
Limits of Input-to-State Stability 1

Abstract. The relations between attractors, input-to-state-stability,
and controllability properties are discussed. In particular it is shown that loss
of the attractor property under perturbations is connected with a qualitative
change in the controllability properties due to a ‘merger’ with a control set.
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1. Introduction1

The fundamental notion of input-to-state-stability relates the admissible inputs and
initial values to the maximal amplitudes of the corresponding trajectories (Sontag
[7].) For a smooth control system on Rn

ẋ(t) = f(x(t), u(t))

with inputs u taking values in a set U ⊂ Rm containing zero, we use the following
local version of Input-to-State-Stability (compare, e.g., Grüne [5]).

Definition 1. A positively invariant compact set A is called Input-to-State-Stable
(ISS) for ρ1 > 0 on a neighborhood B of A with attraction rate β of class KL and
robustness gain γ of class K∞ if the following inequality holds for every x ∈ B and
every input u with kuk∞ < ρ1:

kϕ(t, x, u)kA ≤ max{β(kxkA , t), γ(kuk∞)} for all t ≥ 0. (1)

Here k·kA denotes the distance to the set A. Since γ(0) = 0, it follows that A is
attracting for the unperturbed system with u = 0; and nearA there are attracting sets
for small perturbation ranges. The supremal ρ1-value with this property determines
the maximal robustness of the attractor A and its properties will be discussed in this
paper. We will restrict our attention to invariant sets A with the ISS-property.
The ingredients of this definition are attracting sets and their behavior under per-

turbations with varying maximal amplitudes. In order to get more insight into the
behavior of systems under perturbations and the ISS-property, we will start with an

1A preliminary version of this paper has appeared as [3].
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attractor for the unperturbed system; then we discuss the behavior under perturba-
tions with kuk∞ ≤ ρ, for varying ρ > 0. In particular we will relate the loss of the
attractivity property at ρ1 to a change in the controllability behavior; see Corollary
16.
There are a huge variety of different notions for attractors in control theory and

dynamical systems theory. We will use notions going back to the work of C. Conley
that are well established in dynamical systems theory. They will also be used for the
perturbed system via the notion of control flows.
We consider the following class of systems

ẋ(t) = f(x(t), u(t)), u ∈ U , (2)

where f is C1 and U = {u ∈ L∞(R,Rm), u(t) ∈ U for almost all t ∈ R}. We assume
that unique global solutions ϕ(t, x, u) exist for t ∈ R. We also assume that the vector
space V spanned by these smooth vector fields,

V = span{f(·, u), u ∈ U},

is finite dimensional and that the set of admissible vector fields

F = {f (·, u), u ∈ U}

is compact and convex. The time-dependent vector fields taking values in F are

F = {v ∈ L∞(R, V ), v(t) ∈ F for t ∈ R}.

System (2) defines a continuous flow on F × Rn (with weak∗-topology on F)

Φt(v, x) = (v(t+ ·), ϕ(t, x, v)), t ∈ R;

here v(t + ·)(s) = v(t + s), s ∈ R, denotes the shifted vector field. We call this
the associated non-parametric control flow. It is closely related to control flows as
considered in [1] with the shift on the space U of control functions; here the time
dependent vector fields are parametrized by the control functions and it has to be
assumed that the system is control-affine and the control range U is compact and
convex. Nonparametric control flows inherit all properties of control flows, mainly
due to the fact that the shift on F is chain transitive. Details will appear elsewhere.
For simplicity we suppose that everything is contained in the interior of a compact

invariant and connected set K = cl intK ⊂ Rn. Thus we consider the control flow on
the compact metric space F ×K. Furthermore we will need some technical condition
assuring that the system moves away fast enough from the boundary of K; see (12),
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(13). Throughout we require local accessibility, i.e., the reachable sets in positive and
negative time,

O+
≤T (x) = {ϕ(t, x, u), 0 ≤ t ≤ T and u ∈ U},

O−≤T (x) = {ϕ(−t, x, u), 0 ≤ t ≤ T and u ∈ U},
have for all x ∈ K and all T > 0 nonvoid interiors. This is satisfied under the usual
accessibility rank condition.

