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Weak Invariance and
Entropy ∗

Fritz Colonius and Christoph Kawan

Abstract: For continuous time control systems, this paper introduces invariance entropy

as a measure for the amount of information necessary to achieve invariance of weakly

invariant (or controlled invariant) compact subsets of the state space. Upper and lower

bounds are derived, in particular, finiteness is proven. For linear control systems with

compact control range, the invariance entropy is given by the sum of the real parts of the

unstable eigenvalues of the uncontrolled system. A characterization via covers and corre-

sponding feedbacks is provided.

Keywords: Invariance entropy, feedbacks, topological entropy.

1 Introduction
This paper is concerned with the amount of information necessary to keep a con-
tinuous time control system in a given subset Q of the state space. We introduce
‘invariance entropy’ that measures, how fast open loop control functions must be
readjusted in order to avoid exit from the subset Q. Due to the analysis of the
open loop problem this information measure does not depend on any specific class
of feedback strategies and hence is intrinsic.

The increasing relevance of control systems with restricted digital communi-
cation channels has spurred interest in the information necessary for accomplishing
control tasks. Early contributions are due to Delchamps [5] who considered quan-
tized feedbacks for stabilization; Wong and Brockett [10] study the influence of re-
stricted communication channels. For the present paper, the work by Nair, Evans,
Mareels, and Moran [7] is fundamental. They develop a method to describe data-
rates necessary to render subsets Q of the state space invariant. Their approach is
based on a notion describing for discrete time systems, how many feedbacks defined
on open covers of Q are necessary in order to make Q invariant (or asymptotically
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stable) up to time N ; then they let N tend to infinity and take the infimum over all
covers and obtain what they call feedback entropy bearing some resemblance to the
classical notion of topological entropy. In particular, they show that this number is
equal to the minimum data rate for a symbolic controller rendering Q invariant.

The present paper introduces various versions of open loop entropies and dis-
cusses their relations. Since topological entropy is a property of dynamical systems
(see e.g. Robinson [9] or Katok and Hasselblatt [6]), it would appear that a view of
control systems as dynamical systems might be helpful. In fact, including the time
shift along control functions to the dynamical system, one obtains a dynamical sys-
tem, the control flow (cf. Colonius/Kliemann [3]). This point of view (though not
necessarily the technical apparatus) is helpful in order to adapt several constructions
traditionally used for topological entropy to control systems.

A preliminary definition of our information measure (see Section 3 for precise
definitions of invariance entropy) is the following: For systems with compact control
range let Q be a compact subset of the state space. Then, for T > 0, we let
rinv(T ;Q) be the minimal number of controls u ∈ U such that for every initial value
x ∈ Q there is u with corresponding trajectory ϕ(t, x, u) ∈ Q for all [0, T ]. Then
we consider the exponential growth rate of these numbers as T tends to infinity,

lim sup
T→∞

1
T

ln rinv(T ;Q).

A characteristic feature of this information measure is that no information on the
present state of the system is involved. Our main results provide upper and lower
bounds for the invariance entropy; in particular, it is shown that the invariance
entropy is finite. For linear control systems (with compact control range) the in-
variance entropy is given by the sum of the real parts of the unstable eigenvalues.
We remark that Nair, Evans, Mareels, and Moran [7] have a similar result for feed-
back entropy of systems linearized at an equilibrium, but with vanishing control
range. We also give a characterization of invariance entropy in terms of covers and
a feedback construction akin to the contribution in [7].

Section 2 recalls some basic properties of control systems (mainly for nota-
tional purposes). Section 3 introduces several variants of invariance entropy and
their properties. Section 4 provides lower and upper bounds for the invariance en-
tropy which can be computed directly from the right hand side of the system. One
of these bounds, together with a classical result by Bowen [2] on topological entropy
of linear maps, is used in Section 5 to compute the invariance entropy of linear con-
trol systems. Final Section 6 gives a characterization in terms of feedbacks defined
on covers.

2 Preliminaries
In this preliminary section we recall some basic facts on nonlinear control systems,
mainly to introduce some notation.

Let d,m ∈ N, M an open subset of Rd and U ⊂ Rm compact. Let f :
M × Rm → Rd be a continuous mapping such that the partial derivative with
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respect to the first argument exists and depends continuously on both arguments.
Define the set of admissible control functions by

U := {u : R→ Rm | u measurable and u(t) ∈ U a.e.} .

The shift flow on U is given by

Θ : R× U → U , Θ(t, u) := Θtu with (Θtu)(s) := u(t+ s) for all t, s ∈ R.

We consider the control system

ẋ(t) = f(x(t), u(t)), u ∈ U . (1)

For given initial value x ∈M and control function u ∈ U the solution of the initial
value problem with x(0) = x will be denoted by ϕ(t, x, u). Throughout we assume
that solutions are defined globally. This assumption is justified by the fact that we
only consider trajectories which do not leave a compact subset of the state space
M . Thus we obtain a cocycle ϕ : R×M × U →M , i.e.

