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Abstract

This note proposes a topological framework for the analysis of the
time shift on behaviors and its asymptotics as time tends to infinity. The
relations to controllability properties are explored.
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1 Introduction

Following a proposal by Jan Willems we consider dynamical systems defined
by a set B of functions on a time set 7" and with values in a signal alphabet
W. We restrict attention to time-invariant systems where T is an (additive)
subgroup of R and B is invariant under the time shift. There are various ways
to add more structure to this ‘hopelessly general definition (which) nevertheless

captures the crucial features of the notion of a dynamical system’ [4]. In
the present paper we intend to complement the algebraic theory of behaviors
by a topological framework which allows us to use concepts from (classical)
topological dynamical systems theory (see, e.g., Robinson [3]) in order to analyze
controllability. This approach may be viewed as an extension of the theory of
control flows and control sets as presented in [1]. In fact, also many proofs are
analogous.

Our controllability notion is based-as put forward by Jan Willems-on con-
catenability. This will be related to the shift dynamical system on the behavior
and its asymptotics as time tends to infinity. For simplicity, we write down
everything for the continuous time case T = R only. Section 2 introduces the



basic definitions and some fundamental properties. Section 3 discusses the re-
lation between behavioral control sets and topological transitivity of the shift
dynamical system. Furthermore, behavioral chain control sets are characterized
as the maximal chain transitive sets. Section 4 presents a simple example.

2 Behaviors and Time Shifts

In this section behaviors are defined in a topological context and the shift dy-
namical system and behavioral control sets are introduced. As an example,
control-affine nonlinear systems with input constraints and outputs are dis-
cussed, and it is shown how behavioral control sets here arise from control sets
in the state space.

We will only consider bounded behaviors, i.e., subsets of L, (R, R%). Recall
(see, e.g., [1]) that the weak* topology on L., (R,R%) is the weakest topology
such that for all « € Ly (R, R?) the maps

Loo(R,RY) = R, w— / w(t)a(t) dt
R

are continuous. Then for every bounded set in L., (R, R?) the induced topology
is metrizable. Fixing a countable dense subset (c;) C L;(R,R?), such a metric
is given by
> t) —w(t)]Ta;(t) dt
L+ | [plo(t) — wt)] oy (t) di|

i=1
Define the time shift © by

0 : R X Loo (R, R?) — Lo (R,RY), (t,w) — (Bsw)(s) = w(t +s), s € R.
Now we are ready to give the following definition of topological behaviors.

Definition 1 A behavior is a weak® compact and ©—invariant subset B C
Loo(R,R?).

Here ©—invariance means that w € B implies O;w € B for every t € R.
Note that a weak* compact subset of L., (R, R?) is bounded, hence a metric on
B is given by (1). Define the behavior flow as the restriction of the time shift ©
to the behavior B.

The following proposition follows by a minor modification of the proof of
Lemma 4.2.4 in [1].

Proposition 2 The behavior flow © is a continuous dynamical system on B,
i.e., © : R x B — B is continuous and G5 = Oy 0 Oy for all s,t € R and
Oy = id.



Next we illustrate behaviors by showing how they arise from control-affine
systems with outputs. Consider a smooth control system on a Riemannian
manifold M

(1) = fo(z(t)) + Y wi(t) fi(z (1)), (2)
i=1

y(t) = h(z(t), u(t)) = ho(x(t)) + Zuz'(t)hi(w(t)),

with inputs (u;) taking values in a compact convex subset U C R™; furthermore,
the f; are smooth vector fields on M and the output functions h; : M — RF are
also smooth. Assume that for every z € M and input function u in

U={uec Lo(R,R™), u(t) € U for almost all t € R}
there exists an absolutely continuous global solution (¢, z,u), t € R.

Proposition 3 Consider system (8) and let K C M be compact. Then

_ k there is x € M such that for allt € R
5=t ctx Lu B L L )

defines a behavior.

