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Abstract

This paper considers monotonic (or causal) homotopy between tra-
jectories of control systems. The main result is the construction of an
analogue of the simply connected covering space. The constructed cov-
ering � (�; x) has the structure of a manifold and satis�es the property
that two trajectories are monotonic homotopic if and only if the end
points of their liftings coincide.
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1 Introduction

The subject matter of this article is monotonic (or causal) homotopy between
trajectories of control systems. This is a variant of the usual homotopy where
two trajectories are considered to be homotopic if they can be deformed
to each other continuously through trajectories. Equivalently, monotonic
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homotopy holds when the trajectories belong to the same path component
of the space of all trajectories of the control system.
The study of this sort of homotopy is motivated by di�erent sources. First

in the control theoretic setting one is interested in understanding such com-
plex objects like accessible sets, control sets, local control sets, etc. Of course,
it is to be expected that topological invariants, adapted to the dynamics of
the system, can be extremely helpful in getting at least rough descriptions
of these sets. This was done by Colonius-Spadini [3], where monotonic fun-
damental semigroups of local control sets are de�ned and used to detect the
existence of local control sets within control sets.
Also, in semigroup theory monotonic homotopy was considered by Lawson

[7], [8] (in a slight di�erent setting than ours). The objective in these papers
is to extend to Lie semigroups the classical construction of the universal
covering groups.
Our objective in this paper is to construct, for monotonic homotopy, the

analogue of the simply connected covering space of a topological space. In
this regard our main result reads as follows: Let � be a control system on the
state space M (a �nite dimensional manifold). Fixing an initial point x0 in
M , we select a subset of \regular" trajectories and denote by � (�; x0) the set
of monotonic homotopy classes of regular trajectories starting at x0. Then
we show that there exists a �nite dimensional manifold structure on � (�; x0)
such that the end point mapping " : � (�; x0)!M is a local di�eomorphism
in the sense that its di�erential is an isomorphism at every point of � (�; x0).
The image of " is contained in the interior intA (x0) of the accessible set from
x0, and is in fact intA (x0) if the Lie algebra rank condition holds.
In this case the mapping " : � (�; x0) ! intA (x0) is the closer analogue

of the classical simply connected covering space. In fact, since " is a local
di�eomorphism, we can lift � to a control system, say b�, on � (�; x0). The
trajectories of b� are mapped by " onto the trajectories of �. Conversely,
modulo some technical questions related to the fact that x0 may not belong
to intA (x0), we can lift trajectories of � to trajectories of b�. Then, roughly
speaking, we get the following results: 1) two trajectories of � are monotonic
homotopic if and only if their liftings have the same end point. 2) If N is

a manifold endowed with a control system e� and p : N ! intA (x0) is a
local di�eomorphism mapping e� to � then there exists a lifting mapping
f : � (�; x0) ! N which relates b� and e�. The last property shows that
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� (�; x0) is universal in the same sense as the simply-connected covering
spaces.
Despite of these properties we stress that, in general, � (�; x0) is not the

simply connected covering of intA (x0). Actually it is not even true that
" : � (�; x0) ! intA (x0) is a covering mapping. In fact, if " is a covering
then two trajectories which are homotopic (in the usual sense of the word)
are also monotonic homotopic. However we exhibit an example of a system
� having homotopic trajectories which are not monotonic homotopic.
The paper is organized as follows. After describing the set-up in Section 2,

Section 3 discusses regular controls on which our constructions are based. In
particular it is shown that normal controls are regular. Section 4 introduces
the basic object of this paper, monotonic homotopies. As a preparation for
their analysis, Section 5 proves basic properties of local di�eomorphisms for
which we could not �nd an adequate reference. Section 6 proves the manifold
structure of the space of monotonic equivalence classes. The control system is
lifted in Section 7 to this manifold, and in Section 8 a universality property is
shown. Section 9 discusses local control sets and the fundamental semigroup;
also the relation to coverings is noted. The �nal Section 10 presents an
example where monotonic homotopy is not implied by homotopy.

