local) Ck di¤eomorphism h :
M ! M such that h takes orbits of '(t; x) (of X) onto orbits of  (t; y) (of
Y ), preserving the orientation (but not necessarily parametrization by time),
i.e.
a. for each x 2M there is a strictly increasing and continuous parame-

trization map �x : R ! R such that h('(t; x)) =  (�x(t); h(x)) or, equiva-
lently,
b. for all x 2 M and � > 0 there exists " > 0 such that for all t 2 (0; �)

we have h('(t; x)) =  (t0; h(x)) for some t0 2 (0; "):
(ii) Ck�conjugate (k � 1) if there exists a (local) Ck di¤eomorphism h :
M !M such that h('(t; x)) =  (t; h(x)) for all x 2M and t 2 R:

Usually, C0�equivalence is called topological equivalence, andC0�conjug-
acy is called topological conjugacy or simply conjugacy.
Given two matrices A, B 2 gl(d;R) with associated linear �ows '(t; x) =

eAtx and  (t; x) = eBtx with x 2 Rd and t 2 R, equivalence and conjugacy
of the linear �ows is summarized in the following facts.

Proposition 2.2 The linear �ows ' and  in Rd are Ck�conjugate for
k � 1 i¤ ' and  are linearly conjugate, i.e., the conjugacy map h is a
linear map in Gl(d;R); i¤ A and B are similar, i.e., A = TBT�1 for some
T 2 Gl(d;R):

Each of these statements implies that A and B have the same eigen-
value structure and (up to a linear transformation) the same (generalized)
eigenspace structure. In particular, the Ck� conjugacy classes are exactly
the Jordan form equivalence classes in gl(d;R):

Proposition 2.3 The linear �ows ' and  in Rd are Ck�equivalent for
k � 1 i¤ ' and  are linearly equivalent, i.e., the equivalence map h is a
linear map in Gl(d;R); i¤ A = �TBT�1 for some positive real number � and
T 2 Gl(d;R):

Each of these statements implies that A and B have the same (real)
Jordan structure and their eigenvalues di¤er by a positive constant. Hence
the Ck- equivalence classes are the Jordan form classes modulo a positive
constant.
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Proposition 2.4 If A and B are hyperbolic (i.e., there are no eigenvalues on
the imaginary axis), then the linear �ows ' and  in Rd are C0�equivalent
(and C0�conjugate) i¤ the dimensions of the stable subspaces (and hence the
dimensions of the unstable subspaces) of A and B agree.

Recall that the set of hyperbolic matrices is open and dense in gl(d;R).
A matrix A is hyperbolic i¤ it is structurally stable in gl(d;R); i.e., there
exists a neighborhood U � gl(d;R) such that all B 2 U are topologically
equivalent to A.

Remark 2.5 The characterization of Ck�conjugacies in Proposition 2.2 re-
mains true for Lipschitz conjugacies, since by Rademacher�s Theorem a Lip-
schitz continuous map is di¤erentiable on a dense subset.

3 The Lyapunov Decomposition of Matrices

Each similarity class in gl(d;R) is uniquely determined by its real Jordan
form, except for the order of the Jordan blocks. We now de�ne several
Lyapunov-type forms for matrices that re�ect the real part of the spectrum
and the associated subspaces in Rd.
From the Jordan form J(A) we construct the Lyapunov normal form L(A)

of A as follows:
Let �1 < ::: < �m be the distinct real parts of the eigenvalues of A, with

associated Lyapunov spaces Li =
L
j

Jj;i where the Jj;i are the subspaces of

Rd corresponding to the Jordan blocks of J(A) whose eigenvalues have real

part �i. Note that Rd =
mL
i=1

Li:

De�nition 3.1 The Lyapunov normal form L(A) of a matrix A 2 gl(d;R)
is the diagonal matrix2664

�1 0
�
�

0 �m

3775 with �i =

24�i 0
�

0 �i

35 ;
where �i is the real part of an eigenvalue of A and the block size of �i is the
dimension di = dimLi of the Lyapunov space Li. The blocks are arranged
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according to the order �1 < ::: < �m. Two matrices A and B are called
Lyapunov equivalent if L(A) = L(B).

The �i are called the Lyapunov exponents of A: Note that Lyapunov
equivalence is an equivalence relation on gl(d;R): Each class has a unique
representative given bym real numbers �1 < ::: < �m andm natural numbers
di = dimLi, the dimension of the i�th Lyapunov space.

Remark 3.2 Alternatively, the Lyapunov normal form of a matrix can be
obtained in the following way. For A 2 gl(d;R) there exist unique matrices
S; N 2 gl(d;R) such that A = S + N , SN = NS, S is semisimple and
N is nilpotent (see Hirsch/Smale [4], p.116, Theorem 1). Note that A and
S are Lyapunov equivalent. The complexi�cation of the semisimple part S
is diagonalizable. Denote by S�(A) the matrix formed with the real part of
this diagonal matrix, ordered according to the (real) diagonal elements. Then
S�(A) is the Lyapunov normal form L(A) of A.

