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Abstract

We study the linear H∞ control problem in the infinite-horizon case
when the coefficients are time-varying and bounded. We pass in a stan-
dard way from a Riccati equation to a linear Hamiltonian system of ordi-
nary differential equations, which we study using exponential dichotomies
and rotation numbers. In particular we use the dichotomy concept to
define the critical attenuation value.

1 Introduction

Speaking in general terms, the main problem of H∞-control theory might be
formulated as follows. Suppose a plant is subjected to a disturbance w = w(t)
whose detailed behavior is not known and which is only restricted by, say, L2-
boundedness. One wants to determine a control u of feedback type which sta-
bilizes the plant, in such a way as to minimize a performance index when the
disturbance is “worst possible”.

A substantial theory of H∞-control for linear, time-invariant systems was
developed in the 80’s; see, e.g., ([30], [9]) for information about this vast subject.
As is well-known, this theory was for the most part formulated in the frequency
domain, where the main problem is translated into that of minimizing the oper-
ator norm of a certain transfer function acting on Hardy-type H∞ spaces. More
recently, attention has been given to the worst-case control of nonlinear plants
[15]. In this situation, it is no longer natural to work in the frequency domain,
and it has been found convenient to develop the theory in the time domain. In
spite of this fact, one still speaks of “H∞-control” because of the success of the
theory worked out for linear autonomous systems.
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Our goal in this paper is to study a linear control problem of H∞ type, but
in the case of time-varying coefficients and infinite horizon. We are motivated
by the fact that, though H∞ control problems have been posed and studied for
linear systems when the coefficients vary with time, most known (to us) results
have been proved in the finite-horizon case [5]. We will see that, in the infinite-
horizon case, it is convenient to introduce a certain linear Hamiltonian system
of ordinary differential equations; these are called the Caratheodory equations
in [5]. This system can be studied to good effect by making use of the concepts
of exponential dichotomy and rotation number.

Let us be a bit more specific about the problem we will study. Consider the
differential system

x′ = A(t)x + B(t)u + D(t)w (1)
x(0) = x0

where x ∈ R
n is a state vector, u ∈ R

m is a control vector, and w ∈ R
l

represents a general disturbance. The functions A, B, and D take values in the
sets of matrices of dimensions n × n, n × m, and n × l respectively. They will
be assumed to be uniformly bounded and uniformly continuous. We make the
usual mental switch from the concept of “worst case” control to that of “minimal
attenuation” control. Namely, for each γ > 0, introduce the functional

Lγ(u, w) =
∫ ∞

0

{<Q(t)x(t), x(t)> + <u(t), u(t)> − γ2<w(t), w(t)>} dt.

The function Q takes values in the set of n × n real symmetric matrices; it
is assumed to be uniformly bounded, uniformly continuous, and positive semi-
definite: Q(t) ≥ 0 for all t ∈ R. The disturbance w lies in L2([0,∞), Rl). For
each γ > 0, one looks for a linear feedback controller u = −Bt(t)mγ(t)x, defined
by a function mγ(·) with values in the set of symmetric, positive-definite n× n
matrices, such that (i) if w = 0 then the feedback system obtained from (1) is
stable; (ii) the following dissipation inequality holds:

Lγ(u, w) ≤ <mγ(0)x0, x0>. (2)

One wishes to determine the minimal attenuation value γ∗ = inf{γ > 0 |
there is a linear feedback controller as above for which (i) and (ii) are satisfied}.

It is well-known that the problem of minimal attenuation control is related to
a certain differential game, at least if A is a Hurwitz matrix function. Namely,
for each γ > 0, set v1 = minu maxw Lγ(u, w) and v2 = maxw minu Lγ(u, w).
If the upper value v1 exists and equals the lower value v2, then one says that
the game determined by (1) and Lγ has value v1 = v2. See [5] for an excellent
analysis of the relation between differential games and H∞-control theory.

Motivated by the game-theoretic interpretation of our H∞-control problem,
we will study the matrix Riccati equation

m′ + Atm + mA − m[BBt − γ−2DDt]m + Q = 0 (3)
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where the superscript “t” indicates the matrix transpose. If for some γ > 0
the Riccati equation (3) admits a solution m(t) which is bounded on all of
R, then (modulo certain details) the H∞-control problem admits a solution,
namely u = −Bt(t)m(t)x. Thus the study of the bounded (i.e., non-conjugate)
solutions of (3) is the key to understanding which values of γ give rise to a
stabilizing control for (1), for which (2) holds.

The non-conjugate solutions of (3) are best studied by introducing the corre-
sponding system of linear, non-autonomous Hamiltonian differential equations

z′ =
(

A(t) −[B(t)Bt(t)−γ−2D(t)Dt(t)]

−Q(t) −At(t)

)
z (4)

where z = ( x
y ) ∈ R2n. We will discuss the basic facts concerning exponential

dichotomies and rotation numbers for these equations. These facts will guide
us in giving a precise definition of the minimal attenuation value γ∗ which is
appropriate in the case of time-varying coefficients and infinite horizon.

We will then impose certain controllability conditions together with a mild
recurrence condition on the coefficients A, B, D, Q, and introduce the number
γl = inf{γ > 0 | equation (4) has zero rotation number}. This number is in-
teresting for two reasons: first, equation (4) admits an exponential dichotomy
when γ > γl; second, γ∗ ≥ γl. It turns out that the two possibilities γ∗ > γl

and γ∗ = γl are of a qualitatively different nature. We will see that, if γ∗ = γl,
then the notion of weak disconjugacy is of help in understanding whether or not
there exists a stabilizing feedback control for which (2) is true.

Some of our discussion of equation (4) uses facts drawn from the paper [13],
where a non-autonomous version of the Yakubovich Frequency Theorem ([28]
[29]) was worked out. There is however an important technical difference be-
tween the structure of equation (4) and that of the Hamiltonian system studied
in [13]; namely that the lower-left hand corner −Q(t) of the matrix function in
(4) is semidefinite, and not the upper right-hand corner as is the case for the
system considered in [13].

The paper is organized as follows. In Section 2 we formulate our H∞ control
problem using the language of nonautonomous differential systems. In Section
3 we state and prove our results concerning the critical attenuation value γ∗ and
its relation to γl. In particular, we prove the existence of a stabilizing feedback
control for which (2) holds when γ > γ∗.

We finish this introduction by fixing some notation and discussing some basic
concepts.

First, the symbol <, > denotes the Euclidean inner product on a given Eu-
clidean space Rd, and | · | denotes the corresponding norm on Rd.

Second, consider a control system

x′ = A(t)x + B(t)u (x ∈ R
n, u ∈ R

m) (∗)
where A and B are continuous matrix functions the appropriate dimension. The
systems (∗) is said to be null controllable if to each x0 ∈ Rn there correspond
a number T > 0 and an integrable control u : [0, T ] → R

m such that, if x(t) is
the solution of (∗) with x(0) = x0, then x(T ) = 0.
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Third, let Ξ be a metric space. A real flow on Ξ is defined by a 1-parameter
group {τt | t ∈ R} of homeomorphisms of Ξ; that is (i) τ0(ξ) = ξ for all ξ ∈ Ξ;
(ii) τt ◦ τs = τt+s for all t, s ∈ R; and (iii) the map τ : Ξ×R → Ξ : (ξ, t) → τt(ξ)
is continuous. A flow (Ξ, {τt}) is called minimal or Birkhoff recurrent if Ξ is
compact and if each orbit {τt(ξ) | t ∈ R} is dense in Ξ [10].