2 Set up

LetM be an n-dimensional connected smooth (C1) manifold. For topological
purposes we assume thatM is given with a Riemannian metric which induces
a distance function dR. We consider a �nite dimensional vector subspace
E of the vector space (over R) of smooth vector �elds on M . In order
to have a topology on E and on corresponding function spaces we assume
that E is endowed with an inner product h�; �i. Let � � E be a convex
cone, which is assumed to be generating in E, that is, � is not contained
in a proper subspace of E and hence with a norm in such a way that the
inclusion of E into the space of vector �elds is smooth, so that the map
v 2 E 7! v (x) 2 TxM is also smooth. Although not essential to some of
our results we will assume, once and for all that the vector �elds in � are
forward complete. Also, we assume throughout the paper that � satis�es
the Lie algebra rank condition, that is, L (x) = TxM for all x 2M , where L
denotes the smallest Lie algebra of vector �elds containing � (or E).
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Given x 2M , denote by E (x) the subspace of the tangent space TxM ob-
tained by evaluating at x the vector �elds in E. The same way the evaluation
map yields a convex cone � (x) 2 TxM .
By a trajectory of � we understand an absolutely continuous curve �

in M with �0 (t) 2 � (� (t)). In principle a trajectory can be de�ned in
an arbitrary interval [0; T ]. We are mainly concerned with the geometrical
properties of the trajectories, that is, with their traces. Hence we use the
fact that � is a cone to reparametrize the trajectories and de�ne them in
[0; 1]. In fact, if � : [0; T ] ! M , T > 0, is a trajectory then the curve
� : [0; 1]! M , � (t) = � (Tt), satis�es �0 (t) = T� (Tt) 2 � (� (t)) and thus
is also a trajectory.
Denote by E the Banach space of bounded measurable functions u :

[0; 1]! E endowed with the ess sup-norm jj�jj1, where the norm on E comes
from the inner product. Let U be the convex cone formed by those functions
u 2 E which assume values in �. The assumption that � is a generating
cone in E implies that U has non-empty interior in E (w.r.t the sup-norm).
We call the elements in U control functions of �. For a control function
u : [0; 1] ! � and an initial condition x 2 M the corresponding trajectory
trjx (u) : [0; 1] ! M is the solution of the di�erential equation _x = u (t) (x)
starting at x.
Apart from the norm (strong) topology it is sometimes convenient to

endow E with the weak* topology, which is the weakest topology such that for
all y 2 L1 ([0; 1]; E) the linear functional u 7!

R 1
0
hy (t) ; u (t)idt is continuous

(cf. Colonius-Kliemann [2]).
Let T (�) denote the set of trajectories of �, T (�; x) the set of trajectories

starting at x and T (�; x; y) the trajectories starting at x and ending at y.
Also write A� (x) or simply A (x) for the accessible set from x, that is, the
set of end points of the trajectories trjx (u), u 2 U . Equivalently, A (x) is the
image of the map ex : U !M which associates to u the end point trjx (u) (1)
of its trajectory.
We denote the 
ow de�ned by the control u by �ut (or simply �t if u is un-

derstood). Explicitly, �ut (x) = trjx (u) (t). By the existence and uniqueness
theory �ut is a di�eomorphism between open subsets of M .
The set of trajectories is topologized with the C1-topology which is a
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metric space given by the distance

d1 (�; �) = sup
t2[0;1]

dR (� (t) ; � (t)) + ess sup
t2[0;1]

j�0 (t)� �0 (t)j :

It is a well known consequence of the continuous dependence of solutions on
parameters that for any x the map

trjx : U �! T (�; x)

is continuous. Furthermore, with respect to the C1-topology on the set of
trajectories the mapping trjx is also an open mapping. Hence a subset A �
T (�; x) is open if and only if its pre-image trj�1x (A) is open in U .

3 Regular controls

Given a �xed x 2 M we de�ned above the map trjx which associates to
a control u 2 U the trajectory starting at x. We denote the end point
of this trajectory by ex (u) = trjx (u) (1), so that we have the well de�ned
evaluation map ex : U !M . Note that this map can be de�ned in the whole
Banach space E (in case the system is complete). From the usual theorems
on dependence of solutions on parameters we have that ex is di�erentiable.