Remark 2. The apparently very restrictive assumption on existence of a compact in-
variant set K can often be achieved if the involved vector fields are smoothly changed
outside a large ball. Then one has to add in an appropriate way invariant sets “near
infinity”. The technical details are somewhat involved and hence will not be presented
here.

2. Attractors and Chain Control Sets

First we discuss the behavior on the level of chain control sets or, equivalently, of
chain transitivity for the control flow. In the next section we combine this with
control sets.
By a flow on a compact metric space X with metric denoted by d we mean a

continuous map Φ : R×X → X with

Φ(0, x) = x and Φ(t,Φ(s, x)) = Φ(t+ s, x) for all s, t ∈ R and x ∈ X.

Complete proofs of the results stated here are given, e.g., in [1], Appendix B; see
Robinson [6] for the relation to gradient-like systems and Lyapunov functions.

Definition 3. For a flow Φ on a compact metric space X a compact invariant set A
is an attractor if it admits a neighborhood N such that A = ω(N) = {y ∈ X, there
are tk →∞ and xk ∈ N with Φ(tk, yk)→ y}.

We also allow the empty set as an attractor. A neighborhood N as in Defini-
tion 3 is called an attractor neighborhood. Every attractor is compact and invari-
ant, and a repeller is an attractor for the time reversed flow (with limit sets de-
noted by ω∗(N)). Every attractor comes with an associated complementary repeller
A∗ = {x ∈ X, ω(x) ∩A} = ∅. Then for every x 6∈ A ∪A∗

ω∗(x) ⊂ A∗ and ω(x) ⊂ A.

For all considered flows we assume that there are only finitely many connected com-
ponents of the chain recurrent set R, which consists of all x ∈ X such that for all
ε, T > 0 there is an (ε, T )-chain from x to x which is given by k ∈ N, points
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x0 = x, x1, ..., xk = x in X and times Ti > T with d(Φ(Ti, xi), xi+1) < ε for
i = 0, ..., k − 1. The connected components of the chain recurrent set (called the
chain recurrent components) are chain transitive, i.e., they consist of points which
can be connected by (ε, T )-chains for all ε, T > 0. It turns out that an attractor A
consists of chain recurrent components together with the connecting trajectories. To
be more precise define for chain recurrent components E , E 0

[E , E 0] = {x ∈ X, ω∗(x) ⊂ E and ω(x) ⊂ E 0}.
Then attractors are of the following form.

Theorem 4. Let Φ be a flow on a compact metric space X with the finitely many
chain recurrent components E1, ..., El. Then for every attractor A there is an index
set J = J(A) ⊂ {1, ..., l} such that

A =
S

i,j∈J [Ei, Ej] .
A Morse decomposition consists of finitely many subsets {M1, ...,Mk} of X (called
Morse sets) such that there is a strictly increasing sequence of attractors

∅ = A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ Ak = X,

with
Mk−i = Ai+1 ∩A∗i , 0 ≤ i ≤ k − 1.

A finest Morse decomposition exists if and only if the chain recurrent set has finitely
many connected components; its Morse sets are these chain recurrent components.

We denote the chain recurrent components of the unperturbed system ẋ = f(x, 0)
in K by E0

1 , ..., E
0
l , and consider a compact set A

0 ⊂ K which is an attractor. By
Theorem 4 there is an index set J = J(A0) such that

A0 =
S

i,j∈J
£
E0
i , E

0
j

¤
. (3)

For a description of the chain recurrent components of the control system, we recall
that a chain control set E is a maximal subset of the state space K such that for all
x ∈ E there is u ∈ U with ϕ(t, x, u) ∈ E for all t ∈ R and for every two elements x, y
and all ε, T > 0 there are k ∈ N and x0 = x, x1, ..., xk = y in K, u0, ..., uk ∈ U and
T0, ..., Tk−1 > T with d(ϕ(Ti, xi, ui), xi+1) < ε. Their meaning for the control flow is
indicated in the following proposition (cp. [1, Theorem 4.1.4]), where f (·, u) denotes
the vector field-valued function

t 7→ f (·, u(t)) ∈ F ⊂ L∞(R, V ).
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Proposition 5. Let E ⊂ K be a chain control set of system (2). Then

E = {(f(·, u), x) ∈ F × Rn, u ∈ U and ϕ(t, x, u) ∈ E for all t ∈ R}
is a chain recurrent component for the control flow (F × K,Φ). Conversely, let
E ⊂ F ×K be a chain recurrent component for the control flow. Then the projection
of E to K is a chain control set.