Proof. We have to show that B C L., (R, R™**) is compact and ©—invariant.
Invariance is obvious by definition. The set U C Loo(R,R™} is compact by [1,
Lemma 4.2.1] and the map

(,u) — (ot z,u),u(t+-)) : K xU - K xU

is continuous by [1, Lemma 4.3.2]. Now compactness of B follows, since K is
compact and h is control affine. m

Remark 4 The restriction to behaviors in Lo, (R, R?) may appear as a very re-
strictive a-priori boundedness assumption. However, as is easily seen in the
preceding example, the existence of unbounded outputs is not excluded. We
just restrict attention to bounded behaviors. Furthermore, if one uses weighted
Lebesgue measures, also unbounded behaviors can be admitted.

In the rest of the paper, we suppose that a behavior B is given. A definition
for controllability for behaviors has been proposed by Jan Willems. We adapt
it to our situation in the following way.

Definition 5 A ©—invariant subset D C B is a behavioral control set if it is a
maximal set with the following property:
For all v,w € D there are w1 € D and a time Ty > 0 satisfying

B v(t) for t<0
wl(t)_{ w(t—Ty) for t>Ty



Remark 6 For control-affine systems as considered in Proposition 3, a control
set D in the state space M with nonvoid interior is a mazximal set of approximate
controllability. If the system is locally accessible, one easily sees that the closure
of the following set contains a behavioral control set D:

(u,y) € B there is x € intD with ¢(t,x,u) € intD
vy "and y(t) = h(e(t, z,u),u(t)) forallt e R [~

Definition 5 is not ‘dynamic’ in the sense that it is defined in terms of the
natural associated dynamical system which is the time shift © on the set B
of behaviors. In the next section we will establish such a connection between
controllability and the time shift.

3 Analysis of the Shift

Here we discuss some topological properties of the time shift on the behaviors.

Basic properties of flows on compact metric spaces are encoded in the topo-
logically transitive and mixing sets, in the chain recurrent components, the
attractors, and their relations (cp. [3]). For the behavioral control flow, a set
D C B is topologically transitive if there is wy € D with

D = w(wp) := {w € B, there are t;; — oo with Oy, (wg) — w for k — oo}.

A set D C B is topologically mixing if for all open V', V2 C D there is T > 1
with O7(VH)NV?2 £ @.

Theorem 7 Let D be a behavioral control set. Then the closure clD is a com-
pact invariant set for © and the flow © restricted to clD is topologically mizing
and topologically transitive.

Proof. The closure of D is compact and invariant, since D is an invariant
subset of the compact set 5. Topological transitivity follows from topological
mixing; see, e.g., [1]. Hence we only have to show that for every pair V!, V2 of
open sets in D there exists Ty > 1 such that O, (V) NV?2 # (. We may for
j = 1,2 assume that V7 has the form V7 = V(w’/) N D with

V(wl) = {w € B, /]R [w(s) — wj(s)]Taij(s) ds| <e fori=1, ...,kj} ;

here a;; are elements of L; (R, R?). There is 7' > 1 such that for all j and

€
/JR [—T,T] \oz ](S)‘ o= 2diamB ( )

note that diamB := sup{|v —wl|_, v,w € B} < oo, since weak™ compact
subsets of L. (R,R?) are bounded. By controllability there are w € D and a
time to > 0 satisfying

w(t) = w(t) for t<T
Tl wi(t—to—2T) for t>T+t



Then using (3) one sees that w € V(u?) and w(ty + 27 + ) € V(w'). Thus the
assertion follows with T :=to +27. m

Remark 8 It is not clear, if (by mazimality of behavioral control sets) one
obtains a maximal topologically transitive set for the time shift.