De�nition 3.1 A control function u is said to be regular at x 2 M if u 2
intU and the di�erential d (ex)u of ex at u is surjective. The set of regular
controls at x is denoted by R� (x). A trajectory � is regular at x if � =
trjx (u) for some u 2 R� (x). The set of regular trajectories at x is denoted
by R (�; x), while the set of regular trajectories from x to y 2 M is denoted
by R (�; x; y).

We denote by AR (�; x) the set of points attainable from x by regular
controls. An application of the implicit function theorem (see e.g. Lang [6])
ensures that both R� (x) and AR (�; x) are open subsets. It will be proved
below that these sets are not empty if the Lie algebra rank condition holds.
Given two controls u; v : [0; 1]! � in U , their concatenation is the control

v � u de�ned by

(v � u) (t) =
�
u (2t) ; 0 6 t 6 1

2

v (2t� 1) ; 1
2
< t 6 1 .
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Proposition 3.2 Let u and v be controls in intU .

1. Suppose that u is regular at x0. Then v � u is regular at x0.

2. If v is regular at the end point of trjx0 (u) then v � u is regular at x0.

Proof: De�ne the controls

u1 (t) =

�
u (2t) ; 0 6 t 6 1=2
0; 1=2 6 t 6 1 and v1 (t) =

�
0; 0 6 t 6 1=2
v (2t� 1) ; 1=2 6 t 6 1

and denote the 
ows of u1, v1 and v � u by ',  and �, respectively. For any
w 2 E , the variation of parameter formula gives

(de)v�u (w) = (d�1)x0

Z 1

0

(d�t)
�1
x0
w (t) dt: (1)

In order to have this formula in terms of u1 and v1 write w 2 E as w = w1+w2
where

w1(t) =

�
w (2t) ; 0 6 t 6 1=2
0; 1=2 6 t 6 1 and w2(t) =

�
0; 0 6 t 6 1=2
w (2t� 1) ; 1=2 6 t 6 1 :

If we write the integral in (1) as
R 1
0
=
R 1=2
0
+
R 1
1=2
then a simple computation

yields

(de)v�u (w) = d ( 1)'1(x0) d (ex0)u (w1)

+d
�
 1 � '1 �  �11

�
 1�'1(x0)

d
�
e'1(x0)

�
v
(w2) :

Now suppose that u is regular. Then by choosing w so that w2 = 0 we
see that (de)v�u is surjective, proving the �rst part of the proposition. Anal-
ogously, the second part follows by choosing w such that w1 = 0, concluding
the proof.

Now, we check that regularity is preserved under time reversal. Given a
curve � : [0; 1] ! M , we write �� (t) = � (1� t). If � is a trajectory of �
then �� is a trajectory of ��. In fact, if � = trjx (u) then �� = trjy (�u)
where y is the end point of � and �u is a control of ��.
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Proposition 3.3 Suppose that u 2 R� (x) and put y = ex (u). Then �u 2
R�� (y). Equivalently, if � 2 R (�; x; y) then �� 2 R (��; y; x).

Proof: Denote by ' and  the 
ows of u and �u, respectively. We have

d (ey)�u (w) = (d 1)y

Z 1

0

�
d �1t

�
 t(y)

w (t) dt 2 TxM .

The right hand side is equal to
R 1
0
d
�
 1 �  �1t

�
 t(y)

w (t) dt. But  1 �  �1t =

'�11�t. Hence,

d (ey)�u (w) =

Z 1

0

d
�
'�11�t

�
'1�t(x)

w (t) dt: (2)

On the other hand,

d (ex)u (w) = d ('1)x

Z 1

0

d
�
'�1t

�
't(x)

w (t) dt: (3)

Since the integrals in (2) and (3) are the same if w (t) is replaced by w (1� t),
and d ('1)x is an isomorphism, it follows that d (ey)�u is surjective if and only
if d (ex)u is surjective.