In order to allow for different maximal amplitudes of the inputs, we consider the
ranges U ρ = ρ ·U, ρ ≥ 0. It is easily seen that the corresponding trajectories coincide
with the trajectories ϕρ(t, x, u) of

ẋ(t) = fρ(x(t), u(t)) = f (x(t), ρu(t)), u ∈ U .
Obviously, the chain recurrent components E0

i of the unperturbed system are con-
tained in chain control sets Eρ

i of the ρ-system for every ρ > 0. For positive ρ
every chain recurrent component of the flow for the ρ-system is the lift Eρi of a chain
control set. Sadly, for (arbitrarily small) positive ρ-values, there may exist chain con-
trol sets Eρ not containing a chain recurrent component of the unperturbed system.
An easy example is obtained by looking at systems where for some ρ0 > 0 a saddle
node bifurcation occurs in ẋ = f(x, ρ). A more intricate example is [1], Example
4.7.8. We will ignore this fact here, mainly, because we cannot contribute much to its
analysis. Instead we concentrate on the chain recurrent components Eρi , i = 1, ..., l,
corresponding to the chain recurrent components of the unperturbed system. Observe
that for increasing ρ-values they may intersect and hence coincide and change attrac-
tion properties; it is this process that we will analyze. Next we state the situation
for the attractors.

Proposition 6. Assume that for every ρ > 0 every chain recurrent component con-
tains a chain recurrent component E0

i of the unperturbed system. Then there is
ρ0 > 0 such that for all ρ with ρ0 > ρ > 0 the attractors Aρ of the ρ-system are given
by

Aρ =
S

i,j∈J
£Eρj , Eρk ¤

where the allowed index sets J coincide with those for ( = 0. The chain recurrent
components Eρi depend upper semicontinuously on ρ and converge for ρ→ 0 toward
F ×E0

i ; all Eρj are different.

Proof. Every attractor for ρ is a union of chain transitive components and
the corresponding intervals. Since chain transitive components converge for ρ → 0
towards those of the system with ρ = 0 ([1, Corollary 3.4.8]) this also follows for the

intervals. Furthermore note that Eρj ⊂ Eρ
0

j for ρ0 > ρ ≥ 0. Hence the chain transitive
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components Eρj contained in Aρ must satisfy j ∈ J and for ρ small enough they are
different.
Looking at the notion of Input-to-State Stability, we observe that in this context

only those attractors are of interest which are input-global in the following sense:
The attraction property should hold for arbitrary inputs u ∈ Uρ. This is not part of
the definition of attractors. Luckily, this is automatically satisfied for control flows
as shown by the following proposition (essentially, this is due to chain transitivity of
F.)

Proposition 7. Consider an attractor A for the nonparametric control flow Φ asso-
ciated to system (2). Then it has an attractor neighborhood of the form F ×B with
B ⊂ K, i.e., A = ω(F ×B).

Proof. If A∗ is the complementary repeller for A, then the distance between
the projections A and A∗ to Rn of A and A∗, respectively, is greater than some
positive number δ. In fact: Otherwise, by compactness, there are x ∈ A ∩ A∗ and
u, u∗ ∈ U with (f (·, u), x) ∈ A and (f (·, u∗), x) ∈ A∗. Define w ∈ U by

w(t) =

½
u∗(t) for t ≤ 0
u(t) for t > 0

.

By definition of the topology onF , one finds ω(f(·, w), x) = ω(f(·, u), x) and ω∗(w, x) =
ω∗(u∗, x). Hence invariance of A and A∗ implies (f (·, w), x) ∈ A and ω∗(f(·, w), x) ⊂
A∗. This contradicts A ∩A∗ = ∅.
Now let v ∈ F be arbitrary and take x in the δ/2-neighborhood B of A. If ω(v, x)

is not contained in A, then (v, x) is in the complementary repeller A∗. But then the
distance between A∗ and A must be smaller than δ/2. This contradiction shows that
(v, x) is in an attractor neighborhood of A.
Thus we obtain the following characterization of sets I ⊂ K which are the pro-

jections of attractors.