Remark 3.3 The set of all classes of Lyapunov equivalent matrices in gl(d;R)
can be parametrized as follows:
(i) a natural number m with 1 � m � d, denoting the number of di¤erent

Lyapunov exponents;
(ii) a (continuous) parameter of m variables � 2 R� (R+)m�1 describing

the vector of Lyapunov exponents (�1; :::; �m), where �1 = �1 and �i = �i �
�i�1; for i = 2; :::;m;
(iii) a discrete index set Im � f1; :::; d� (m� 1)gm�1 describing the di-

mensions of the Lyapunov spaces (L1; :::; Lm), where Im(i) = dimLi for

i = 1; :::;m� 1 with
m�1P
i=1

Im(i) =: nm � d� 1 and dimLm = d� nm:

The cardinality of Im is as follows.

Proposition 3.4 For dimension d � 3 and for m distinct Lyapunov expo-
nents the cardinality of Im describing the number of possible Lyapunov classes
is determined as follows:
(i) m = 1 or d implies card(Im) = 1;
(ii) m = 2 or d� 1 implies card(Im) = d� 1 :
(iii) otherwise card(Im) is given by the formula with m� 2 terms

card(Im) =
d�m+1X
j1=1

j1X
j2=1

� � �
ji�4X
ji�3=1

ji�3X
ji�2=1

ji�2:
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Proof. The proof can be seen by a simple counting argument: Let the
dimension d 2 N be given and let m be the number of distinct Lyapunov ex-
ponents, ordered according to their natural order in R:We have the following
initial values:

d m Im card(Im)
1 1 f1g 1
2 1 f2g 1

2 f1g 1
� 3 1 or d fdg or f1g 1

2 or d� 1 f1; 2; :::; d� 1g d� 1

In the last case card(Im) describes the dimension of the �rst Lyapunov space.
Now let d � 5, and m 2 f3; :::; d� 2g be given. The dimension dm of the

Lyapunov spaces Lm is always computed as d�
m�1P
i=1

di = dm:

Let D :=
m�3P
i=1

di. Note that D = d � 3 implies dm�2 = dm = 1, and

D > d� 3 is not possible. Thus we may suppose that D � d� 4. Then dm�2
can range from 1 to d�2�D; and dm�1 can range from 1 to d�1�D�dm�2:
Hence we obtain for

dm�2 = 1 : dm�1 2 f1; :::; d�D � 2g ;
dm�2 = i : dm�1 2 f1; :::; d�D � 1� ig ;
dm�2 = d� 2�D : dm�1 2 f1g :
Hence there are 1 + 2 + ::: + d � D � 2 possibilities for (dm�2; dm�1):

Summing this over all possible values of (d1; :::; dm�3) yields the result.
For the study of linear �ows one often needs less information than the

Lyapunov normal form of a matrix: the dimension of the Lyapunov spaces,
in the natural order of their Lyapunov exponents, may be su¢ cient. We
therefore introduce the short Lyapunov form.

De�nition 3.5 The short Lyapunov form SL(A) of a matrix A 2 gl(d;R)
is given by the vector of the dimensions di of the Lyapunov spaces (in the
natural order of their Lyapunov exponents) : SL(A) = (m; d1; :::; dm) where
m � d is the number of distinct Lyapunov exponents.

Note that two matrices A and B have the same short Lyapunov form if
and only if the blocks of L(A) and L(B) have the same dimensions. The
short Lyapunov form de�nes an equivalence relation on gl(d;R); its classes
can be parametrized as in Remark 3.3 (i) and (iii).
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De�nition 3.6 The short zero-Lyapunov form S0L(A) of a matrix A 2
gl(d;R) is given by the vector of dimensions of the Lyapunov spaces and
the total multiplicity of the negative Lyapunov exponents:

S0L(A) = (m;ms; d1; :::; dm); with ms =
X
�i<0

di:

We also write dc for the dimension of the center space corresponding to �c = 0
and mu =

P
�i>0

di:

The short zero-Lyapunov form de�nes an equivalence relation on gl(d;R).
Its parametrization can be constructed as in Remark 3.3 (i) and (iii) with an
additional parameter ms 2 f0; :::;mg :
Finally, we combine the stable and unstable subspaces to obtain:

De�nition 3.7 The stability Lyapunov form Ls(A) of a matrix A 2 gl(d;R)
is given by the dimensions of the stable, center and unstable subspaces Ls(A) =
(ms; dc;mu). Alternatively, Ls(A) can be written in matrix form as

Ls) = diag(�1; :::;�1; 0; :::; 0; 1; :::; 1);

where the diagonal submatrices have the corresponding dimensions.