Since we are assuming the Lie algebra rank condition we can construct
a plenty supply of piecewise constant controls which are regular. In fact, it
is well known that under the Lie algebra rank condition there are normal
controls (in the sense of Sussmann [13]). On the other hand we check below
that a normal control is regular, provided it belongs to the interior of U .
This shows the existence of regular controls.
In order to recall the notion of normal control let us denote by Xt its 
ow

of the vector �eld X on M . If X1, : : : , Xk are vector �elds in �, we can
form the function

�x (t1; : : : ; tk) = Xk
tk
� � � � �X1

t1
(x)

with x 2 M . Clearly, if t1; : : : ; tk � 0 then � (t1; : : : ; tk) is the end point of
a trajectory starting at x de�ned by a piecewise constant control. According
to Sussmann [13] such a control is said to be normal (at x) if the rank of �
at � = (t1; : : : ; tk) is n = dimM .
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In order to establish the relation between normal and regular controls,
let us �x once and for all the vector �elds X1, : : : , Xk in �. Let R+ be
the set of strictly positive real numbers. Each � = (t1; : : : ; tk) 2 Rk+ deter-
mines a piecewise constant control which assumes the value X i in the interval
[Ti�1; Ti), where Ti = t1 + � � � + ti (with t0 = 0). This control is de�ned in
the interval [0; Tk].
We reparametrize these piecewise constant controls through the following

mappings:

1. Put
� = f� = (s1; : : : ; sk) 2 Rk+ : s1 + � � �+ sk = 1g

for the standard simplex in Rk, and let � : � � R+ ! Rk+ be de�ned
by

� ((s1; ; : : : ; sk) ; T ) = T (s1; ; : : : ; sk) :

Then � is a di�eomorphism.

2. Let � : � � R+ ! U be the mapping which associates to the pair
((s1; ; : : : ; sk) ; T ) the piecewise constant control de�ned on [0; 1], whose
value in the interval [Sj�1; Sj] is TX

i, where Si = s1 + � � � + si and
S0 = 0.

From the very de�nition of these mappings we have the following com-
mutative diagram, which gives a reparametrization of the controls de�ned by
� 2 Rk+.

�� R+
��! Rk+

� # # �x
U �!

ex
M

(4)

With these notations at hand we can prove the following relation between
the di�erentials of ex and �x.

Proposition 3.4 Take � 2 � � R+. Then the di�erential d (ex)�(�) is sur-
jective if �x has rank n = dimM at � (�).
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Proof: An easy computation shows that

@�x
@ti

(�) = dXk
tk
� � � � � dX i+1

ti+1

�
X i (zi)

�
where zi = X i

ti
�� � ��X1

t1
(x). Clearly, these partial derivatives span the image

of (d�x)� . On the other hand, for � = ((s1; ; : : : ; sk) ; T ) let 't, t 2 [0; 1], be
the 
ow induced by the control � (�).
Explicitly,

't = TX i
t�Si�1 � � � � � TX

1
t1

if t 2 [Si�1; Si], where Si = s1 + � � � + si and S0 = 0. The variation of
parameter formula gives

d (ex)�(�) (w) = (d'1)x

Z 1

0

(d't)
�1
x w (t) dt

with w 2 E . In particular, take w such that w (t) = 0 if t =2 [Si�1; Si] and

w (t) = X i t 2 [Si�1; Si]:

Then using the expression for �t and the fact that dXt (X) = X, for any
vector �eld X, it follows that

d (ex)�(�) (w) = Tsi
@�x
@ti

(�) :

Therefore, the partial derivatives of �x appear in the image of d (ex)�(�) prov-
ing the claim.

Remark: An alternative proof of the above proposition would be to show
that � is di�erentiable and then apply the chain rule to the commutative
diagram (4). This would imply that the image of d (ex)�(�) contains the
image of (d�x)�(�).

Proposition 3.5 Under the Lie algebra rank condition the set of regular
controls is not empty.