Fourth, if Ξ is compact and (Ξ, {τt}) is a flow, then a regular Borel proba-
bility measure µ on Ξ is called invariant if µ(τt(B)) = µ(B) for each Borel set
B ⊂ Ξ and each t ∈ R. It is called ergodic if, in addition to being invariant, it
satisfies the following indecomposibility condition. Let ∆ denote the symmetric
difference of sets; suppose that B ⊂ Ξ is a Borel set such that µ(τt(B)∆B) = 0
for all t ∈ R, then either µ(B) = 0 or µ(B) = 1. We will often require that Ξ be
the topological support Supp µ of a given ergodic measure µ; this means that
µ(V ) > 0 for each open set V ⊂ Ξ.

Fifth, let n ≥ 1 and let J =
(

0 −In

In 0

)
be the standard 2n×2n antisymmetric

matrix; here In is the n × n identity matrix. Recall that an n-dimensional
vector subspace λ ⊂ R2n is called a Lagrange subspace if <x, Jy> = 0 for all
x, y ∈ λ. Let Λ be the set of all Lagrange subspaces of R2n. Then Λ carries
the structure of an n(n+1)

2 -dimensional real analytic manifold. Let {e1, . . . , e2n}
be the canonical basis in R2n. One checks that λh = Span{e1, . . . , en} and
λv = Span{e2n+1, . . . , e2n} are elements of Λ, called the horizontal resp. vertical
Lagrange subspace.

Next, abuse notation and let {e1, . . . , en} be the canonical basis in Rn. If
λ ∈ Λ is a Lagrange subspace of R2n which is transversal to λv (i.e., λ ∩
λv = {0}), then there is an n × n symmetric real matrix m such that λ =
Span{( e1

m(e1)

)
, . . . ,

( en

m(en)

)}. If in addition λ is transverse to λh, then det m 
=
0. One thinks of m as parametrizing λ. The vertical Maslov cycle Cv is by
definition {λ ∈ Λ | λ is not transversal to λv}, while the horizontal Maslov
cycle Ch = {λ ∈ Λ | λ is not transversal to λh}.

2 Formulation of the Problem

Our point of departure is the linear, non-autonomous differential system (1):

x′ = A(t)x + B(t)u + D(t)w
x(0) = x0

where x ∈ Rn, u ∈ Rm, and w ∈ Rl. The matrix-valued functions A, B, and D
have dimensions n×n, n×m, and n× l respectively. Let Q be a matrix-valued
function of dimensions n × n whose values are symmetric and positive semi-
definite: Q(t) ≥ 0 for all t ∈ R. All the functions A, B, D, and Q are assumed
to be uniformly bounded and uniformly continuous.

For each positive real number γ, let Lγ be the functional

Lγ(u, w) =
∫ ∞

0

{<Q(t)x(t), x(t)> + |u(t)|2 − γ2|w(t)|2} dt.
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It is understood that u ∈ L2([0,∞), Rm), and that x(·) is the solution of (1)
corresponding to the given functions u, w. We will usually write simply “L2” for
L2([0,∞), Rd) whenever the dimension d and the interval [0,∞) are determined
by the context. We look for values of γ for which there is a linear feedback
control u = −Bt(t)mγ(t)x which stabilizes (1) when w = 0, and for which the
dissipation inequality (2) holds.

We will make systematic use of Bebutov or translation flow [4], which is
defined on certain spaces of vector -and matrix- valued functions of t ∈ R.
(This explains why we consider functions A, B, D, and Q which are defined on
all of R, even though our H∞-control problem is defined on the half-line [0,∞).)
We need some notation to describe the manifestation of the Bebutov flow which
we will use. First, let Mr,s be the set of r × s real matrices (1 ≤ r, s < ∞).
Let Gr,s = {G : R → Mr,s | G is uniformly bounded and uniformly continuous}.
Give Gr,s the topology of uniform convergence on compact subsets of R. The
Bebutov flow {τt | t ∈ R} on Gr,s is defined as follows: if G ∈ Gr,s, then
τt(G)(·) = G(· + t) (t ∈ R). It is easily seen that (Gr,s, {τt}) is indeed a flow. It
is also easy to see that, if G ∈ Gr,s, then the orbit closure cls{τt(G) | t ∈ R} is
compact.

Next let G = Gn,n × Gn,m × Gn,l × Gn,n, so that ξ0 = (A, B, D, Q) is a point
in G. There is a Bebutov flow {τt} on G. Let Ξ = cls{τt(ξ0) | t ∈ R}, so that
Ξ is a compact, translation-invariant subset of G. Clearly each element ξ ∈ Ξ
is a four-tuple (Aξ, Bξ, Dξ, Qξ) of uniformly bounded, uniformly continuous,
matrix-valued functions of t. Observe that Qξ(t) ≥ 0 for each ξ ∈ Ξ, t ∈ R.
Define A : G → R : (a, b, d, q) → a(0). Then Aξ(t) = A(τt(ξ)); that is, Aξ(·)
is obtained by evaluating the continuous function A along the orbit through ξ.
Similarly, Bξ, Dξ, and Qξ are abtained by evaluating continuous functions B,
D, and Q : G → R along the orbit through ξ.

For each ξ ∈ Ξ and γ > 0, consider the differential system

x′ = Aξ(t)x + Bξ(t)u + Dξ(t)w (1ξ)
x(0) = x0

together with the functional

Lγ,ξ(u, w) =
∫ ∞

0

{<Qξ(t)x(t), x(t)> + |u(t)|2 − γ2|w(t)|2} dt.

Motivated by the connection between H∞-control theory and the theory of
two-player, zero-sum differential games [5], we introduce the Riccati equation

m′ + At
ξm + mAξ − m[BξB

t
ξ − γ−2DξD

t
ξ]m + Qξ = 0 (3ξ)

together with the related family of Hamiltonian differential systems

z′ =
(

Aξ −[BξBt
ξ−γ−2DξDt

ξ]

−Qξ −At
ξ

)
z, z = ( x

y ) ∈ R
2n. (4ξ)

The relation between (3ξ) and (4ξ) can be expressed as follows. Let z1(t), . . . , zn(t)
be n linearly independent solutions of (4ξ). Write the 2n×n matrix (z1(t), . . . , zn(t))
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whose columns are z1(t), . . . , zn(t) in the form
(

X(t)
Y (t)

)
where X(t) and Y (t) are

n×n matrix-valued functions. If X(t) is invertible on some open interval I ⊂ R,
then m(t) = Y (t)X(t)−1 is a solution of the Riccati equation (3ξ) on I.

We will be particularly interested in conditions guaranteeing that equations
(4ξ) admit an exponential dichotomy over Ξ. We recall the definition of this
concept ([7], [25]). Let P be the family of all linear projections P : R

2n → R
2n.

For each ξ ∈ Ξ, let Φξ(t) be the fundamental matrix solution of (4ξ).