Proposition 8. A set A ⊂ K is the projection of an attractor A ⊂ F × K if and
only if it has a neighborhood B ⊂ K such that A equals

{x ∈ K, there are un ∈ U , xn ∈ B and tn →∞ with ϕ(tn, xn, un)→ x}. (4)

Proof. Let A be an attractor with projection A. By Proposition 7 every
attractor neighborhood is of the form F×B with a neighborhood B of the projection
A to K. Hence (4) follows. Conversely, suppose that A ⊂ K has a neighborhood B
with (4). Then the set

A = F × A.
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is compact invariant and has the attractor neighborhood F ×B.
The discussion up to now completely describes the attractor properties for small

positive ρ. Here the attractors and the chain control sets reflect the properties of
the unperturbed system. For larger ρ-values this need not be the case, because chain
control sets contained in the attractor Aρ may merge with other chain control sets.
We cannot describe the changes in the attractor properties on the level of chain control
sets only. Instead we have to go to control sets, which is possible under additional
assumptions.

3. Loss of Attractivity and Control Sets

The purpose of this section is to describe loss of the attraction property when the
input range is increased. According to Proposition 6, attractors are sets of the form

Aρ =
S

i,j∈J
£Eρi , Eρj ¤ . (5)

Recall that a control set D is a maximal controlled invariant set (in K) such that

D ⊂ clO+(x) for all x ∈ D; (6)

here O+(x) = {ϕ(t, x, u), t > 0 and u ∈ U} denotes the reachable set from x. A
control set is an invariant control set if equality holds in (6). For simplicity we assume
that all control sets are in the interior ofK. By local accessibility, all invariant control
sets have nonvoid interiors.
We will assume that for all ρ with ρ1 > ρ > 0 the chain control sets Eρ

i are the
closures of control sets Dρ

i with nonvoid interior; observe that some of the control sets
in the attractor must be invariant, since every point can be steered into an invariant
control set. We also lift control sets Dρ via

Dρ = cl {(f(·, u), x) ∈ F × Rn, u ∈ Uρ and ϕ(t, x, u) ∈ intD for all t ∈ R} .

Then Eρ
i = clD

ρ
i implies Eρi = Dρ

i . It follows that the attractors are given by

Aρ =
S

i,j∈J
£Dρ

i ,Dρ
j

¤
. (7)

We will analyze the case where for ρ = ρ1 the set Aρ1 has lost the attractor property.
The following example illustrates the main issues involved.

Example 9. Consider a locally accessible system contained in a compact setK ⊂ Rn

with five control sets
C1, C2, D1, D2, D3
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where C1 and C2 are invariant control sets, D1 is open, and

D2 ⊂ O+(D1), C1 ⊂ O+(D2),

D3 ⊂ O+(D2), C2 ⊂ O+(D3).

and it is not possible to steer the system from clD3 to C1, i.e., O+(x) ∩ C1 = ∅ for
all x ∈ clD3:

D1

↓
D2

&
↓ D3

↓
C1 C2

.

Assume furthermore that the closures of these control sets are the chain control sets.
Then there is the following increasing sequence of attractors:

A0 = ∅, A1 = C1, A2 = C1 ∪ C2,
A3 = A2 ∪D3 ∪ [D3, C2],
A4 = A3 ∪ [D2, C1] ∪ [D2, C2] ∪ [D2,D3],
A5 = A4 ∪D1 ∪ [D1,D2] ∪ [D1,D3] ∪ [D1, C1] ∪ [D1,C2] = F ×K,

with corresponding repellers

A∗0 = F ×K,

A∗1 = D1 ∪ D2 ∪D3 ∪ C2 ∪ [D1,D2] ∪ [D1,D3] ∪ [D1, C2] ∪ [D2,D3] ∪ [D2, C2] ∪ [D3, C2],
A∗2 = D1 ∪ D2 ∪D3 ∪ [D1,D2] ∪ [D1,D3] ∪ [D2,D3],
A∗3 = D1 ∪ D2 ∪ [D1,D2],
A∗4 = D1,
A∗5 = ∅.