Proof: By assumption, the convex cone � spans the �nite dimensional space
E of vector �elds. Thus also int� spans E and the Lie algebra spanned by
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the vector �elds in int� coincides with the Lie algebra L spanned by E.
Then repeating the usual proof that the Lie algebra rank condition implies
accessibility (see e.g. Jurdjevic [5]), it follows that there are X1, : : : , Xk

in int� and (t1; : : : ; tk) 2 Rk+, which de�ne a normal control. This control
belongs to intU , with respect to the sup-norm topology and it is regular by
Proposition 3.4.

Remark: In [13] it is proved that accessibility (even without eventually the
Lie algebra rank condition) implies normal accessibility. This result combined
with the other perturbation results of [13] may imply that there are regular
controls under accessibility alone. Although the proof above uses that E is
�nite dimensional it might be true that this condition is not required.

Proposition 3.6 Assume the Lie algebra rank condition. Then AR (�; x) =
intA (x) and clA (x) = cl (intA (x)).

Proof: The latter equality is well known. Also, it is well known that any
point in intA (x) is reachable from x by a normal control. The proof that
intA (x) = AR (�; x) is analogous.

4 Monotonic Homotopy

Monotonic homotopy between trajectories of � is a homotopy linking con-
tinuously trajectories of � through trajectories. Of course, one can de�ne
such homotopies between arbitrary trajectories. However, we restrict our
de�nition to regular trajectories, since much sharper results can be obtained
in this framework. Recall that, for x; y 2 M the set R (�; x; y) of regular
trajectories of � from t x to y was endowed with the C1-topology.

De�nition 4.1 Two regular trajectories � and � are said to be monotonic
homotopic (� 'm �) if their extremal points are equal, that is, for some
x; y 2M , �; � 2 R (�; x; y) and � and � belong to the same path component
of R (�; x; y).

This variant of the concept of homotopy appeared in the literature with
di�erent names (see Colonius-Spadini [3] and Lawson [7], [8]). In view of that
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we use interchangeably the terms monotonic homotopy, causal homotopy or
dynamic homotopy, in the sense of the above de�nition. In contrast we say
geometric homotopy for the usual homotopy between curves.
It is clear that the relation of being monotonic homotopic is an equivalence

relation. If we �x an initial condition x 2M the set of equivalence classes of
these trajectories in R (�; x) is denoted by � (�; x), that is,

� (�; x) = R (�; x) = 'm : (5)

Denote by � : R (�; x) ! � (�; x) the canonical map which associates to �
its monotonic homotopy class [�]. Also, we write � = � � trj for the mapping
which associates to a control function the monotonic homotopy class of its
trajectory.
For later reference we state the following easy consequences of the de�n-

ition of monotonic homotopy.

Proposition 4.2 Let �1; �2 2 R (�; x; y) and �1; �2 2 R (�; y; z) with x; y; z 2
M . Suppose that �1 'm �2 and �1 'm �2: Then, �1 � �1 'm �2 � �2.

Proof: In fact, concatenating homotopies yields a homotopy between �1��1
and �2 � �2.

Remark: We do not known whether the converse to the above proposition
holds. However we prove a partial converse to it in Lemma 7.3 below.
In the next proposition we let as before �� be the curve obtained from

� by reverting time. By Proposition 3.3, if � 2 R (�; x; y) then �� 2
R (��; y; x).

Proposition 4.3 Let �1; �2 2 R (�; x; y) be such that �1 'm �2. Then
��1 'm ��2 , for ��.

Proof: A homotopy between ��1 and �
�
2 is obtained by reverting time of a

homotopy between �1 and �2.
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5 Local Di�eomorphisms

For convenience we shall recollect in this section known results about local
di�eomorphisms between manifolds, which will be used later.
Let L and N be manifolds. By a local di�eomorphism we understand a

di�erentiable mapping f : L ! N such that dfx is bijective for any x 2 L.
Clearly, in this case for every x 2 L there are neighborhoods V of x and U
of f (x) such that f is a di�eomorphism between V and U . A special class
of local di�eomorphisms are the di�erentiable coverings, which have many
properties not shared by general local di�eomorphisms.
For our purposes we are interested in the continuous liftings to L of

mappings into N . Although this can be done for coverings it is impossible
in general. (For example take L to be the interval (0; 3=2) � R and let N be
the circle R=Z. The natural projection f : L! N is a local di�eomorphism
but not a covering, and the path which rounds the circle twice cannot be
lifted continuously to L.)
However continuous liftings are possible locally and are unique over con-

nected spaces whenever they exist.