ϕ(t+ s, x, u) = ϕ(s, ϕ(t, x, u),Θtu) for all t, s ∈ R, x ∈M, u ∈ U . (2)

The reachable set or positive orbit from x ∈M at time t ≥ 0 is

O+
t (x) = {ϕ(t, x, u) | u ∈ U} , and O+(x) =

⋃
t≥0

O+
t (x).

A subset Q of the state space M is called weakly invariant (or controlled invariant
or viable) if for all x ∈ Q there is some u ∈ U with ϕ(t, x, u) ∈ Q for all t ≥ 0, and
Q is called strongly invariant if O+(x) ⊂ Q for all x ∈ Q.

3 Definition and Elementary Properties
This section presents the definition of several versions of invariance entropy. Basic
properties of these notions are derived.

Consider the control system (1). Let K,Q ⊂M be nonvoid compact sets with
K ⊂ Q and Q weakly invariant. For given T, ε > 0 we call S ⊂ U a (T, ε)-spanning
set for (K,Q) if for every x ∈ K there exists v ∈ S with

ϕ(t, x, v) ∈ Nε(Q) := {p ∈M | ∃ q ∈ Q : d(p, q) < ε} for all t ∈ [0, T ];

here d denotes the Euclidean distance (note that this notion is different from the one
used for topological entropy). By rinv(T, ε,K,Q) we denote the minimal cardinality
of a (T, ε)-spanning set. A set S∗ ⊂ U is called T -spanning for (K,Q) if for every
x ∈ K there exists v ∈ S∗ with

ϕ(t, x, v) ∈ Q for all t ∈ [0, T ].

The minimal cardinality of a T -spanning set is denoted by r∗inv(T,K,Q). If there is
no finite T -spanning set we define r∗inv(T,K,Q) :=∞. Let 0 < T1 < T2. Since every
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(T2, ε)-spanning (T2-spanning) set is obviously also (T1, ε)-spanning (T1-spanning),
it follows that

rinv(T1, ε,K,Q) ≤ rinv(T2, ε,K,Q) and r∗inv(T1,K,Q) ≤ r∗inv(T2,K,Q).

Since every (T, ε1)-spanning set is also (T, ε2)-spanning if ε1 < ε2, we obtain

rinv(T, ε1,K,Q) ≥ rinv(T, ε2,K,Q) for ε1 < ε2. (3)

We define the invariance entropy hinv(K,Q) and the strict invariance entropy
h∗inv(K,Q) by

hinv(ε,K,Q) := lim sup
T→∞

1
T

ln rinv(T, ε,K,Q), hinv(K,Q) := lim
ε↘0

hinv(ε,K,Q),

h∗inv(K,Q) := lim sup
T→∞

1
T

ln r∗inv(T,K,Q).

From (3) it follows that the limit limε↘0 hinv(ε,K,Q) is well defined. If K = Q
we often suppress the argument K. Thus we write e.g. rinv(T, ε,Q) instead of
rinv(T, ε,Q,Q).

Remark 1. In general, it is not true that for the strict invariance entropy the
numbers r∗inv(T,K,Q) are finite (compare the example at the end of Section 5).
Hence we introduce the weaker version hinv(K,Q). In Section 4 we will show that
hinv(K,Q) as defined above is finite.

The following proposition summarizes the basic properties of these quantities.

Proposition 1. Let K,Q ⊂ M be nonvoid compact sets with K ⊂ Q and Q
weakly invariant for system (1). Then (i) rinv(T, ε,K,Q) < ∞ for all T, ε > 0;
(ii) r∗inv(T,Q) is either finite for all T > 0 or for none; (iii) the function T 7→
ln r∗inv(T,Q) is subadditive and consequently

h∗inv(Q) = lim
T→∞

1
T

ln r∗inv(T,Q) = inf
T>0

1
T

ln r∗inv(T,Q);

(iv) hinv(K,Q) ≤ h∗inv(K,Q).

Remark 2. From Proposition 1 (ii) and (iii) it follows that h∗inv(Q) < ∞ if and
only if r∗inv(T,Q) <∞ for one T > 0 if and only if r∗inv(T,Q) <∞ for all T > 0.