Definition 2.1 The family of differential equations (4ξ) admits an exponential
dichotomy over Ξ if there are positive constants k, β together with a continuous
function P : Ξ → P : ξ → Pξ such that the following estimates hold:

‖Φξ(t)PξΦξ(s)−1‖ ≤ ke−β(t−s) t ≥ s

‖Φξ(t)(I − Pξ)Φξ(s)−1‖ ≤ keβ(t−s) t ≤ s.

We will also encounter the concept of weak disconjugacy for the single equa-
tion (4) and for the family of equations (4ξ). We will actually use a variant of
the definition of weak disconjugacy given in [14] (which in turn is a variant of
the classical definition of disconjugacy; see, e.g., [6]).

Definition 2.2 (a) Say that equation (4) is weakly disconjugate on [0,∞)

if there exists T > 0 such that, whenever z(t) =
(

x(t)
y(t)

)
is a nontrivial

solution of (4) such that y(0) = 0, then y(t) 
= 0 for all t ≥ T . The family
{(4ξ) | ξ ∈ Ξ} is said to be weakly disconjugate if each single equation (4ξ)
is weakly disconjugate.

(b) Let z1(t), . . . , zn(t) be linearly independent solutions of (4). Let λ(t) =
Span{z1(t), . . . , zn(t)} ⊂ R2n (t ≥ 0), and write the 2n×n matrix (z1(t), . . . , zn(t))
in the form

(
X(t)
Y (t)

)
. Say that

(
X(t)
Y (t)

)
is a principal solution of (4) if (i)

λ(t) is a Lagrange subspace for some (hence all) t ≥ 0; (ii) det Y (t) 
= 0 for
all t ≥ 0; (iii) limt→∞ S(t)−1 = 0 where S(t) =

∫ t

0
Y (s)−1Q(s)Y (s)−1∗ ds.

We will systematically apply the concept of rotation number α for the family
(4ξ) ([16]. [23], [11], [12]). The rotation number is defined with respect to a
fixed ergodic measure µ on Ξ. We recall one of the equivalent definitions of this
quantity. First, recall that the vertical Maslov cycle Cv ⊂ Λ is 2-sided in Λ [1].
Moreover, the complement Λ\Cv is simply connected; in fact it is homeomorphic
to R

n(n+1)
2 . These facts permit one to define an oriented intersection index i(c)

of each continuous closed curve c : [0, T ] → Λ with the cycle Cv whenever c(0)
and c(T ) lie off Cv. See [1] for the construction of this intersection index.

We use the intersection index to define the rotation number α as follows.
Let ξ ∈ Ξ, T > 0, and let λ ∈ Λ be a Lagrange plane which is transverse to
λv. Let cT (t) = Φξ(t) · λ, so that cT : [0, T ] → Λ is a continuous closed curve in
Λ. If cT (T ) ∈ Cv, we “bump it off” in some systematic way, then let nT be the
intersection index of cT with Cv. We define

α(µ) = lim
T→∞

π
nT

T
.
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It turns out that the limit on the right-hand side is well-defined in the following
sense. There is a Borel subset Ξ0 ⊂ Ξ with µ(Ξ0) = 1, such that, if ξ ∈ Ξ0,
then the limit on the right-hand side is defined and is independent of the choice
of ξ ∈ Ξ0 and λ ∈ Λ \ Cv ([16], [23], [11]).

One can also define a rotation number α̃(µ) by substituting Ch for Cv in the
above construction; it is no surprise that α(µ) = α̃(µ).

The rotation number can be related to the concepts of exponential dichotomy
and weak disconjugacy for the family (4ξ) in the case when Ξ is equal to the
topological support Supp µ of the ergodic measure µ. Let us first describe the
connection with the weak disconjugacy concept, summarizing and adapting the
results of [14].

Let us suppose that the following controllability condition is satisfied:

Hypothesis 2.3 Each minimal subset M ⊂ Ξ contains a point p such that the
control system

y′ = −At
p(t)y + Qp(t)v

is null-controllable.

As proved in [18], this hypothesis actually implies a uniform controllability
condition:

Proposition 2.4 Let Ψξ(t) be the fundamental matrix solution of the equation
y′ = −At

ξ(t)y. Then there exist positive constants T and δ, which do not depend
on ξ ∈ Ξ, such that ∫ T

0

|Qξ(s)Ψt
ξ(s)

−1| ds ≥ δI.

The following result is proved in ([14], Theorem 2.5).

Theorem 2.5 Suppose that Suppµ = Ξ and that Hypothesis 2.3 is valid. Then
the following statements hold.

(a) The equations (4ξ) are all weakly disconjugate if and only if α(µ) = 0.

(b) If α(µ) = 0, then each equation (4ξ) admits a unique principal solution.

Next we discuss the relation between the rotation number α and the expo-
nential dichotomy concept. We recall a condition of Atkinson type [3] which is
useful in this context.

Hypothesis 2.6 Let Γ : Ξ → M2n,2n be a continuous function whose values
are symmetric and positive semi-definite: Γ(ξ) ≥ 0 for all ξ ∈ Ξ. Write Γξ(t) =
Γ(τt(ξ))(ξ ∈ Ξ, t ∈ R). Say that equations (4ξ) satisfy an Atkinson condition
with respect to Γ if each minimal subset M ⊂ Ξ contains a point p such that

∫ ∞

−∞
|Γp(t)Φp(t)|2 dt > 0.
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The Atkinson Hypothesis 2.6 is closely related to a null controllability hy-
pothesis on the family of control systems

z′ =
( −At

ξ Qξ

BξBt
ξ Aξ

)
z + Γξv

where now v = ( v1
v2 ) is a control vector in R2n. Using this connection, it is proved

in [18] that Hypothesis 2.6 actually implies that there exist positive constants
T, δ, which do not depend on ξ ∈ Ξ, such that

∫ T

0

|Γξ(t)Φξ(t)|2 dt ≥ δI

for all ξ ∈ Ξ.
We now state

Theorem 2.7 Consider the Atkinson-type spectral problem

z′ =
[(

Aξ −BξBt
ξ

−Qξ −At
ξ

)
+ ηJ−1Γξ

]
z, (ξ ∈ Ξ) (5ω)

where η ∈ C is a parameter. For each η ∈ R, let α = α(η) be the rotation
number of the above family of Hamiltonian systems with respect to µ. Suppose
that the Atkinson Hypothesis 2.6 holds. Suppose that α(η) is constant on some
open interval I ⊂ R. Then for each η ∈ I, the family admits an exponential
dichotomy on Ξ.

This theorem is proved in [17].

3 Analysis

For each ξ ∈ Ξ, x0 ∈ Rn, and γ > 0 we consider the differential system (1ξ)

x′ = Aξ(t)x + Bξ(t)u + Dξ(t)w

together with the functional

Lγ,ξ(u, w) =
∫ ∞

0

{<Qξ(t)x(t), x(t)> + |u(t)|2 − γ2|w(t)|2} dt.

We look for values of γ for which there is a linear feedback control u =
−Bξ(t)tmγ,ξ(t)x which stabilizes the system

x′ = Aξ(t)x + Bξ(t)u

and for which the dissipation inequality (2ξ)

Lγ,ξ(u, w) ≤ <mγ,ξ(0)x0, x0>

holds (w ∈ L2, ξ ∈ Ξ, x0 ∈ Rn). To simplify the notation we will usually write
Lξ for Lγ,ξ and mξ for mγ,ξ.