Lemma 5.1 Let f : L ! N a surjective local di�eomorphism, and I a
topological space. Let � : I ! N be a continuous mapping, and take t0 2 I
and y 2 L with f (y) = � (t0). Then there are a neighborhood U of t0 and
a unique mapping e� : U ! L such that f � e� = � and e� (t0) = y. If I is
connected and e�1; e�2 : I ! L are such that f � e�i = � with e�i (t0) = y,
i = 1; 2, then e�1 = e�2.
Proof: Take a neighborhood V of y such that f : V ! f (V ) is a dif-
feomorphism. Then we can de�ne e� locally around t0 by f

�1 � �, where
f�1 : f (V )! V is the local inverse of f . Clearly, this local lifting is de�ned
uniquely. The uniqueness follows by noting that the set where e�1 = e�2 is
closed (by continuity) and open (by local uniqueness).

In the sequel the above lemma will be used mainly to lift curves from N
to L. On the other hand the next lemma is concerned with the lifting of
homotopies between curves.

Lemma 5.2 Let f : L ! N be a surjective local di�eomorphism and take
continuous curves �; � : [0; 1] ! N with � (0) = � (0). Let also H : [0; 1] �
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[0; 1] ! N be continuous such that H (0; t) = � (t) and H (1; t) = � (t),
H (s; 0) = � (0). Take y 2 L with f (y) = � (0) and suppose that for all

s 2 [0; 1] the curve t 7! H (s; t) lifts to a curve in L, say eH (s; t) witheH (s; 0) = y. Then (s; t) 7! eH (s; t) is continuous, and hence a homotopy
between the liftings eH (0; t) and eH (1; t) of � and �, respectively.
Proof: Take a local continuous lift of H around (0; 0) and use uniqueness

of the lifting of the paths to see that eH is continuous at (0; 0). Now �x
s 2 [0; 1] and let m be the supremum of t such that H is continuous on (s; �),

0 � � � t. Let V be a neighborhood of eH (s;m) such that f : V ! f (V ) is a
di�eomorphism. Then in a neighborhood U of (s;m), H lifts continuously to

a mapping eH1, having image in V . But if � is close enough to m then eH (s; �)
belongs to V by the continuity � 7! eH (s; �). Thus using the continuity ofeH at (s; �) we conclude that eH (�; �) belongs to V if (�; �) is close enough

to (s;m). Hence by uniqueness of the liftings of the curves � ! eH (�; �) we
conclude that eH = eH1 on U . This implies that m = 1, concluding the proof.

From the above lemma we get that homotopic curves lift to curves with
the same end points, if the homotopy also lifts.

Lemma 5.3 Let �; � satisfy the conditions of the previous lemma, and sup-
pose furthermore that � (1) = � (1), and that H is a homotopy �xing end

points. Then the liftings e� and e� starting at y of � and �, respectively sat-
isfy e� (1) = e� (1).
Proof: In fact, by continuity eH (s; 1) is constant as a function of s.
Remark: In Lemma 5.2 we assumed the existence of eH (s; t) to show its
continuity. In general it is not possible to lift such homotopies. For an
example, take f : C n f�1g ! C, f (z) = z3 � 3z. It is easy to check that f
is a surjective local di�eomorphism. In C every curve can be shrinked to a
point. But since C n f�1g is not simply connected, there are homotopies in
C which cannot be lifted to C n f�1g.
Let f : L! N be a local di�eomorphism andX a vector �eld on N . Then

we de�ne eX on L by eX (x) = df�1 (X (f (x))), where f�1 is a local inverse
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of f around x. It follows that the mapping X 7! eX is injective and f maps
trajectories of eX into trajectories of X. Conversely, if � is a trajectory of X
and e� is a curve in L with f (e�) = � then e� is a trajectory of eX. However
it is not true that trajectories of X can be entirely lifted to trajectories ofeX (see, for example, the local di�eomorphism (0; 3=2) ! R=Z, mentioned
above).