Again, the stability Lyapunov form de�nes an equivalence relation on
gl(d;R). Its classes, are parametrized by two natural numbers (ms; dc) such
that 0 � ms + dc � d:

Remark 3.8 For hyperbolic matrices one has dc = 0. Hence ms 2 f0; :::; dg
parametrizes the stability Lyapunov form Ls. Recall that the set of hyperbolic
matrices is open and dense in gl(d;R).

Remark 3.9 Let A be a hyperbolic matrix. Then there exists a neighborhood
U � gl(d;R) such that all B 2 U have the same stability Lyapunov form as
A; compare Palis/de Melo [5], p. 54. In general, this is not true for the short
zero-Lyapunov form, the short Lyapunov form, the Lyapunov form, or the
Jordan form of matrices. Note that without hyperbolicity this property also
does not hold for the stability Lyapunov form.
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4 Some Results on Conjugacies and Equiva-
lences

For the following sections we need some simple facts on conjugacies and
equivalences.

Proposition 4.1 Let X;Y 2 X (M) be two C1 vector �elds on a C1 man-
ifold M . Let h :M !M be a topological equivalence for X and Y .
(i) The point p 2M is a �xed point of X i¤ h(p) is a �xed point of Y .
(ii) The orbit '(�; p) is closed i¤  (�; h(p)) is closed.
(iii) If N � M is an �-(or !-) limit set of X from p 2 M , then h [N ] is

an �-(or !-) limit set of Y from h(p) 2M
(iv) Given, in addition, two vector �elds Z1; Z2 2 X (N) on a C1 manifold

N . If the �ows of X and Y , and of Z1 and Z2 are topologically conjugate,
so are the product �ows of X �Z1 and Y �Z2 on M �N . This result is, in
general not true for topological equivalence.

The proofs of these results are straightforward from the de�nition of
equivalences and conjugacies.
For a �ow � on a compact metric space X and "; T > 0 an ("; T )�chain

from x 2 X to y 2 X is given by

n 2 N; x0 = x; :::; xn = y; T0; :::; Tn�1 > T

with
d(�(Ti; xi); x�+1) < " for all i;

where d is the metric on M . A set K is chain transitive if for all x; y 2 K
and all "; T > 0 there is an ("; T )�chain from x to y. A set M is a chain
recurrent component, if it is a maximal chain transitive set.

Lemma 4.2 If M is compact, then topological conjugacies map chain tran-
sitive sets of X onto chain transitive sets of Y .

Proof. The equivalence map h is a homeomorphism and M is compact by
assumption. Hence for all " > 0 there exists a � > 0 such that for all z 2M
it holds that B(z; ") � h�1 [B(h(z); �)] with B(z; ") = fy 2M : d(z; y) < "g.
Let '1; '2 be �ows onM with topological conjugacy h: For a chain transitive
set N2 � M of '2, we claim that N1 := h�1 [N2] is a chain transitive set of
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'1: Take p1; q1 2 N1 and �x " > 0; T > 0: Choose � as above and let �2
be a (�; T )-chain from p2 = h(p1) to q2 = h(q1). Then h�1(�2) =: �1 is an
("; T )-chain from p1 to q1.

Lemma 4.3 If M is compact, then topological equivalences map chain tran-
sitive sets of X onto chain transitive sets of Y .

Proof. We need to adjust the time of �2 in the proof of Lemma 4.2. Since
the time parametrization ��(�) of '2 with respect to '1 is continuous in both
variables, we can de�ne T1 = minp2M �p(T ). If we choose �2 in the proof of
Lemma 4.2 to be a (�; T1)�chain, then h�1(�2) is an ("; T )�chain of '1 from
p1 to q1:

Lemma 4.4 A topological equivalence h maps invariant sets onto invariant
sets and minimal closed invariant sets onto minimal invariant sets.

Proof. This follows, since h maps orbits onto orbits and closures of orbits
onto closures of orbits.