The definition of a behavioral control set requires that one can precisely
‘hit’ the function w after some time. It may appear natural to introduce the
following weaker concept, in analogy to chain controllability in the state space.
Hopefully, also in the present situation this will lead to sets which are better
behaved. Observe that again this definition is not given in the flow context;
it is strictly analogous to the definition of behavioral control sets. Define a
semi-distance on B (taking into account only the future part of behaviors) by

oo oo v —w Tai d
dt(,w) =) 27" ‘fo O[o(t) ()] T(t) t’ |
i=1 1+‘f0 [w(t) — w(t)]" oy (t) dt)

Definition 9 For e, T > 0 an (¢,T)"—chain from v € B to w € B is given by
n € Nywyg =v,wy,...,w, =w € B,Ty,...., T,,_1 > T,

such that
dT(Or, (w;), wis1) < € for all i.

If for all e, T > 0 there is an (¢, T)"—chain from v € B to w € B, we say that
v 18 chain controllable to w.

We will consider maximal sets of behaviors which are chain controllable.

Definition 10 An invariant subset € C B is a behavioral chain control set if
it is a maximal set such that for all v,w € & and all €,T > 0 there is an
(e, T)t—chain in & from v to w.

For these sets, contrary to behavioral control sets, we will be able to provide
a complete characterization in terms of the flow. Recall from the theory of
dynamical systems (see [3]) that an (¢,T)—chain for a continuous flow is defined
as in Definition 9, but with the semidistance d* replaced by the distance d in
the metric space. They give rise to chain transitive sets in analogy to Definition
10.

Theorem 11 Let B be a behavior. Then a nonempty invariant set £ C B is a
behavioral chain control set if and only if the restriction of the time shift to €
18 chain transitive and £ is a mazimal set with this property.

Proof. Suppose that £ is a behavioral chain control set. Let v,w € £ and
pick €, T'> 0. Recall the definition of the metric d on B and choose k € N large
enough such that

i 27" < e (4)

i=k+1



For the finitely many ay, ..., ax € Li(R,RY) there is S > 0 such that for all i

g
i d .
Lol < g )

We may assume without loss of generality that 7 > S. Chain controlla-
bility from v to w(—S + -) yields the existence of n € N and wvq,...,v, €
E Toy oy Ty > T+ S with vg = v, v, = w(—S5+ ) and

d+(®Ti'Ui7Ui+1) < ¢ for j=0,...,n— 1. (6)

Now construct an (g, T')-chain from v to w in the following way (‘we jump later’).
Define
wo =0, w; =0Ogv; forj=1,...,n—-1, w, =Ogv, =w,

and let the jump times be t; = T; + 5. Then
d(O4,wo, w1) = d(Or, 450, Ogv1)

< ‘fR [o(t+Tp + S) — vi(t + )] et dt‘

- ;::12 1+ ’fR [w(t+To+8)—vi(t+9)" e

) dt’
< oi ‘fR[U(t‘FTo-FS)—U1(t—|—S)]Tozi(t dt‘
T 1+‘fR[v(t—i—To—&—S)—vl(t—i—S)]Tai ) dt‘

)
(
b )
iz (

Now fori =1,...,k

/ Wt +To + ) — w1t + ST as(t) dt‘
R

S
< / las(7)| dr 2diamB + / W+ Ty +S) — vn(t+ )T as(t) dt
R\[-5S,S]

_s
25
<2+ / [v(t 4+ To) — v1(8)]" u(t) dt| < Be,
0
since by (6) and (5)
25
/o [(t +To) — 1 (8)] as(t) dt
_ /oo [w(t -+ To) — o1 (8] as(t) dt — /OO w(t -+ To) — 1 (8] as(t) dt
0 25

<

/oo [v(t 4+ To) — v1(8)]" ci(t) dt’ + 2 < 3e.
0

Thus
d(@to’wo, wl) < 6e.



Analogously, one shows that d(0;,w;, w;j1) < 6¢ for all j =1,...,n — 1. This
proves that the restriction of © to the behavioral chain control set £ is chain
transitive.