We impose a second controllability hypothesis
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Hypothesis 3.1 Each minimal subset M ⊂ Ξ contains a point p such that the
control system

x′ = Ap(t)x + Bp(t)u

is null controllable.

The same result of [18] which allows to pass from Hypothesis 2.3 to Proposi-
tion 2.4 yields the next result; we again write Ψξ(t) for the fundamental matrix
solution of y′ = −At

ξ(t)y.

Proposition 3.2 There exist positive constants T, δ, which do not depend on
ξ ∈ Ξ, such that ∫ T

0

|Bξ(t)Ψξ(t)|2 dt ≥ δI

for all ξ ∈ Ξ.

Lemma 3.3 Let ξ ∈ Ξ. The control system x′ = Aξx+Bξu is null controllable
if and only if the system

x′ = Aξx + BξB
t
ξu

is null controllable.

Proof The simple arguments required to prove this statement can be found in
the proof of ([13], Lemma 3.3.)

Now we return to the Riccati equation (3ξ) and set γ = ∞, i.e., γ−2 = 0:
we obtain

m′ + At
ξm + mAξ − mBξB

t
ξm + Qξ = 0. (6ξ)

Associated to the Riccati equation is the Hamiltonian system

z′ =
(

Aξ −BξBt
ξ

−Qξ −At
ξ

)
z (7ξ)

We will use Hypotheses 2.3 and 3.1 to analyze the family (7ξ)

Proposition 3.4 Suppose that Hypotheses 2.3 and 3.1 are valid. Then the
family of differential systems (7ξ) admits an exponential dichotomy over Ξ.

Proof The argument necessary to prove this statement are given in ([18],
Lemma 4.4 and 4.5). For completeness we sketch the details.

Let M ⊂ Ξ be a minimal subset, and let µ be an ergodic measure supported
on M . Let α(µ) be the rotation number of the family (7ξ) with respect to µ.

Introduce a real parameter η as follows:

z′ =
[(

Aξ −BξBt
ξ

−Qξ −At
ξ

)
+ ηJ−1

(
Qξ 0

0 BξBt
ξ

)]
z.

These equations coincide with equation (5ξ) if

Γξ(t) =
(

Qξ(t) 0

0 Bξ(t)Bt
ξ(t)

)
,
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and in this proof we will refer to the above family as equations (5ξ).
It is easy to see that the rotation number α = α(µ, η) of equations (5ξ) equals

zero if η ∈ (− 1
2 , 1

2 ) ([18], Lemma 4.4). Using Hypotheses 2.3 and 3.1, one checks
that the Atkinson condition 2.6 is satisfied ([18], Corollary 4.3). By Theorem
2.7, equations (5ξ) admit an exponential dichotomy over M for η ∈ (− 1

2 , 1
2 ), in

particular for η = 0. Therefore equations (7ξ) admit an exponential dichotomy
over M .

Let Pξ be the dichotomy projection for ξ ∈ M . Then λ(ξ) = Im Pξ is a
Lagrange subspace of R2n [23]. In particular, dim λ(ξ) = n. We conclude that
equations (7ξ) have an exponential dichotomy over M for each minimal subset
M ⊂ Ξ, and that the dimension of Im Pξ equals n for all ξ ∈ M , whenever
M ⊂ Ξ is minimal.

One next argues as in the proof of ([18], Lemma 4.5) to show that, for each
ξ ∈ Ξ, equation (7ξ) admits no nontrivial solution z(t) which is bounded on all
of R. Using a result of Sacker- Sell ([26]; see also Selgrade [24]), we conclude
that equations (5ξ) have an exponential dichotomy over all of Ξ. This completes
the proof of Proposition 3.4.

Let ξ ∈ Ξ, and let Pξ be the dichotomy projection for equation (7ξ). Let

z0 = ( x0
y0 ) ∈ λ(ξ) = Im Pξ, and let z(t) =

(
x(t)
y(t)

)
be the solution of (7ξ) such

that z(0) = z0. Then z(t) → 0 exponentially as t → ∞; in fact there are positive
constants K, β, which do not depend on ξ ∈ Ξ, such that |z(t)| ≤ Ke−βt|z0| for
all t ≥ 0. It turns out ([18], Lemma 4.6) that λ(ξ) is transverse to both the
vertical Lagrange plane λv and to the horizontal Lagrange subspace λh. The
fact that λ(ξ) is transverse to λv implies that there is a unique n×n symmetric
real matrix m(ξ) with the following property: if e1, . . . , en is the canonical basis
in R

n, then a basis of λ(ξ) is given by
( e1

m(ξ)e1

)
, . . . ,

( en

m(ξ)en

)
.

The mapping ξ → m(ξ) : Ξ → Mn,n is continuous. It further turns out that
m(ξ) is positive definite for all ξ ∈ Ξ. All this is of course no surprise in view
of basic facts concerning the linear regulator problem.

Now let γ decrease from γ = ∞. We can apply the standard perturbation
theory for exponential dichotomies ([7], [26]) to conclude that, if γ is sufficiently
large, then equations (4ξ) admit an exponential dichotomy over Ξ. Let Pξ be
the dichotomy projection for equation (4ξ), and let λ(ξ) = Im Pξ (we again fail
to indicate explicitly the dependence on γ). Since the dichotomy projections
are continuous in γ [7], we can affirm that, for γ sufficiently large, the Lagrange
subspace λ(ξ) is transverse both to λv and to λh.

Definition 3.5 We define the critical attenuation value γ∗ for the family (4ξ)
to be

γ∗ = inf{γ | for all γ ≥ γ̄, equations (4ξ) admit an
exponential dichotomy over Ξ, and moreover λ(ξ)
is transverse to λv for all ξ ∈ Ξ}
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This definition of γ∗ is appropriate because it permits one to use the powerful
roughness properties of exponential dichotomies to deal with natural robustness
questions. We will deal with robustness questions in a later paper. It seems to be
less convenient to define γ∗ in terms of the existence of bounded solutions of the
Riccati equation for the nonautonomous infinite horizon H∞ control problem.

Let us now show that, if γ > γ∗, then our H∞-control problem admits a
solution.

Theorem 3.6 Consider the family of H∞ control problems defined by equations
(1ξ) and the functional Lγ,ξ (ξ ∈ Ξ). Suppose that the controllability Hypotheses
2.3 and 3.1 are valid. Let γ∗ be the critical attenuation value for the family (4ξ).
Suppose that γ > γ∗. Then for each ξ ∈ Ξ, there is a linear feedback control
u = −Bt

ξ(t)mξ(t)x such that the system

x′ = [Aξ(t) − Bξ(t)Bt
ξ(t)mξ(t)]x (8ξ)

is uniformly exponentially stable. Moreover for all x0 ∈ R
n and all w ∈ L2 one

has
Lγ,ξ(u, w) ≤ <mξ(0)x0, x0>.

The matrix mξ(t) is positive definite for all ξ ∈ Ξ and t ∈ R.

Proof By assumption, the Lagrange subspace λ(ξ) is transverse to λv for all
ξ ∈ Ξ, hence λ(ξ) is parametrized by a real n× n symmetric matrix m(ξ). The
function ξ → m(ξ) : Ξ → Mn,n is continuous and hence bounded.