5 Topological Characterization of Matrices in
Projective Spaces

Proposition 2.4 characterizes topologically the stable (and unstable) dimen-
sions of a hyperbolic matrix A 2 gl(d;R), i.e., the parameter ms of the short
zero-Lyapunov form S0L(A). We proceed now to determine the number m
of di¤erent Lyapunov exponents in S0L(A).
Denote by Pd�1 the (d � 1)�dimensional projective space. For A 2

gl(d;R) let ' be its linear �ow in Rd. The �ow ' projects onto a �ow
P' on Pd�1, given by the di¤erential equation

_s = h(s; A) = (A� sTAs I) s; with s 2 Pd�1:

The Lyapunov spaces can be characterized by topological properties of the
projective �ow. Recall the following notions from topological dynamics (see
e.g. [3] or [2, Appendix B]). For a �ow � on a compact metric space Y
a compact subset K � Y is called isolated invariant, if it is invariant and
there exists a neighborhood N of K, i.e., a set N with K � intN , such
that �(t; x) 2 N for all t 2 R implies x 2 K. A Morse decomposition is a
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�nite collection fMi; i = 1; :::; ng of nonvoid, pairwise disjoint, and isolated
compact invariant sets such that

(i) for all x 2 X one has !(x); �(x) �
n[
i=1

Mi; and

(ii) suppose there areMj0 ;Mj1 ; :::;Mjl and x1; :::; xl 2 X n
n[
i=1

Mi with

�(xi) �Mji�1 and !(xi) �Mji for i = 1; :::; l;
thenMj0 6=Mjl.
The elements of a Morse decomposition are called Morse sets. Observe

thatMi � Mj, if �(x) � Mi and !(x) � Mj for some x, de�nes an order
on the Morse sets: A Morse decomposition is �ner than another one, if all
elements of the second one are contained in element of the �rst.
The following result is classical (compare, e.g., [2]).

Theorem 5.1 Let P' be the projection onto Pd�1 of a linear �ow '(t; x) =
eAtx. Then P' has m chain recurrent components fM1; :::;Mmg, where m
is the number of di¤erent Lyapunov exponents of A. For each Lyapunov ex-
ponent �i we haveMi = PLi, the projection of the i�th Lyapunov space onto
Pd�1. Furthermore fM1; :::;Mmg de�nes the �nest Morse decomposition of
P' andMi �Mj i¤ �i < �j:

Topologically equivalent �ows P' and P have the same Morse decom-
position:

Proposition 5.2 For A, B 2 gl(d;R) let P' and P be the associated �ows
on Pd�1 and suppose that there is a topological equivalence h of P' and P .
Then the chain recurrent components N1; :::;Nn of P' are of the form Ni =
h [Mi], where Mi is a chain recurrent component of P'. In particular the
number of chain recurrent components of P' and P agree, and h maps the
order on fM1; :::;Mmg onto the order on fN1; :::;Nng.

Proof. The �rst part follows from Lemma 4.2. Correspondence of the orders
follows immediately from the fact that h maps trajectories into trajectories,
preserving their orientation.
Indeed, much more can be said about the normal forms of A and B.

Proposition 5.3 For A and B in gl(d;R) let P' and P be the associated
�ows on Pd�1 and suppose that there is a topological equivalence h of P'
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and P . Then the projective subspaces corresponding to real Jordan blocks of
A are mapped onto projective subspaces corresponding to real Jordan blocks
of B preserving the dimensions. Furthermore, h maps projective subspaces
corresponding to real Jordan blocks for real eigenvalues, for complex eigenval-
ues whose imaginary part is rational modulo 2�, and for eigenvalues whose
imaginary part is irrational modulo 2�, onto projective subspaces of the same
type.

Proof. We may assume that A and B are in Jordan form. By Theorem 5.1
and Proposition 5.2 we can restrict our attention to one pair of Morse sets
N = h [M], with Lyapunov spaces LA, LB � Rd.
(i) Consider �rst a Jordan block J corresponding to a real eigenvalue.

Then the corresponding eigenvector is an equilibrium in Pd�1. By Propo-
sition 4.1 (i) the same is true for the image under h, thus the projective
eigenvector is mapped into a projective eigenvector corresponding to a real
eigenvalue. Invoking the explicit solution formula one sees that for all other
solutions starting in the corresponding subspace of Rd the projections to Pd�1
tend for t ! �1 to this equilibrium. By continuity, the same is true for
the images under h. Applying the same arguments to h�1, one sees that
the projective subspace corresponding to the Jordan block J is mapped onto
a projective subspace corresponding to a Jordan block of B. Since h is a
homeomorphism, both projective subspaces which are manifolds have the
same dimension (invariance of domain theorem, Warner [6]). By taking in-
verse images of the natural projection � : Rd ! Pd�1 it follows that the
dimensions of the corresponding linear subspaces and hence of the Jordan
blocks coincide:
(ii) Now consider a Jordan block corresponding to a complex eigenvalue

whose imaginary part is rational modulo 2�. Then every solution in the
corresponding projective real eigenspace is proper periodic and hence has
a nontrivial closed orbit. By Proposition 4.1 (ii) the same is true for the
image under h which implies that it is a proper periodic orbit. Hence the
projective eigenspace is mapped onto a projective eigenspace corresponding
to an eigenvalue whose imaginary part is rational modulo 2�. Arguing as in
(i) one sees that the projective subspace corresponding to the Jordan block
J is mapped onto a projective subspace corresponding to a Jordan block of
the same dimension.
(iii) Finally, consider a Jordan block corresponding to an eigenvalue whose

imaginary part is irrational modulo 2�. Then every solution in the cor-
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responding projective real eigenspace is dense and not closed. Again by
Proposition 4.1 (ii) the same is true for the image under h. Thus the image
of the projective real eigenspace is a minimal closed invariant set which is
not a periodic orbit. Hence it is contained in a projective eigenspace cor-
responding to an eigenvalue whose imaginary part is irrational modulo 2�.
Arguing as in (ii) yields the assertion.