In order to compute upper bounds for hinv(K,Q) it will be useful to define
another quantity which will be called the strong invariance entropy for (K,Q): We
define the lift of Q by

Q := {(x, u) ∈ Q× U | ϕ(t, x, u) ∈ Q for all t ≥ 0} . (4)

For given T, ε > 0 a set S+ ⊂ Q is called strongly (T, ε)-spanning for (K,Q) if for
every x ∈ K there exists (y, v) ∈ S+ with

dT,v(x, y) := max
t∈[0,T ]

d(ϕ(t, x, v), ϕ(t, y, v)) < ε.
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By r+inv(T, ε,K,Q) we denote the minimal cardinality of a strongly (T, ε)-spanning
set. As for rinv(T, ε,K,Q) it follows by continuous dependence on initial conditions
that r+inv(T, ε,K,Q) is finite. We define

h+
inv(ε,K,Q) := lim sup

T→∞

1
T

ln r+inv(T, ε,K,Q), h+
inv(K,Q) := lim

ε↘0
h+

inv(ε,K,Q).

Obviously r+inv(T, ε,K,Q), considered as a function of T and ε, has the same mono-
tonicity properties as rinv(T, ε,K,Q). Again, for K = Q we drop the corresponding
argument.

Proposition 2. Let K,Q ⊂M be nonvoid compact sets with K ⊂ Q and Q weakly
invariant for system (1). Then hinv(K,Q) ≤ h+

inv(K,Q).

The following proposition summarizes some more properties of both invariance
entropy and strict invariance entropy.

Proposition 3. Let K,Q ⊂M be nonvoid compact sets with K ⊂ Q and Q weakly
invariant for system (1).

(i) If there exist finitely many controls u1, . . . , un ∈ U such that for every point
x ∈ K there exists i ∈ {1, . . . , n} with ϕ(R+

0 , x, ui) ⊂ Q, then

hinv(K,Q) = h∗inv(K,Q) = 0.

In particular this holds if K is finite or if Q is strongly invariant.
(ii) For all ε > 0 and τ > 0

hinv(ε,K,Q) = lim sup
n→∞

1
nτ

ln rinv(nτ, ε,K,Q). (5)

(iii) Let Ki ⊂ K, i = 1, . . . , N , be closed subsets of K with K =
⋃N
i=1Ki.

Then
hinv(K,Q) = max

i=1,...,N
hinv(Ki, Q).

Assertions (ii) and (iii) remain valid for the strict invariance entropy.

Remark 3. Proposition 3 (ii) shows that for all time steps τ > 0 one obtains the
same result. Hence from the invariance entropy one cannot deduce any information
on maximum allowable time steps (cf. also Nesic/Teel [8]).

The next result shows that the invariance entropy cannot increase under semi-
conjugation.

Proposition 4. Consider two control systems ẋ = f(x, u) and ẏ = g(y, v) on
M and N with corresponding solutions ϕ(t, x, u) and ψ(t, y, v) and control spaces
U and V. Let π : M → N be a continuous map and h : U → V any map the
semiconjugation property

π(ϕ(t, x, u)) = ψ(t, π(x), h(u)) for all x ∈M, u ∈ U , t ≥ 0. (6)
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Then

hinv(π(K), π(Q)) ≤ hinv(K,Q),

if K ⊂ Q ⊂ M are compact and Q is weakly invariant. The analogous statement
holds for the strict invariance entropy.

4 General Bounds
For simplicity we assume throughout this section that M = Rd. Again, K,Q ⊂ Rd
are supposed to be nonvoid compact sets with K ⊂ Q and Q being weakly invariant.
We will provide rough bounds for hinv(K,Q) – one lower and one upper bound –
which can be computed directly from the right hand side of the system. Since the
upper bound is always finite we also prove finiteness of hinv(K,Q).

In the following we denote by divxf(x, u) the divergence of the function f with
respect to the first variable, i.e.

divxf(x, u) =
d∑
i=1

∂fi
∂xi

(x, u) = tr
∂f

∂x
(x, u),

where f1, . . . , fd : Rd × Rm → R are the coordinate functions of f .

Theorem 5. If the Lebesgue measure λd(K) of K is positive, then the following
estimate holds.

hinv(K,Q) ≥ max
{

0, min
(x,u)∈Q×U

divxf(x, u)
}
. (7)

The proof of this result is based on the Liouville trace formula. The next
theorem, whose proof is a modification of [6, Theorem 3.3.9, p. 124], provides an
upper bound for the strong invariance entropy and hence for the invariance entropy.

Theorem 6. With L := max(x,u)∈Q×U ‖∂f∂x (x, u)‖ the following estimate in terms
of the fractal dimension dimF (K) holds.

h+
inv(K,Q) ≤ LdimF (K) ≤ Ld. (8)

Example 1. For one-dimensional control systems Theorems 5 and 6 yield

hinv(K,Q) ∈
[

min
(x,u)∈Q×U

∂f

∂x
(x, u), max

(x,u)∈Q×U

∣∣∣∣∂f∂x (x, u)
∣∣∣∣] ,

if K has positive Lebesgue measure.
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5 Linear Control Systems
In this section we compute the invariance entropy for control systems in Rd of the
form

ẋ(t) = Ax(t) +Bu(t), u ∈ U (9)

with matrices A ∈ Rd×d and B ∈ Rd×m and compact control range U .