This sequence yields the finest Morse decomposition

M5−i = Ai+1 ∩A∗i , i = 0, 1, ..., 4,
which consists of the lifted (chain) control sets:

M5 = A1 ∩A∗0 = C1,
M4 = A2 ∩A∗1 = C2,
M3 = A3 ∩A∗2 = D3,
M2 = A4 ∩A∗3 = D2,
M1 = A5 ∩A∗4 = D1.
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Observe that one can obtain this finest Morse decomposition also by other increasing
attractor sequences, e.g.,

A0 = ∅, A1 = C2,
A2 = C2 ∪ D3 ∪ [D3, C2],
A3 = A2 ∪ C1,
A4 = A3 ∪ [D2, C1] ∪ [D2, C2] ∪ [D2,D3],
A5 = A4 ∪D1 ∪ [D1,D2] ∪ [D1,D3] ∪ [D1, C1] ∪ [D1, C2] = U ×K.

Now consider what may happen when the input range is increased with ρ: The
corresponding (chain) control sets increase. If C2 intersects the closure of D3, there
is no essential change in the attractor structure: attractors containing the lift of C2
also contain the lift of D3. Things are different, if C1 and the closure of D2 intersect.
Then the attractor C1 has vanished. It can only be recovered as part of an attractor
containing also C2.

The situation alluded to at the end of the previous example is characterized by the
facts that the invariant control set C1 is strictly contained in a chain control set; and
arbitrarily close to C1 there are points which can be steered into another invariant
control set. Then one finds the control set D2 such that its lift is contained in every
attractor containing C1. Thus the loss of the attraction property of the attractor C1 is
accompanied by this phenomenon. In order to analyze it, we introduce the following
notation.

Definition 10. For a set I ⊂ K the domain of attraction is

A(I) =
©
x ∈ K, clO+(x) ∩ intI 6= ∅ª ,

and the invariant domain of attraction is

Ainv(I) =

½
x ∈ K,

if C ⊂ clO+(x) is an invariant
control set, then C ⊂ I

¾
. (8)

We note the following simple result.

Proposition 11. If I ⊂ intA(I), then the domain of attraction A(I) is open in K.
The invariant domain of attraction Ainv(I) is closed in K.

Proof. Openness of A(I) follows from continuous dependence on initial values.
For closedness of Ainv(I) consider xj ∈ Ainv(I) with xj → x. Suppose that clO+(x)∩
C 0 6= ∅ for an invariant control set C 0. This implies O+(x) ∩ intC 0 6= ∅ and hence
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there are u ∈ U and T > 0 with ϕ(T, x, u) ∈ intC 0. Hence for j large enough also
ϕ(T, xj, u) ∈ intC 0 implying C 0 ⊂ I and hence x ∈ Ainv(I).
We will analyze the case where I is the projection to Rn of an invariant set

I ⊂ F × Rn of the form
I = Si,j∈J(I) [Di,Dj] . (9)

for the lifts of control setsDj assuming that the invariant domain of attractionAinv(I)
is nonvoid. Then at least one of the involved control sets is invariant and every point
in I can be steered in the interior of one of the invariant control sets contained in
I. Hence, by continuous dependence on initial values, it follows that the projection
I of I to Rn is contained in the interior of its domain of attraction A(I). We will
later consider the special case where I is not an attractor due to the fact that the
projection I to Rn intersects the boundary of its invariant domain of attraction,

I ∩ ∂Ainv(I) 6= ∅. (10)

Thus arbitrarily close to I one finds points x such that for some control u ∈ U one
can steer the system away from I into an invariant control set (and then stay there.)
Hence it is clear that in this case I is not an attractor. If for increasing input range
the attractors are strictly increasing, it will also follow that they must contain other
invariant control sets. We will show that (10) implies that the set I merges with some
variant control set as discussed in the example above.
The analysis below will be based on constructing control sets in the open set

L =
[

j∈Jout
[A(I) ∩A(Cj)] ∩ intK, . (11)

where the index Jout denotes all invariant control set Cj with Cj∩ I = ∅. We assume
that L is nonvoid. A control set D ⊂ L with nonvoid interior is called an L-invariant
control set if x ∈ D and ϕ(t, x, u) /∈ D for some t > 0 and u ∈ U implies ϕ(t, x, u) /∈ L.
We impose the following strong invariance conditions describing the behavior near

the boundary of K:

For all x ∈ L there is εx > 0 with

d(ϕ(t, x, u), ∂K) ≥ εx for u ∈ U and t ≥ 0. (12)

There is ε0 > 0 such that for all x ∈ clL and u ∈ U
y = lim

k→∞
ϕ(tk, x, u) ∈ L for tk →∞ implies d(y, ∂K) ≥ ε0 (13)

We need some topological properties of the boundary of L. Let ∂L and ∂KL denote
the boundaries of L in Rn and K, respectively, and define

∂IL = ∂KL∩A(I), ∂jL = ∂KL∩A(Cj) for j ∈ Jout, ∂0L = ∂L ∩ ∂K.
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Note that for each y ∈ ∂KL the following alternative holds: if y ∈ A(I) then y /∈
A(Cj) for every j ∈ Jout; or y /∈ A(I) and there is (at least one) j ∈ Jout with
y ∈ A(Cj); this follows since the domains of attraction are open. Abbreviate

∂outL =
[

j∈Jout
∂jL.

Then
∂KL=∂IL ∪ ∂outL and ∂L = ∂IL ∪ ∂outL ∪ ∂0L.

Using again that the domains of attraction are open, one sees that in ∂KL the sets
∂IL and ∂outL are open and their closures are disjoint. In the topology of Rn

y ∈ cl ∂IL ∩ cl
h[

j∈Jout
∂jL

i
implies y ∈ ∂0L ⊂ ∂K. (14)

Note further that ∂KL contains at least one ∂jL, j ∈ Jout. Analogous definitions can
be given for every connected component of L and all properties stated above remain
valid.
The following technical lemma is needed.

Lemma 12. For every x ∈ L there are Jout
x ⊂ Jout and y ∈ O+(x) such that y ∈

A(I) ∩Tj∈Joutx
A(Cj) and Jout

x is a minimal index set in the following sense:

If ϕ(t, y, u) ∈ L for some t > 0 and u ∈ U , then ϕ(t, y, u) ∈ A(I)∩Tj∈Joutx
A(Cj).

Proof. Since x ∈ L, there is an index set J1 ⊂ Jout with x ∈ A(I) ∩T
j∈J1A(Cj). If there are t1 > 0 and v1 ∈ U with y1 := ϕ(t1, x, v1) ∈ L \Tj∈J1A(Cj),

then there exists a proper nonvoid subset J2 ⊂ J1 with y1 ∈ A(I) ∩
T

j∈J2A(Cj).
Proceeding recursively, one ends up, after finitely many steps, at a point y ∈ O+(x)
with a minimal index set Jout

x .
Note that a minimal index set has at least one element. Furthermore, using exact

controllability in the interior of control sets, the lemma implies that for each L-
invariant control set D there is an index set Jout

x ⊂ Jout such that for each x ∈ intD
the index set Jout

x is minimal. We cite the following result [1, Proposition 3.3.7]
(slightly specialized for our purpose).

Proposition 13. Let L be an open subset of K satisfying the no-return condition

if z ∈ clO+(x) for some x ∈ L and O+(z) ∩ L 6= ∅, then z ∈ L. (15)

Consider x ∈ L and assume that there exists a compact set Q ⊂ L such that for all
y ∈ clO+(x) ∩ L,

clO+(y) ∩ Q 6= ∅. (16)

Then there exists an L-invariant control set D ⊂ clO+(x) and every L-invariant
control set D ⊂ clO+(x) satisfies clD ∩Q 6= ∅.
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This will be used in the next proposition to establish existence of an L-invariant
control set for the set L defined in (11).

Proposition 14. Assume that K ⊂ M with K = cl intK is a compact connected
invariant set for the control system (2) satisfying the strong positive invariance
conditions (12) and (13). Consider an invariant set I of the form (9) and let
x ∈ A(I) ∩ Tj∈Joutx

A(Cj), where J
out
x is some minimal index set for x. Then there

exists an L-invariant control set D ⊂ clO+(x) with

∂D ∩ ∂jL 6= ∅ for all j ∈ Jout
x . (17)

Proof. Let x ∈ L and define

Lx = L ∩ clO+(x).