Remark 5.4 We cannot give a complete characterization of matrices for
which the projected linear �ows on Pd�1 are C0�equivalent.

Proposition 5.3 shows that while C0�equivalence of projected linear �ows
on Pd�1 determines the number m of distinct Lyapunov exponents, it also
characterizes the Jordan structure within each Lyapunov space (and, obvi-
ously, not the size of the Lyapunov exponents nor their sign). It imposes very
restrictive conditions on the eigenvalues and the Jordan structure. Therefore,
C0�equivalences are not a useful tool to characterize m. The requirement
of mapping orbits into orbits is too strong. A weakening leads us to the
following characterization.

Theorem 5.5 Two matrices A and B in gl(d;R) have the same short Lya-
punov form i¤ there exist a homeomorphism h : Pd�1 ! Pd�1 that maps the
�nest Morse decomposition of P' onto the �nest Morse decomposition of P ,
i.e., h maps Morse sets onto Morse sets and preserves their orders.

Proof. Let h : Pd�1! Pd�1 be a homeomorphism that maps the �nest Morse
decomposition of P' onto that of P ; where ' is the linear �ow of A and  
is the linear �ow of B. Let � be a Lyapunov exponent of A with Lyapunov
space LA(�). The canonical projection � : Rd ! Pd�1 is a submersion,
hence the Morse set M(�) = �(LA(�)) is a submanifold of Pd�1; compare,
e.g., Warner [6]. Since h preserves the Morse decompositions, we have on
the one hand that both Morse decompositions have the same cardinality. In
particular, the numbers of Lyapunov exponents coincide by Theorem 5.1.
On the other hand, the topological submanifold h(�(LA(�))) = �(LB(�))
for some Lyapunov exponent � and Lyapunov space LB(�) of B. Since
h is a homeomorphism, �(LA(�)) and �(LB(�)) have the same dimension
(invariance of domain theorem, Warner [6]). By taking inverse images of � it
follows that the (linear) dimensions of LA(�) and LB(�) coincide, and hence
SL(A) = SL(B):
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For the converse, we order the Jordan blocks of A and B via
(a) order the real parts of the eigenvalues in increasing order, then within

the blocks with the same real part,
(b) order the absolute values of the imaginary parts of the eigenvalues in

increasing order, and within (a) and (b) by
(c) size of the Jordan block.
Then each similarity class in gl(d;R) is uniquely determined. We may

restrict our attention to the Lyapunov spaces LA and LB of correspond-
ing Lyapunov exponents � and � of A and B, respectively. Take a ba-
sis BA = fx1; :::; xng of LA adapted to the ordering above and similarly
BB = fy1; :::; yng for LB. De�ne Txi = yi for i = 1; :::; n. Using the same
construction for all Lyapunov exponents of A, we arrive at T 2 GL(d;R).
Its projection PT onto Pd�1 is the desired homeomorphism.

Corollary 5.6 Assume that A and B are hyperbolic. Then A and B have the
same short zero-Lyapunov form i¤ their linear �ows in Rd are C0-equivalent
and there exists a homeomorphism h : Pd�1 ! Pd�1 that respects the �nest
Morse decomposition of their �ows in Pd�1:

Proof. The proof combines Proposition 2.4 and Theorem 5.5.
While Theorem 5.5 and Corollary 5.6 characterize the short (zero)�Lyapunov

form of a matrix A in gl(d;R), they are unsatisfactory in the sense that they
are not constructive. The next section provides a constructive characteriza-
tion using the induced �ow on the �ag manifold.

6 Topological Characterization of Matrices on
Flag Manifolds

For a matrix A 2 gl(d;R) its linear �ow ' on Rd induces �ows on the
Grassmannians and the �ag manifold over Rd. We �rst describe topological
characteristics of these �ows by specializing the results from Section 3. of [1]
to the matrix case.
We denote by Gi the i�th Grassmannian of i�dimensional subspaces of

Rd (it may be identi�ed with a subset of the projective space of the exterior
product �iRd). The k�th �ag of Rd is given by the following k�sequences
of subspace inclusions,

Fk = fFk = (V1; :::; Vk); Vi � Vi+1 and dimVi = i for i = 1; :::; kg :
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For k = d we obtain the complete �ag F = Fd. For a matrix A 2 gl(d;R)
we denote by Gi' and Fk' the induced �ows on the Grassmannians and the
�ags, respectively.
The following result describes the Morse decomposition of Fk'; compare

Theorem 5 of [1].