Theorem 7. Let K,Q ⊂ Rd be nonvoid compact sets with K ⊂ Q and Q being
weakly invariant. Denote the eigenvalues of A by λ1, . . . , λd. Then the following
estimate involving the real parts <(λi) of the eigenvalues holds:

h+
inv(K,Q) ≤

∑
i: <(λi)>0

<(λi).

If, in addition, K has positive Lebesgue measure, we have

hinv(K,Q) = h+
inv(K,Q) =

∑
i: <(λi)>0

<(λi).

Remark 4. The existence of a nonvoid compact weakly invariant subset for the
linear control system (9) can be guaranteed, if the matrix A is hyperbolic and the
control range U is compact and convex with nonvoid interior. Then there exists a
unique control set D and its closure Q = cl(D) is compact (see Colonius/Spadini
[4, Theorem 4.1]). It is easily seen to be weakly invariant.

At the end of this section we want to show by an example that h∗inv(Q) =∞
is possible even if hinv(Q) = 0.

Example 2. Consider the linear control system ẋ = −x + u(t) on R with control
range U = [−1, 1] (d = m = 1). Let Q ⊂ [−1, 1] be an infinite compact set which
is totally disconnected (e.g. a Cantor set). Then for every x ∈ Q there exists a
unique constant control function ux ∈ U with ϕ(t, x, ux) = x for all t ≥ 0, namely
ux(t) ≡ x. Thus, Q is weakly invariant. Since Q is totally disconnected, each
point x ∈ Q can be kept in Q for some positive time T > 0 only by making it a
stationary point, i.e. by using the constant control function ux. Consequently, since
Q is infinite, one needs infinitely many control functions to obtain a T -spanning set
for Q. By Theorem 7 one has hinv(Q) = 0 in this case.

6 Characterization via Finite Covers and Relation to
Feedback Entropy

In this last section we will give an alternative characterization of the strict invariance
entropy h∗inv(Q) via finite covers of the set Q. Again, for simplicity we assume
that M = Rd. This definition will reveal a connection to the topological feedback
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entropy defined in [7], and will also provide a clearer view on what is measured by
the quantity h∗inv(Q). Again consider the general control system (1).

For a finite cover A of Q let c(A|Q) denote the minimal cardinality of a
subcover. We say that a triple (A, v, τ) is invariantly covering Q if τ is a positive
real number, A is a finite cover of Q and v : A → U is a map assigning a control
function vA ∈ U to each A ∈ A with ϕ(t, A, vA) ⊂ Q for all t ∈ [0, τ ]. If Q is
invariantly covered by a triple (A, v, τ), where A = {A1, A2, . . . , Aq} is ordered,
then we set va := vAa for a = 1, . . . , q. For every N ∈ N and every N -tuple
(a0, a1, . . . , aN−1) ∈ {1, . . . , q}N we define the control function

va0,a1,...,aN−1(t) := vaj (t− jτ), for all t ∈ [jτ, (j + 1)τ), j = 0, 1, . . . , N − 1,

and the set

Qa0,a1,...,aN−1 :=
{
x ∈ Q | ϕ(jτ, x, va0,a1,...,aN−1) ∈ Aaj

, j = 0, 1, . . . , N − 1
}
.

(10)
For every a ∈ {1, . . . , q} we define the diffeomorphism fa : Rd → Rd, fa(x) :=
ϕ(τ, x, va). Then the cocycle property (2) yields

Qa0,a1,...,aN−1 = Aa0 ∩
N−1⋂
j=1

(faj−1 ◦ · · · ◦ fa1 ◦ fa0)−1(Aaj ). (11)

Let AN :=
{
Qa0,a1,...,aN−1 |(a0, a1, . . . , aN−1) ∈ {1, . . . , q}N

}
be the family of these

sets. Then AN is also a finite cover of Q (moreover, it is an open cover, if A is
an open cover, since in this case openness follows immediately from equation (11)):
For every x ∈ Q we find at least one N -tuple (a0, a1, . . . , aN−1) (which may be not
unique) with ϕ(jτ, x, va0,a1,...,aN−1) ∈ Aaj

for j = 0, 1, . . . , N − 1, which follows by
the invariant covering property of (A, v, τ). Now we define

h∗inv(A, v, τ) :=
1
τ

lim
N→∞

ln c(AN |Q)
N

. (12)

It can easily be shown that h∗inv(A, v, τ) does not depend on the ordering of the set
A. The existence of the limit above follows from a subadditivity argument.

Theorem 8. For the control system (1) the strict invariance entropy and the
entropy (12) defined via covers satisfy

h∗inv(Q) = inf
(A,v,τ)

h∗inv(A, v, τ), (13)

where the infimum is taken over all triples which are invariantly covering Q.
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