Given a control system � if we lift the vector space E to eE we get a
control system e� on L such that both � and E are in bijection with e� andeE, respectively. Because of these bijections, the control functions of �, are
also control functions of e�. In the sequel we use always the same control
space U for systems related by local di�eomorphisms. Clearly, for u 2 U the
corresponding trajectories of e� are mapped into trajectories of �, in other
words if f (y0) = x0 then trjx0 = f � ftrjy0 , with ftrjy0 (u) standing for the
trajectory of e�. This equality implies immediately the following statement.
Proposition 5.4 A control u is regular at z 2 L (w.r.t e�) if and only if it
is regular at f (z) (w.r.t �).

For systems related by local di�eomorphisms we introduce the following
convenient terminology.

De�nition 5.5 Let �1 and �2 be control systems evolving on M1 and M2,
respectively. We say that a mapping f : M1 ! M2 is a control mapping
between �1 and �2 if f is a local di�eomorphism and df (�1) = �2. We say
that the control mapping f is a control covering if it is surjective.

6 Manifold structure of � (�; x0)

The purpose of this section is to construct a manifold structure on the space
� (�; x0) de�ned in (5). As mentioned before we assume that � satis�es the
Lie algebra rank condition at every x 2M .

Theorem 6.1 The space of monotonic homotopy classes � (�; x0) has a
smooth manifold structure of dimension n = dimM . The end point map-
ping

" : � (�; x0)! AR (�; x0) �M; [
] 7! 
 (1) ;

is a local di�eomorphism.
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For the construction of the manifold structure on � (�; x0) we use the
following well known way of constructing a di�erentiable manifold:

Proposition 6.2 Let X be a set and �i : Wi ! X a collection of mappings
with Wi open subsets of Rn. Suppose that

1. Each �i is a bijection between Wi and its image.

2. X =
S
i �i (Wi).

3. If i; j are such that Cij = �i (Wi)\�j (Wj) 6= ; then the set ��1i (Cij) �
Wi is open and the mapping �

�1
j � �i : ��1i (Cij)! Wj is smooth.

Then (Wi; �i) de�nes an atlas for a unique manifold structure on X. This
structure carries implicitly a topology on X.

Proof: This is the de�nition of manifold in many textbooks, where the
topology is not de�ned in advance.

We de�ne an atlas for the di�erentiable structure on � (�; x0) through
the map ex0 . Since x0 is �xed in the discussion to follow we write suppress
the subscripts and write simply e, trj, etc.
Let x = e (u) for the end point of the regular trajectory de�ned by u. By

de�nition the rank of e at u equals the dimension ofM , so that by the implicit
function theorem there are open sets U � E , V � ker (deu) and W � Rn
such that U is di�eomorphic to V �W and e restricted to U is equivalent
to the projection V �W ! W (see e.g. Lang [6]). Before proceeding let us
remark that the implicit function theorem applies here because M is �nite
dimensional and u is regular so that the closed subspace ker (deu) is �nite
codimensional, and hence splits. In view of the di�eomorphisms V �W ! U ,
we usually identify neighborhoods U in E with V �W . For �xing ideas let us
suppose that 0 2 V and u identi�es to a point in the slice f0g�W , which in
turn identi�es with W . Then we shall look at W either as an n-dimensional
submanifold of U (identi�ed to f0g�W ) or as an open subset of Rn. We call
such W a cross section of e at u. Note that since u 2 intU , we can shrink U
and suppose that U � intU , and that every v 2 U is regular.
Given a cross section W of e at u, the map trj : W ! R (�; x0) which

associates to a control v 2 W its corresponding trajectory is continuous.
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Also, it is injective because the end points of the trajectories de�ned by
v1 6= v2 in W are di�erent. For the same reason if we compose trj with the
canonical projection � : R (�; x0) ! � (�; x0) = R (�; x0) = ' we obtain a
one-to-one mapping

 = � � trj : W �! � (�; x0) ;

and hence a bijection onto its image.
Our objective is to prove that the collection of bijective mappings  :

W !  (W ) with W running through the cross sections at every u 2 R (x0),
de�ne an atlas for a di�erentiable structure on � (�; x0). This is achieved if
we check the other conditions of Proposition 6.2, namely

1. the images  (W ) cover � (�; x0) and

2. the transition mappings  �12 �  1 are di�erentiable (and have open
domains).