Conversely, suppose that £ is a chain transitive set, and let v,w € £. By
assumption one finds for alle, T' > 0 an (&, T")—chain given by vo = v, v1, ..., v, =
Osw in £ and Ty, ...,T,_1 > T from v to w with

d(@T1 (’Ui, ’UZ'+1) < eE. (7)

We may assume that conditions (4) and (5) are satisfied and that 7; —.S > T.
This gives rise to an (g,T) " —chain in the following way (‘we jump earlier’).
Define

wo =0, w; =0_gv;forj=1,..,n-1, w, =O_gv, =w,
and let the jump times be t; =7T; — 5. Then
dT (04, wo,w1) = dT (O, _5v,0_5v1)
‘fo [w(t+To— 8) —vi(t — S)]" et
2

8

dt‘

F ot + Ty — 8) — it — )" au(t) dt

(t)
(
‘fo [w(t+ Ty — S) —vi(t — )7 ai(?) dt‘
ot +To — S) — vt — )" el

<22"
=1

Now fori=1,...,k

t) dt

/0°° Wit + Ty — S) —v1(t — )| aui(t) dt’

§/ | (7)] dr 2diamB +
2

25
/ W(t+To—S) —vi(t — )" ai(t) dt
S 0

<2+ < be,

S
/ w(t + To) — o1 (8] as(t) dt

—-S

since by (7) and (5)

s
’/s [w(t + To) — v1(1)]" ai(t) dt

/ [olt + To) — 0a (8] cu(t) d — / ot + o) — o1 (O] cus(t) dt
R R\[-S,S]

< /[U(t—i—TO) — o1 (8)]" () dt‘ +2¢ < 3e.
R

Thus
d+(®t0w0, ’LUl) < be.



Analogously, one shows that d* (0w, w;41) < 6e for all j =1,...,n — 1.

It only remains to show the maximality properties. A chain control set £
is a maximal chain transitive set: Suppose that the restriction of © to &' D &
is chain transitive. Then it follows that £ = &, since chain transitivity of &£’
implies, as just proven, that £ is chain controllable and £ is a maximal chain
controllable set. In the same way, one sees that a behavioral chain control set
£ is a maximal set with the property that the restriction of © to £ is chain
transitive. m

4 An Example

The following simple example (taken from Gayer [2], Example 27) illustrates
that in the context of system (2) one cannot find behavioral control sets just by
looking at the property, if one can steer the system from points y; to y2 in the
output space.
Consider the single well potential
Lo 13

Viz) = 3% — 3¢

and the corresponding oscillator (sometimes also called ‘escape equation’)

1 = T2,

By = —yxg — 1 + 25 + u(t)
with u(t) € U = [—p, p] and parameter values
p=0.041, v = 0.1.

Then (see Figure 1) in the state space R? there is an invariant control set C
(around the stable equilibrium (0,0) for v = 0) and a variant control set D
(containing the hyperbolic equilibrium (1,0) for v = 0 and a loop around C).
This is only a numerical approximation; however, one can prove that there is a
p—value, where two control sets of this form occur. If we consider the output

y = h(zy,22,u) = 21,

and fix a compact set K C R? containing C and clD, Proposition 3 yields a
behavior B C Loo (R, R) X Lo (R, R). Then each control set in M = R? give rise
to a behavioral control set. The projections of D and C to the output space R
overlap. Hence looking at the corresponding points in R does not allow us to
identify the corresponding behavioral control sets (naturally, this is different, if
we look at pieces of outputs y(t), ¢ in some interval; this also determines ¢(t)
and hence the control set.)
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Figure 1: Two control sets for the escape equation

5 Conclusions

The paper presents a step towards the study of controllability properties of
general behaviors. Controllability is related to the asymptotics of the time
shift as time tends to infinity. This is analogous to the state space theory. In
fact, in the behavioral context this relation may appear even more natural. In
particular, this is true for the slightly weakened chain version.

Further topics include the role of geometric properties, in particular, dif-
ferential flatness, and conditions implying that chain control sets coincide with
control sets. Furthermore, linearized behaviors can be analyzed via Lyapunov
exponents. This allows, in particular, for an analysis of asymptotic controlla-
bility properties by linearization.
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