For the next few lines it will be convenient to explicitly indicate the depen-
dence of the quantities λ and m on γ. Our goal in these lines is to show that
mγ(ξ) is positive definite for all γ > γ∗ and all ξ ∈ Ξ. By continuity in γ of the
dichotomy projections Pξ = Pγ,ξ, we have that mγ(ξ) > 0 for all ξ ∈ Ξ if γ is
sufficiently large.

Suppose for contradiction that there exist γ1 > γ∗ and ξ1 ∈ Ξ such that
mγ1(ξ1) is not positive definite. There is then no loss in generality in assuming
that det mγ1(ξ1) = 0 and in assuming that γ1 = max{γ > γ∗ | there exists ξ ∈
Ξ such that mγ(ξ) is not positive definite}. A moment’s thought shows that
one must have λγ1(ξ1) ∈ Ch, the horizontal Maslov cycle. Moreover, if γ > γ1,
then λγ(ξ) 
∈ Ch for all ξ ∈ Ξ.

Next note that, if µ is any ergodic measure on Ξ, then the rotation number
α(µ) of the family (4ξ) is zero. This follows from the definition of γ∗ and
the definition of the rotation number. We can now argue as in the proof of
Proposition 3 of [14]: using the controllability Hypothesis 2.3 on the control
systems y′ = −A∗

py + Qpv, we conclude that it is not the case that λγ1(τt(ξ1))
lies on Ch for all t ∈ R.

We claim that there exist times t1 < 0 and t2 > 0 such that λγ1(τt1(ξ1)) 
∈ Ch

and λγ1(τt2(ξ1)) 
∈ Ch. For if, for example, λγ1(τt(ξ1)) ∈ Ch for all t ≥ 0, then
each point ξ̂ in the ω-limit set ω(ξ1) ⊂ Ξ has the property that λγ1(τt(ξ̂))

∈ Ch for
all t ∈ R. If t ≤ 0, we substitute the α-limit set α(ξ1) for ω(ξ1) in this argument.
Next, let c be a closed curve in Λ obtained by sliding λγ1(t2) through the simply-
connected set Λ \Ch to λγ1(t1). Arguing as in the proof of Lemma 4 in [14], we
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see that the intersection index i(c) of this curve c with respect to Ch is strictly
positive.

On the other hand, let ε > 0 and let γ = γ1 + ε. The curve cε : [t1, t2] → Λ :
cε(t) = λγ(τt(ξ1)) lies entirely in Λ \ Ch, hence if it is closed up by sliding its
endpoints cε(t1) and cε(t2) together in Λ\Ch, one obtains a closed curve (again
called cε) whose intersection number i(cε) with Ch is zero.

However, if ε is sufficiently small, the curves c and cε are homotopic, hence
their intersection indices are zero [1]. We have arrived at a contradiction. We
conclude that mγ(ξ) is indeed positive definite whenever γ > γ∗ and ξ ∈ Ξ.

Now fix γ > γ∗ and write mξ(t) = m(τt(ξ)), where we do not explicitly
indicate the dependence of mξ on γ. Then there is a constant K ′ such that
|mξ(t)| ≤ K ′ and |mξ(t)−1| ≤ K ′ for all ξ ∈ Ξ and t ∈ R.

Let w ∈ L2, let u : [0,∞) → R
m be a continuous function, and let x(t) be

the corresponding solution of equation (1ξ). We apply the classical completing
- the - square argument to Lξ. Namely, let T > 0 and integrate the expression
d
dt<mξ(t)x(t), x(t)> from 0 to T ; after some rearranging one gets

∫ T

0

{<Qξ(t)x(t), x(t)> + |u(t)|2 − γ2|w(t)|2} dt = −<mξ(T )x(T ), x(T )>+

(9)

+ <mξ(0)x0, x0> − γ2

∫ T

0

|w(t) − γ−2Dt
ξ(t)mξ(t)x(t)|2 dt+

+
∫ T

0

|u(t) + Bt
ξ(t)mξ(t)x(t)|2 dt.

Next, we introduce the feedback control u = −Bt
ξmξx and set w = 0 to obtain

∫ T

0

{<Qξ(t)x(t), x(t)> + |u(t)|2 + γ−2|Dt
ξ(t)mξ(t)x(t)|2} dt = (10)

= −<mξ(T )x(T ), x(T )> + <mξ(0)x0, x0>.

Here x(t) is the solution of the linear system (8ξ)

x′ = [Aξ(t) − Bξ(t)Bξ(t)tmξ(t)]x

which satisfies x(0) = x0.
Our goal is to show that the family (8ξ) is uniformly exponentially stable.

Explicitly, we seek fixed positive constants K1, β1, such that, if ξ ∈ Ξ, x0 ∈ Rn,
and x(t) is the corresponding solution of (8ξ), then

|x(t)| ≤ K1e
−β1t|x0| (t ≥ 0)

The first step is to apply Lemma 4 of [26]: according to this result it is
sufficient to show that, if ξ ∈ Ξ and x0 ∈ Rn, then x(t) → 0 as t → ∞. So we
show that each solution x(t) of each equation (8ξ) decays to zero as t → ∞. To
do this, it is convenient to introduce the linear skew-product flow {τ̂t | t ∈ R}
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on Ξ × Rn defined by τ̂t(ξ, x0, t) = (τt(ξ), x(t)) (ξ ∈ Ξ, x0 ∈ Rn, t ∈ R). See,
e.g., [25] for basic facts about such linear skew-product flows.

Fix ξ ∈ Ξ and x0 ∈ Rn together with the solution x(t) of (8ξ) which satisfies
x(0) = x0. Since <mξ(t)x(t), x(t)> ≤ <mξ(0)x0, x0> and since |mξ(t)−1| ≤ K ′

for all t ≥ 0, we see that x(t) is bounded on [0,∞). Since in addition |mξ(t)| ≤
K ′, we see that limt→∞ x(t) = 0 if and only if limt→∞<mξ(t)x(t), x(t)> = 0.

Suppose for contradiction that we can find a point (ξ1, x1) ∈ Ξ × Rn such
that the corresponding quantity <mξ1(t)x1(t), x1(t)> does not tend to zero as
t → ∞. Since this quantity is monotone non-increasing, we can find a number
ε > 0 such that |x1(t)| ≥ ε for all t ≥ 0. Let Ω ⊂ Ξ × Rn be the ω-limit set of
(ξ1, x1) with respect to the flow {τ̂t}. Then Ω is compact, invariant under {τ̂t},
and moreover if (ξ, x0) ∈ Ω then |x0| ≥ ε.

Let M be a minimal subset of Ω and let (ξ, x0) ∈ M . By the minimality of
M , the function g : R → R : g(t) = <mξ(t)x(t), x(t)> is Birkhoff recurrent. On
the other hand, g is also nonincreasing. It follows that g is a constant function,
so that <mξ(t)x(t), x(t)> = <mξ(0)x0, x0> for all t ∈ R.

Now, using (10), we conclude that (i)Bt
ξ(t)mξ(t)x(t) = 0 for all t ≥ 0, and

(ii)Qξ(t)x(t) = 0 for all t ≥ 0. Using (i), we see that x′ = Aξ(t)x. Thus we
have x(t) = Ψt

ξ(t)
−1x0 where Ψξ(t) is the fundamental matrix solution of y′ =

−At
ξy. But then (ii) contradicts the uniform controllability property expressed

in Proposition 2.4. We have arrived at a contradiction, and so can conclude
that equations (8ξ) are indeed uniformly exponentially stable.