The proof is based on Proposition 13 applied to Lx instead of L. Condition (15) is
obvious by definition of Lx. In order to construct a compact set Q with (16), we first
introduce some notations. Denote the connected component of L that contains x by
Lx, and let

Q0 := {y ∈ Lx, d(y, cl ∂0Lx) ≥ εx} ,
where εx is chosen according to the strong invariance condition (12). For ε > 0 and
a minimal index set Jout

x define

NI(ε) : = {y ∈ Lx, d(y, cl ∂ILx) ≤ ε} ,
Nj(ε) : = {y ∈ Lx, d(y, cl ∂outLx) ≤ ε} for j ∈ Jout

x ;

QI(ε) : = {y ∈ Q0, d(y, cl ∂ILx) = ε} ,
Qj(ε) : = {y ∈ Q0, d(y, cl ∂outLx) = ε} for j ∈ Jout

x .

Using (14) we can choose ε > 0 small enough such that

d(∂ILx ∩Q0, ∂outLx ∩Q0) ≥ 5ε.

Hence the sets QI(ε) and Qout(ε) =
S

j∈Joutx
Qj(ε) are nonvoid, compact, and disjoint

with distance at least 3ε. Decreasing, if necessary, the number ε further, we may
assume that x ∈ Lx \ [NI(2ε) ∪Nout(2ε)]. Every trajectory {ϕ(t, y, u), t ≥ 0} with
y ∈ clO+(x) ∩ (Lx \NI(2ε)) that approaches I for t→∞ must exit through ∂ILx ∩
Q0 and must cross QI(ε). Every trajectory {ϕ(t, y, u), t ≥ 0} with y ∈ clO+(x) ∩
(Lx \Nout(2ε)) that approaches Cj , j ∈ Jout

x for t→∞ must exit through ∂jLx ∩Q0
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and must cross Qj(ε). Furthermore we find that all ε > 0 small enough the compact
set

∅ 6= Q(x, ε) := clO+(x) ∩ [QI(ε) ∪Qout(ε)]

is contained in Lx. Hence by Proposition 13 the existence of an Lx-invariant control
set D ⊂ clO+(x) follows. Obviously, an Lx-invariant control set is also L-invariant.
Finally, condition (17) holds, because in the construction above ε can be made arbi-
trarily small.
We use this result in order to analyze invariant sets of the form (7) without the

attraction property. For the convenience of the reader we also collect our assumptions.

Theorem 15. Consider the control system (2) in Rn and assume that K ⊂ Rn is
a compact invariant and connected set with K = cl intK . Assume that the strong
invariance conditions (12) and (13) are satisfied. Consider an invariant set I ⊂ F×K
of the form

I = Si,j∈J [Di,Dj]

for lifts of control sets Dj and assume that its projection I to Rn intersects the
boundary of its invariant domain of attraction, I ∩ ∂Ainv(I) 6= ∅. Then there exists
a variant control set D with nonvoid interior such that

D ⊂ A(I) ∩A(C)

for some invariant control set C with C ∩ I = ∅ and

D ∩ I = ∅, clA(D) ∩ I 6= ∅.

Proof. By our assumption there exists a point x ∈ I ∩ ∂Ainv(I). Then I is
contained in the interior of its domain of attraction and there are xk ∈ A(I)\Ainv(I)
with xk → x. Thus there are invariant control sets contained in clO+(xk) having void
intersection with I . Since the number of invariant control sets is finite, we may assume
that there is a single invariant control set, say C, with C ∩ I = ∅ and C ⊂ clO+(xk)
for all k. Hence xk is in the set L defined in (11). By the preceding proposition we
find uk ∈ U and tk > 0 such that ϕ(tk, xk, uk) ∈ intDk for some L-invariant control
set Dk. Since the number of L-invariant control sets is finite ([1, Theorem 3.3.18])
we may assume that there is a control set D ⊂ L with these properties for all k. One
can steer the system from every point of D into I and into C. Hence D ∩ I = ∅ and
the other properties hold by construction.
As a corollary, we obtain a result showing that loss of attractivity of an invariant

set is connected with the ‘merger’ with a variant control set. It is the main result of
this paper.
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Corollary 16. Consider the control system (2) inRn and assume thatK = cl intK ⊂
Rn is a compact and connected set which is invariant for the system with input range
given by ρ1 > 0. Assume that the strong invariance conditions (12) and (13) are
satisfied. Consider the invariant sets in Fρ ×K