Theorem 6.1 Let A 2 gl(d;R) with associated �ows ' on Rd and Fk' on
the k��ag.
(i) For every k 2 f1; :::; dg there exists a unique �nest Morse decompo-

sition
�
kMij

	
of Fk'; where ij 2 f1; :::; dg

k is a multiindex, and the number
of chain transitive components in Fk is bounded by d!

(d�k)! :

(ii) Let Mi with i 2 f1; :::; dgk be a chain recurrent component in Fk�1.
Consider the (d� k + 1)�dimensional vector bundle � :W(Mi)!Mi with
�bers

W(Mi)Fk�1 = R
d=Vk�1 for Fk = (V1; :::; Vk�1) 2Mi � Fk�1:

Then every chain recurrent component PMij ; j = 1; :::; ki � d� k+1, of the
projective bundle PW(Mi) determines a chain recurrent component kMij on
Fk via

kMij =
�
Fk = (Fk�1; Vk) 2 Fk : Fk�1 2Mi and P(Vk=Vk�1) 2 PMij

	
:

Every chain recurrent component in Fk is of this form-this determines the
multiindex ij inductively for k = 2; :::; d:

Recall that the GrassmannianGi is the sub�ag of the form fF = Vi; dimVi = ig.
We obtain the following consequence of Theorem 6.1 ([1], Proposition 2).

Corollary 6.2 On every Grassmannian Gi there exists a �nest Morse de-
composition. Its Morse sets are given by the projection of the chain recurrent
components from the complete �ag F:

Theorem 6.1 describes the topological structure of Fk'. Its constructive
part (ii) can be made more explicit for the Grassmannians.

Theorem 6.3 Let A 2 gl(d;R) be a matrix with �ow ' on Rd. Let Li,
i = 1; :::;m, be the Lyapunov spaces of A, i.e., their projections PLi =Mi are
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the �nest Morse decomposition of P' on the projective space. For k = 1; :::; d
de�ne the index set

I(k) = f(k1; :::; km) : k1 + :::+ km = k and 0 � ki � di = dimLig :

Then the �nest Morse decomposition on the Grassmannian Gk is given by
the sets

N k
k1;:::;kl

= Gk1L1 � ::::�GkmLm; (k1; :::; km) 2 I(k):

For a proof of Theorem 6.3 see [1], Theorem 6. and Remark 7.
These results de�ne an order (with associated graph) on the �ag manifold

F via the Grassmannians:
On each Gk, k = 1; :::; d we use the order �k related to the �nest Morse

decomposition of Gk'. And for Morse sets N k, N k�1 in Gk and in Gk�1, re-
spectively, we setN k�1 vk�1 N k ifN k projects down toN k�1. Combined,�k
and vk�1 de�ne the graph of an order relation.
Finite graphs that represent orders are directed graphs without loops. For

these graphs one can de�ne �elementary graphs�that only consider �nearest
neighbors�, i.e., without edges that result from transitivity. Here the situa-
tion is slightly more complicated, since these graphs represent the d di¤erent
orders �k and the (d � 1) di¤erent orders vk�1. Since the order vk�1 only
involves the Grassmannian Gk and Gk�1 , all these edges of the G�graphs
are �nearest neighbors�: Hence edges of vk�1 cannot be used in a transitive
way without destroying the order. On the other hand, the orders �k on each
Grassmannian Gk involve all Morse sets on Gk, hence elementary versions
on each level k make sense. More precisely: Let G be an order graph in
F and Gk its subgraphs corresponding to level k. An edge (e1; e2) in Gk
is called a transitivity edge, if there exist nodes n1; :::; nl; l � 3 such that
(n1 = e2; :::; nl = e2) is a path in Gk. The elementary graph E(Gk) has the
same nodes as Gk, but with all transitivity edges removed. We arrive at the
following de�nition.

De�nition 6.4 Let A 2 gl(d;R) and consider the graph corresponding to
the order relations �k and vk�1 on the �ag F. The G�graph of A is the
graph obtained from this graph by replacing on each level k the corresponding
subgraph by its elementary version.

One easily checks that the G�graph of a matrix A is unique.
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Remark 6.5 Theorem 6.3 describes an indexing system for the �nest Morse
decomposition on each Grassmannian Gk and hence on the complete �ag
F that corresponds to the parametrization of the short Lyapunov form via
De�nition 3.3 (i) and (iii), see comment after De�nition 3.5.