The dissipation relation

Lγ,ξ(u, w) ≤ <mξ(0)x0, x0>

follows directly from equation (9). This completes the proof of Theorem 3.6.

Remark 3.7 If γ > γ∗ and if the family x′ = Aξ(t)x is uniformly exponentially
stable (of Hurwitz type), then one can show that the differential game defined by
(1ξ) and Lξ admits the value <mξ(0)x0, x0> for each ξ ∈ Ξ.

We introduce a controllability condition involving the matrix functions Dξ.

Hypothesis 3.8 The Atkinson condition 2.6 holds for equations (4ξ) with

Γξ(t) =
(

0 0
0 Dξ(t)Dt

ξ(t)

)
.

Explicitly, each minimal subset M ⊂ Ξ contains a point p such that, if Φp(t) is

the fundamental matrix solution of z′ =
(

Ap −BpBt
p

−Qp −At
p

)
z, then

∫ ∞

−∞
|
(

0 0
0 Dp(t)Dt

p(t)

)
Φp(t)|2 dt > 0.

Remark 3.9 (a) The Atkinson Hypothesis 3.8 implies the uniform null con-
trollability of the family of control systems

z′ =
( −At

ξ Qξ

BξBt
ξ Aξ

)
z +

(
0 0
0 DξDt

ξ

)
v

13



where now v = ( v1
v2 ) and v1, v2 ∈ Rn. That is, if Hypothesis 3.8 holds,

then there are positive constants T, δ, which do not depend on ξ ∈ Ξ, such
that ∫ T

0

|
(

0 0
0 Dξ(t)Dt

ξ(t)

)
Φξ(t)|2 dt ≥ δI

for all ξ ∈ Ξ.

(b) Hypothesis 3.8 is somewhat stronger than that of the uniform null control-
lability of the family of control systems

x′ = Aξx + Dξw.

(c) Suppose that det DξD
t
ξ 
= 0 for all ξ ∈ Ξ. Then Hypothesis 3.8 is valid.

To see this, let M ⊂ Ξ be a minimal subset, and let p ∈ M . Let x0,
y0 ∈ R

n. By the null controllability of the system x′ = −At
px + Qpv,

we can determine T > 0 and a control function v1 : [0, T ] → Rn such
that, if x(t) satisfies x′ = −At

p + Qpv1 and x(0) = x0, then x(T ) = 0.
One can choose v1 in such a way that v1 is of class C1, v1(0) = y0,
and v1(T ) = 0. Next set y(t) = v1(t) for 0 ≤ t ≤ T , then define v2 by
y′ − Apy − BpB

t
px = DpD

t
pv2. Then the control v = ( v1

v2 ) steers ( x0
y0 ) to

zero in time T for the control system (9p).

We now define a number γl which is significant in the study of equations
(4ξ).

Definition 3.10 Set γl = inf{γ̄ | equations (4ξ) admit an exponential di-
chotomy over Ξ for all γ > γ̄}.

Theorem 3.11 Consider the family of H∞ control problems defined by equa-
tions (1ξ) and the functional Lγ,ξ (ξ ∈ Ξ). Suppose that the controllability
Hypotheses 2.3, 3.1, and 3.8 are all valid. Let γ∗ be the critical attenuation
value for the family (4ξ), and let γl as in Definition 3.10. Then γl > 0 and
γ∗ ≥ γl.

Proof We need only to prove that γl > 0. To do this, we need the elements of
the Atkinson spectral theory of the equations

z′ =
[(

Aξ −BξBt
ξ

−Qξ −At
ξ

)
+ ηJ−1

(
0 0
0 DξDt

ξ

)]
z. (11ξ)

We only outline the necessary facts and arguments, using [12] and literature
cited therein as a reference.

Let η be a complex number with Im η 
= 0. For each ξ ∈ Ξ, introduce the
Titchmarsh-Weyl-Kodaira matrices M±(ξ, η): these are n×n, symmetric, com-
plex matrices. The matrix functions η → M±(ξ, η) are holomorphic on C\R for
each ξ ∈ Ξ. It follows from the Atkinson Hypothesis 3.8 that sign Im M±(ξ,η)

Im η =
±1 (ξ ∈ Ξ, η ∈ C \ R). One can show that M±

ξ,η(t) = M±(τt(ξ), η) satisfies the
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Riccati equation (3ξ) with η in place of γ−2. In fact, equations (11ξ) admit
an exponential dichotomy over Ξ when Im η 
= 0; M+(ξ, η) parametrizes the
dichotomy projection Pξ,η, while M−(ξ, η) parametrizes I − Pξ,η.

Now let J ⊂ R be an open interval, and suppose that equations (11ξ) admit
an exponential dichotomy over Ξ for each η ∈ J . Introduce the diagonal Green’s
function

G(ξ, η) =
(

(M−−M+)−1 1
2 (M−−M+)−1(M−+M+)

1
2 (M−+M+)(M−−M+)−1 M+(M−−M+)−1M−

)
.

Then the function η → G(ξ, η) extends holomorphically through J for each
ξ ∈ Ξ.

For each ξ ∈ Ξ, there is a 2n × 2n, symmetric “spectral matrix” (actually,
matrix-valued measure) Qξ such that, for any η with Im η > 0:

Im G(ξ, η)
Im η

=
∫ ∞

−∞

dQξ(t)
|t − λ|2 .

The spectral matrix is constructed by considering limε→0+ G(ξ, t + iε) (t ∈ R).
It follows from this construction and the holomorphic extension property that

∫
J

dQξ(t) = 0

for all ξ ∈ Ξ.
Next, one can argue as in the proof of Proposition 3.4 to show that, if η ≤ 0,

then equations (11ξ) admit an exponential dichotomy over Ξ. By the roughness
properties of exponentially dichotomies, there exists ε > 0 such that equation
(11ξ) admits an exponential dichotomy for −∞ < η ≤ ε. Thus

∫ ε

−∞ dQξ(t) = 0
for all ξ ∈ Ξ. However,

∫ ∞
−∞ dQξ(t) 
= 0 because Im G(ξ, η) > 0 if Im η > 0

(ξ ∈ Ξ). We conclude that there exists η0 > ε for which equations (11ξ) do not
admit an exponential dichotomy. This implies that γl ≥ η−2

0 > 0 and completes
the proof of Theorem 3.11.

We now distinguish two possibilities: γ∗ > γl and γ∗ ≤ γl. We discuss the
situation when γ∗ > γl in an informal way. In this case, there exists ξ∗ ∈ Ξ
such that λγ∗(ξ∗) ∈ Cv. One can show that, if γ ≤ γ∗, and if ξ ∈ Ξ is a point
whose forward semiorbit {τt(ξ) | t ≥ 0} is dense in Ξ, then there is no linear
feedback control for which the dissipation inequality (2ξ) is valid. In particular,
if the forward semiorbit of the quadruple ξ0 = (A, B, C, D) is dense in Ξ, then
the dissipation inequality (2) does not hold for any γ ≤ γ∗.