Iρ = Si,j∈J
£Dρ

i ,Dρ
j

¤
,

and assume that they are attractors for ρ < ρ1 and that the projection Iρ1 to Rn of
Iρ1 intersects the boundary of its invariant domain of attraction defined in (8), i.e.,

Iρ1 ∩ ∂Ainv(Iρ1) 6= ∅.
Then every attractor containing Iρ1 contains a lifted variant control set Dρ1 with
Dρ1 ∩ Iρ1 = ∅.
Proof. By the previous theorem, there is a control set Dρ1 for the ρ1-system

such that Dρ1 ∩ Iρ1 = ∅ and clA(Dρ1) ∩ Iρ1 6= ∅. Now consider an attractor
neighborhood of an attractor Aρ1 containing Iρ1. By Proposition 7 we may assume
that this neighborhood has the form Fρ1 × B. Hence it contains a pair (u, x) with
ω(u, x) ⊂ Dρ1. Since Dρ1 is contained in a lifted chain control set Eρ1, this implies
that Dρ1 is contained in the attractor Aρ1 .

Remark 17. Similar constructions have been given in [2] in order to describe the
loss of invariance for control sets.

Remark 18. If a chain control set is the closure of a control set, then it depends
continuously on ρ. This equality holds for all up to at most countably many ρ-values
under the following inner-pair condition: For all ρ0 > ρ ≥ 0 and (u, x) ∈ Uρ1×K there
is T > 0 with ϕρ(T, x, u) ∈ intOρ,+(x), or in other words, Oρ(x) ⊂ intOρ0(x) (see [1],
Theorem 4.7.5.) This condition is easily verified for small ρ > 0 if a Lie-algebra rank
condition is satisfied guaranteeing that the trajectories of the uncontrolled system are
in the interior of the reachable sets for ρ > 0 (more information is given in [1], Chapter
4.) For general ρ > 0 the inner pair condition holds, e.g., for coupled oscillators if the
number of perturbations is equal to the degrees of freedom; for a precise statement
and more general results see Gayer [4].)

4. Conclusions

We obtain the following picture for the relation between input-to-state stability, at-
tractors and control sets: Suppose that A0 is a set which has the local ISS property
for ρ1 and suppose that ρ1 is maximal with this property. Then A0 is an attractor
for the uncontrolled system, hence it is of the form

A0 =
[

i,j∈J(A0)
[E0

i , E
0
j ]
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where E0
i , i ∈ {1, ..., l} are the attractors of the uncontrolled system and I(A0) ⊂

{1, ..., l} is some index set. Then for small positive ρ one obtains an attractor Aρ of
the ρ-system having the form

Aρ =
[

i∈J(A0)
[Eρi , Eρj ];

here Eρi are the lifts of the chain control sets forming around the chain recurrent
components E0

i . Note that the index set has not changed. For the projection Aρ of
Aρ to K and A0 = F×A0 the Hausdorff-distances

dH(E
ρ
i , E

0
i ), dH(Aρ

i ,A0i ), dH(Aρ
i , A

0
i )

all tend to zero as ρ→ 0. If for all ρ ∈ (0, ρ1) the chain control sets are the closures
of control sets Dρ

i with nonvoid interior, then the maps

ρ 7→ Eρ
i and ρ 7→ Aρ

are continuous with respect to the Hausdorff metric. Now consider ρ = ρ1: If the
loss of the ISS property is due to the fact that Aρ1 intersects the boundary of its
invariant domain of attraction, then the index set J(A0) does no more indicate an
attractor, since one can, arbitrarily close to Aρ1, find points which can be steered into
an invariant control set C which is not contained in Aρ1 . According to Corollary 16
this is accompanied by the fact that at ρ = ρ1 every attractor containing the set Aρ1

also contains the lift of a variant control set Dρ1 from which one can steer the system
into C.
While these observations do not give quantitative information, a conclusion is

that variant control sets (similarly to hyperbolic fixed points for ordinary differential
equations) play a decisive role in that they limit the robustness properties of attractors
and hence the robustness in ISS.
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