For the following examples we will use a di¤erent indexing system that
is a little more intuitive. Let A 2 gl(d;R) have the short Lyapunov form
(m; d1; :::; dm) with

Pm
i=1di = d: Then the �nest Morse decomposition as-

sociated to the �ow P' on Pd�1 has m Morse sets fM1; :::;Mmg that are
linearly ordered (Theorem 5.1). We associate the canonical basis fe1; :::; edg
in Rd with the Morse sets in such a way that each Morse setMi corresponds
to di basis vectors (in the respective orders), i.e.,

M1 � fe1; :::; ed1g ;

Mi � fe�i ; :::; e�ig where �i =
i�1P
j=1

dj + 1; �i =
iP
j=1

dj:

On G1 = Pd�1 we index the Morse decomposition simply asMi: Each Morse
set on G2 has two indices (j1; j2) andMi vMj1;j2 i¤ i 2 fj1; j2g. Several of
the setsMj1;j2 on G2 may be identical. In this case we use the index pair
with smallest numbers in each entry. Observe that the order relations are
retained. Continuing for G2; :::;Gd we obtain unique indexes for all Morse
sets on Gk, and hence on the �ag F.
As described above, the order vk can be read o¤ the indexes immediately

and vk can be constructed explicitly. Furthermore, we have for the orders
�k on Gk :

M(j1;:::;jk) �k M(j01;:::;j
0
k)
i¤ ji � j0i for all i = 1; :::; k:

The following simple examples illustrate some properties of G�graphs. In
particular, the �rst example shows that one cannot expect to determine the
dimensions of the Lyapunov spaces from the Morse sets on the full �ag This
is the reason why we introduce G�graphs (instead of graphs obtained from
the Morse sets on the full �ag).

Example 6.6 Consider the matrices

A = diag(�1;�1; 1) and B = diag(�1; 1; 1):
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We obtain the following structure for the �nest Morse decompositions for A:
G1 : M1 = ls fe1; e2g

M3 = ls fe3g
G1;2: M1;2 = ls fe1; e2g

M1;3 = flsfx; e3g; with x 2 ls fe1; e2gg
G3 : M1;2;3 = ls fe1; e2; e3g

This leads to the G�graph of A

M1;2;3

% -
M1;2 �! M1;3

" % "
M1 �! M3

:

In the same way one obtains the G�graph of B

M1;2;3

% -
M1;2 �! M2;3

" - "
M1 �! M2

:

On the other hand, the Morse sets in the full �ag are given for A and B by24 M1;2;3

M1;2

M1

35 �
24 M1;2;3

M1;3

M3

35 and

24 M1;2;3

M1;2

M1

35 �
24 M1;2;3

M2;3

M2

35 ;
respectively. Thus in the full �ag the numbers and the orders of the Morse
sets coincide, while the G�graphs are di¤erent.

Example 6.7 Consider the matrix

B = diag(�2;�1;�1; 1):

The �nest Morse decomposition is given by
G1 : M1 = ls fe1g

M2 = ls fe2; e3g
M4 = ls fe4g
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G2: M1;2 = fls fe1; xg ; with x 2 ls fe2; e3gg
M1;4 = ls fe1; e4g ;
M2;3 = ls fe2; e3g
M2;4 = fls fx; e4g ; with x 2 ls fe2; e3gg

G3 : M1;2;3 = ls fe1; e2; e3g
M1;2;4 = fls fe1; x; e4g ; with x 2 ls fe2; e3gg
M2;3;4 = ls fe2; e3; e4g

G4 : M1;2;3;4 = ls fe1; e2; e3; e4g
This leads to the G�graph of B

M1;2;3;4

% " -
M1;2;3 �! M1;2;4 �! M2;3;4

% -% - % -
M1;2 �! M1;4 M2;3 �! M2;4

- -% % % %
M1 �! M2 �! M4

(this graph has to be completed: M1;2 !M2;3 andM1;4 !M2;4) Note
that on the level G2 the setsM1;4 andM2;3 are not comparable with respect
to the order �2.

We proceed to discuss how one can regain information on the Lyapunov
spaces from the G�graph.

De�nition 6.8 Let G be the G�graph of a matrix A 2 gl(d;R). An increas-
ing path p in G is a path from level G1 to level Gd that follows the order,
v1; :::;vd�1. The in-order of a node n 2 G is the number of edges that end in
n and the out-order is the number of edges that begin in n. For an increasing
path p = (n1; :::; nd) in G we de�ne its simple length

sl(p) = max fk, in-order(nk) � 1g :

For a node n on the level G1 = P d�1 we de�ne its multiplicity as

mult(n) = maxfsl(p); p is an increasing path with initial node ng:

Lemma 6.9 Given a matrix A 2 gl(d;R) and a Lyapunov exponent �i of
A with Lyapunov space Li � Rd. Denote the corresponding Morse set of the
�ow P' byMi = PLi � Pd�1. Then the multiplicity mult(Mi) ofMi in the
G�graph of A is equal to the (linear) dimension dimLi.
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Proof. Follows directly from Theorem 6.3.
The lemma above says that one can recover the dimensions of the Lya-

punov spaces from the orders v on the G�graph of a matrix. Furthermore,
the order of the Lyapunov exponents (and hence the Lyapunov spaces) can
be recovered from the order � on level G1 of the graph, compare Theorem
5.1. Hence we can hope to use G�graphs for the characterization of the short
Lyapunov form of a matrix.