The case when γ∗ = γl is more interesting. To analyze it in a clean way, we
suppose that Ξ is the topological support Suppµ of a fixed ergodic measure µ
on Ξ. This condition holds in particular if the quadruple ξ0 = (A, B, D, Q) is
Birkhoff recurrent with respect to the Bebutov flow. Hence it holds if all these
functions are Bohr almost periodic.

The attenuation problem may or may not be solvable at γ = γ∗ when γ∗ =
γl. A simple example in which it is solvable is (A, B, C, D) = (−1, 1, 1, 1) with
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γ∗ =
√

2
2 . One can determine periodic functions (A, B, C, D) for which γ∗ = γl

and the attenuation problem is not solvable at γ∗.
We are going to give an example in which γ∗ = γl and the attentuation

problem admits multiple solutions at γ = γ∗, for µ-a.a. ξ ∈ Ξ. That is,
for µ-a.a. ξ ∈ Ξ, there are distinct feedback controls u1 = −Bt

ξ(t)m1(t)x
and u2 = −Bt

ξm2(t)x which stabilize equation (1ξ) when w = 0, such that∫ ∞
0 {<Qξ(t)x(t), x(t)> + |ui(t)|2} dt ≤ <mi(0)x0, x0>+ γ∗2 ∫ ∞

0 |w(t)|2 dt for all
w ∈ L2, x0 ∈ Rn. This phenomenon does not occur if the coefficient functions
A, B, D, Q are all periodic with the same period.

Before giving the example we discuss the theoretical background. Let α(µ; γ) =
α(γ) be the rotation number of equations (4ξ) with respect to µ. We use the
main theorem of [17] to conclude that γl = inf{γ > 0 | α(γ) = 0}. By the con-
tinuity properties of the rotation number, we have α(γ∗) = 0. This condition
implies that, at γ = γ∗, all the equations (4ξ) are weakly disconjugate [14].

For each ξ ∈ Ξ, let λ(ξ) ∈ Λ denote the initial value (viewed as a Lagrange
plane) of the principal solution of (4ξ). Arguing as in the proof of ([14], Theorem
2), we see that λ(ξ) is transverse to λh for all ξ ∈ Ξ. Even more, each element
(ξ, λ) of Σ = cls {(ξ, λ(ξ)) | ξ ∈ Ξ} ⊂ Ξ×Λ has the property that λ is transversal
to λh.

Let us now assume that the map ξ → λ(ξ) is discontinuous µ-a.e., and that,
for each (ξ, λ) ∈ Σ, λ is transversal to λv. These conditions will be realized in
our example. Then for µ-a.a. ξ ∈ Ξ, the fiber {λ ∈ Λ | (ξ, λ) ∈ Σ} contains at
least two points. Fix such a point ξ ∈ Ξ, and let λ1, λ2 be distinct points in
fiber of Σ at ξ. Let m1(0) resp. m2(0) be the parameters of λ1 resp. λ2, and let
m1(t) resp. m2(t) be the corresponding solutions of the Riccati equation (3ξ).
There is a positive constant K ′ such that |mi(t)| ≤ K ′ and |mi(t)−1 ≤ K ′ for
all t ∈ R. So the controls u1 = −Bt

ξm1(t)x and u2 = −Bt
ξm2(t)x stabilize (1ξ)

when w = 0 and satisfy (2ξ) for all w ∈ L2 and x0 ∈ Rn, at least if, say, Qξ(t)
or Dξ(t)Dt

ξ is strictly positive definite for all t ≥ 0.

Example 3.12

The construction below uses a technique due to Millionščikov ([21]; see also
Vinograd [27]). Let n = 1. Consider a family of ordinary differential equations

z′ =
(

A(t) γ−2D2(t) − B2(t)
−Q(t) −A(t)

)
z (γ > 0)

where z ∈ R2 and A, B, D, Q are real-valued functions. These equations have
the form (4). We will determine the functions A, B, D, Q in such a way that
γ∗ = γl = 1 and so that the set Σ has the required properties.

Let T be a positive number. Set A0(t) = −1, Q0(t) =
√

3, ∆0(t) = −√
3

(0 ≤ t ≤ T ), then set

G0(t) =
(

A0(t) ∆0(t)
−Q0(t) −A0(t)

)
=

(
−1 −√

3

−√
3 1

)
(0 ≤ t ≤ T ).
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Abusing notation, write G0 =
(

−1 −√
3

−√
3 1

)
, and note that G0 has eigenvalues ±2

with eigenvectors v+ =
(− 1

2√
3

2

)
, v− =

( √
3

2
1
2

)
. The polar angle of v+ resp. v− is

θ+ = 2π
3 resp. θ− = π

6 , so v+ and v− are orthogonal. Let R : [θ−, θ+] → [0, π
2 ) be

the rotation effectuated in time T by eG0T on nonzero vectors v ∈ R2 whose polar
angles θv lie in [θ−, θ+]. That is, set v(T ) = eG0T ·v, and set R(θv) = θv(T )−θv.
Clearly R(θ−) = R(θ+) = 0. When T > 0, R assumes its maximal value in a
unique point θT ∈ (θ−, 5π

12 ), and θT → 5π
12 = π

6 + π
4 as T → 0. Choose and fix a

number T > 0 such that, if 0 
= vT ∈ R2 has polar angle θT , then eG0T · vT lies
in the open first quadrant {v ∈ R2 : v 
= 0, 0 < θv < π

2 }.
Next let T0 > T , and set A0(t) = 0, Q0(t) = 1, ∆0(t) = 1 (T < t ≤ T0). Set

G0(t) =
(

A0(t) ∆0(t)
−Q0(t) −A0(t)

)
=

(
0 1−1 0

)
(T < t ≤ T0).

Abusing notation as before, write G0 =
(

0 1−1 0

)
, and note that eG0(t−T ) effects

a rotation of t − T radians in the clockwise sense in R2.
Now let Φ0(t) be the fundamental matrix solution of

z′ = G0(t)z (0 ≤ t ≤ T0)

If 0 < T0 − T is sufficiently small, then Φ0(t) has the following properties.
First, Φ0(T0) admits two normalized eigenvectors u+ and u− satisfying 0 <
θu− < θu+ < π

2 ; in particular, u± lie in the open first quadrant. Second,
Φ0(T0)u− = β−u− and Φ0(T0)u+ = β+u+ where 0 < β− < 1 < β+ = 1

β− .
Third, Φ0(t)u+ lies in the open first quadrant for all t ∈ [0, T0]; it follows that
Φ0(t)u− also lies in the open first quadrant for all t ∈ [0, T0].

We now modify G0(·) in such a way as to obtain a continuous, 2× 2-matrix
valued function -again called G0(·)- such that G0(0) = G0(T0) and such that the
properties of the preceding paragraph hold for the fundamental matrix solution
Φ0(t) of the modified system

z′ = G0(t)z (12)

The modification can be carried out so that the trace tr G0(t) = 0 for all t ∈
[0, T0], and so that, if

G0(t) =
(

A0(t) ∆0(t)
−Q0(t) −A0(t)

)
,

then the following properties hold: A0(t) ≤ 0 for all t ∈ [0, T0]; A0(t) ≤ −1 for
all t ∈ [0, T ]; Q0(t) ≥ 1 for all t ∈ [0, T0]. Extend G0(t) to the entire real axis
so as to obtain a continuous, T0-periodic, 2 × 2-matrix valued function. The
system (12) admits an exponential dichotomy over R (see [7]).

Now we apply the construction of Millionščikov [21], beginning with the T0-
periodic systems (12). We will not enter into the details of the construction, but
will only describe what it produces. Thus set β0

± = β±, and define η = (1−β−)
2 .

One obtains sequences {Tk | k = 0, 1, 2, . . .} and {βk
− | k = 0, 1, 2, . . .} of positive

numbers and a sequence {Gk =
(

Ak ∆k

−Qk −Ak

)
| k = 0, 1, 2, . . .} of continuous, Tk-

periodic, 2× 2-matrix valued functions such that the following conditions hold.
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(i) Tk = jkTk−1 for a positive integer jk (k = 1, 2, . . .)

(ii) |Gk+1(t) − Gk(t)| < 1
2k+1 and Ak+1(t) = Ak(t) for all t ∈ [0, Tk+1] and all

k = 0, 1, . . .

(iii) The fundamental matrix solution Φk(t) of z′ = Gk(t)z has the property
that Φk(Tk) admits normalized eigenvectors uk± lying in the open first
quadrant. Moreover uk

− has polar angle less than that of uk
+, and uk+1

± lie
between uk

± in the natural sense (k = 0, 1, . . .).

(iv) The angle between uk
+ and uk− is less than 1

k (k = 1, 2, . . .)

(v) Φk(Tk)uk− = βk−uk− and Φk(Tk)uk
+ = βk

+uk
+ where βk− ≤ 1−η < 1 < βk

+ =
1

βk
−

(k = 0, 1, 2, . . .).

Let G(t) = limk→∞ Gk(t). By point (ii) the limit is uniform on R, and hence
G(·) is a Bohr almost periodic function. In fact it is a so-called limit periodic
function because of point (i). Write

G(t) =
(

A(t) ∆(t)
−Q(t) −A(t)

)
.

It follows from point (ii) and the properties of Q0, A0 that Q(t) ≥ 1
2 for all

t ∈ R, and that limT→∞ 1
T

∫ T

0 A(s) ds < 0. This last statement implies that the
linear system x′ = A(t)x is of Hurwitz type.

Let d = inft∈R ∆(t), and define D(t) by D2(t) = ∆(t) − d + |d| + 1. Then
∆(t) = D2(t) − B2(t) where B(t) =

√|d| − d + 1 for all t ∈ R. We see that

the system z′ = G(t)z =
(

A D2−B2

−Q −A

)
z has the form (4) with parameter value

γ = 1.
Now let Ξ be the closure of the set of translates of the function G in the

space G2,2 introduced in Section 2. Then Ξ is invariant with respect to the
Bebutov flow on G2,2. Since G(·) is Bohr almost periodic, the flow (Ξ, {τt}) is
minimal and admits a unique ergodic measure µ; moreover Supp µ = Ξ [10].

Consider the family

z′ =
(

Aξ γ−2D2
ξ − B2

ξ

−Qξ −Aξ

)
z (13ξ)

where the notation is that of Section 2. Let α = α(γ) be the rotation number
of (13ξ) with respect to the ergodic measure µ. As γ−2 increases, the rotation
number α(·) cannot increase. On the other hand, if γ−2 = 0 one can show
that α = 0. One can also use point (iii) of the construction of G to show that
the rotation number of each approximating system z′ = Gk(t)z is zero, so by
continuity properties of the rotation number [11] one has α(1) = 0. It follows
that α(γ) = 0 for all γ ≥ 1. Now, one can verify that the Atkinson Hypothesis
3.8 holds for the family (13ξ). Comparing these facts with the main result of
[17], we see that equations (13ξ) admit an exponential dichotomy over Ξ for all
γ > 1.
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Now, the family (13ξ) does not have an exponential dichotomy at γ = 1,
for if it did then standard perturbation results for exponential dichotomies ([7],
[26]) would imply that point (iv) in the construction of G could not hold. It
is worth noting that, by the Atkinson Hypothesis 3.8 and [17], we must have
α(γ) 
= 0 if γ < 1. This means that γl = 1.

Since n = 1 we can identify Λ with the projective space of lines through the
origin in R2, which in turn we identify with the set of unit vectors v ∈ R2 whose
polar angles θv lie in [0, π). With this identification, one can use point (iii) in
the construction of G together with arguments of [20] or [14] to show that the
set Σ lies in the product of Ξ with the open first quadrant. Further, one can
show that, if γ > 1 and ξ ∈ Ξ, then the image of the dichotomy projection Pγ,ξ

is a line through the origin in R2 containing a unit vector v in the open first
quadrant. All this shows that γ∗ = 1 = γl.

Finally, using point (v) of the construction of G, one can show that there is
a set Ξ0 ⊂ Ξ with µ(Ξ0) = 1, such that, if ξ ∈ Ξ0, then the fiber Σ∩ ({ξ}× P1

R
)

contains at least two points λ1 and λ2. Then λ1 and λ2 are lines through the
origin in R2 which pass through the open first quadrant, so λ1 = span

(
1

m2(0)

)
for positive numbers m1(0), m2(0). One can now check that the controls ui(t) =
−Bξ(t)tmi(t)x(t) stabilize (1ξ) when w = 0 and satisfy (2ξ) for all w ∈ L2 and
x0 ∈ R.
Remark 3.13 Let us set γ = 1 in the above example, so that γ equals the
minimal attenuation value γ∗. Note that x′ = Aξ(t)x is of Hurwitz type for
each ξ ∈ Ξ. Therefore the control system

x′ = Aξ(t)x + Bξ(t)u + Dξ(t)w

together with the functional

Lξ(u, w) =
∫ ∞

0

{〈Qξ(t)x(t), x(t)〉 + |u(t)|2 − |w(t)|2} dt

defines a differential game for each ξ ∈ Ξ. In this game, w is chosen by the
maximizing player and u is chosen by the minimizing player; see [5].

Now, for µ-a.a. ξ ∈ Ξ, there is a point λ0 ∈ Σ ∩ ({ξ} × P1
R
) with the

property that each non-zero solution z(t) =
(

x(t)
y(t)

)
of (13ξ) with z0 = ( x0

y0 ) ∈
λ0 decays exponentially as t → ∞. This is a consequence of property (v) of
our construction and is a general characteristic of linear differential systems of
Millions̆c̆ikov type. It follows that, for each such ξ, the corresponding differential
game has a value, namely

v = min
u

max
w

Lξ(u, w) = max
w

min
u

Lξ(u, w) =

= 〈m0x0, x0〉 = m0x
2
0

where m0 ∈ R is defined by the condition λ0 = Span
(

1
m0

)
.

Of course this phenomenon cannot occur for time-invariant or periodic H∞

control systems.
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Basel, 2000.

[9] P. Dorato (Editor.), Robust Control, IEEE Press, New York 1987.

[10] R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969.

[11] R. Fabbri, R. Johnson, C. Núñez, The rotation number for non-
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[21] V. Millionščikov, Proof of the existence of irregular systems of linear
differential equations with almost periodic coefficients, Diff. Urav. 5 (1969),
1979–1983.

[22] V. Nemytskii, V. Stepanov, Qualitative Theory of Differential Equa-
tions, Princeton University Press, Princeton, NJ, 1960.
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