De�nition 6.10 Let G and G0 be �nite directed graphs. A map h : G ! G0

is called a graph homomorphism if for all edges (n1; n2) in G, (h(n1); h(n2))
is an edge in G0. Furthermore, h is a graph isomorphism if h is bijective and
h and h�1 are G�graph homomorphisms.

Theorem 6.11 The short Lyapunov form SL(A) and SL(B) are identical
for two matrices A;B 2 gl(d;R) i¤ the G�graphs of A and B are isomorphic.

Proof. Let the G�graphs G(A) and G(B) be isomorphic.
(i) We construct the orders � and v as follows. The only node with

out-order 0 is the unique node nl on the highest level l. All nodes n for which
there is an edge (n; nl) are on the level l � 1. All nodes n0 that are not on
level l � 1 and for which there is an edge (n0; n) with n on level l � 1, are
on level l � 2; etc. This algorithm stops after l0 steps, i.e., after determining
the nodes on level l0, and all nodes are associated with some level. Then
l� l0+1 = d, the dimension of the underlying Rd:We reindex the levels such
that the smallest level is 1. Then, the edges between nodes on the same level
k determines the order �k : And edges between nodes on levels k � 1 and k
determine the order vk�1 : Note that the node corresponding to the Morse
setM1 on G1 is the unique node with in-order 0.
(ii) The length of any increasing path (n1; n2; :::; nd) determines the di-

mension of the underlying space Rd.
(iii) For each node in level G1, its multiplicity de�nes the dimension of

the corresponding Lyapunov space
(i)-(iii) mean that for any matrix its short Lyapunov form can be uniquely

reconstructed from the G�graph, hence isomorphic G�graphs belong to ma-
trices with identical short Lyapunov form. Vice versa, short Lyapunov forms
determine G�graphs by their construction (based on Theorems 6.1 and 6.3).
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Remark 6.12 Given a �nite directed graph G without loops, there is a con-
structive algorithm to decide if G is the G�graph of a matrix. G needs to
have a unique edge nl with out-order 0 (and a unique edge with in-order 0;
this edge corresponds to the Morse set M1): Starting from the �maximal�
edge gl, we proceed as in steps (i)-(iii) from the proof of Theorem 6.11 to
identify nodes on the di¤erent levels as well as the multiplicities of each edge
on the lowest level 1. (Note that one can use the same procedure if the graphs
within each level have not been replaced by their elementary versions; then
one has to perform this replacement here.) With this information we use
Theorem 6.3 to construct the G�graph based on the order on level 1 and the
multiplicity of the nodes. The graph so constructed is compared to the graph
G to decide whether it is indeed the G�graph of a matrix.

Remark 6.13 Graph isomorphisms de�ne an equivalence relation on the set
of all graphs. The corresponding equivalence classes of G�graphs can be para-
metrized as in Remark 3.3 (i) and (iii). This parametrization corresponds
to the construction of the �nest Morse decomposition on the Grassmannians
Gk as in Theorem 6.3.

Example 6.14 Consider the two matrices

A =

0BB@
�2 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

1CCA ; B =

0BB@
�2 1 0 0
�1 �2 0 0
0 0 �1 0
0 0 0 1

1CCA :

Their short Lyapunov form are SL(A) = (3; 1; 2; 1) and SL(B) = (3; 2; 1; 1):
Hence the matrices are not Lyapunov equivalent. In their G�graphs this is
re�ected in the following way.
The G�graph G(A) is given by:

M1;2;3;4

% " -
M1;2;3 �! M1;2;4 M2;3;4

% % -% -% -
M1;2 �! M1;4 M2;3 �! M2;4

- -% -% % %
M1 M2 �! M4

This graph has to be completed M1;2 !M2;3 andM1;4 !M2;4:
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On the other hand the G�graph G(B) is given by:

M1;2;3;4

% " -
M1;2;3 �! M1;2;4 �! M1;3;4

% -% - -% % -
M1;2 �! M1;3 �! M1;4 �! M3;4

- % - -% %
M1 �! M3 �! M4

Obviously G(A) and G(B) are not isomorphic, e.g., the out-orders ofM1

in G(A) and G(B) are di¤erent.
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