By the very de�nition of � (�; x0) as equivalence classes of regular tra-
jectories it is immediate that any class in � (�; x0) belongs to some  (W ),
thus the �rst condition follows.
For the di�erentiability of the transition mappings let ( i (Wi) ;  i), i =

1; 2, be local charts with C =  1 (W1)
T
 2 (W2) 6= ;.

Take a class � 2 C and let vi 2 Wi be such that  i (vi) = �. Viewing
Wi as subsets of U we have by de�nition that the trajectories trj (vi) are
equivalent. Hence they have the same end point in M , which we denote by
x. Let ei, i = 1; 2, be the restriction of e to Wi. Since ei : Wi ! e (Wi) 2M
is a di�eomorphism, we can shrink both Wi, i = 1; 2, and suppose that there
exists an open set N �M such that ei : Wi ! N are di�eomorphisms.
We claim that  �12 �  1 = e�12 � e1. In fact, given v1 2  �11 (C) � W1,

 1 (v1) is the monotonic homotopy class of trj (v1), and  
�1
2 �  1 (v1) = v2

where trj (v2) ' trj (v1). In particular the end points of trj (v2) and trj (v1)
coincide, that is, e1 (v1) = e2 (v2), that is v2 = e�12 �e1 (v1), showing the claim.
From  �12 �  1 = e�12 � e1 the di�erentiability of the transition map follows
at once, concluding the construction of the manifold structure in � (�; x0).
It remains to show that " is a local di�eomorphism. In fact, keeping

the notation in the construction let  : W !  (W ) be a chart for the
di�erentiable structure. We have the composition

 (W ) � � (�; x0)
 �1�! W

ejW�! N �M;
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with " =
�
ejW
�
�  �1. Thus " is a di�eomorphism between the open sets

 (W ) and N , proving the statement. This concludes the proof of Theorem
6.1.
The atlas built on � (�; x0) provides this set with the manifold topology

for which the charts are homeomorphisms. On the other hand the set of
regular controls R� (x0) is endowed with both the strong and the weak*
topologies. In the next statement we establish the continuity properties of
the mapping � = � � trj : R� (x0)! � (�; x0), which associates to a control
function the monotonic homotopy class of its trajectory.

Proposition 6.3 The mapping � is continuous with respect to the weak*
topology (and hence w.r.t the strong topology). Also, � is an open mapping
w.r.t. the strong topology (and hence w.r.t. the weak* topology).

Proof: For the continuity we recall the well known fact that trj is continu-
ous w.r.t. the weak* topology on the controls and the uniform convergence
topology on trajectories (see e.g. Sontag [12]). In particular the evaluation
mapping e is continuous in the weak* topology. Now, let " : � (�; x0) !
AR (�; x0) be the local di�eomorphism of the Theorem 6.1. Then e = " � � .
The continuity of � then follows because locally � = "�1 � e where "�1 stands
for a local inverse of ".
The fact that � is open is an immediate consequence of the de�nition of

the charts by means of the implicit function theorem, as performed above.

This same proof applies to the mapping � : R (�; x0)! � (�; x0) de�ned
on the regular trajectories.

Proposition 6.4 The mapping � : R (�; x0)! � (�; x0) is continuous with
respect to the C0 (and hence w.r.t the C1 topology). Also, � is an open
mapping in the C1 topology (and hence w.r.t. the C0 topology).

Remark: The set � (�; x0) can be naturally endowed with the quotient
topology where a subset A � � (�; x0) is open if and only if its pre-image
��1 (A) is open in R (�; x0) (w.r.t. the C

1 topology). Since � is both con-
tinuous and open with respect to the manifold topology, it follows that this
topology coincides with the quotient topology.
Next we derive some properties of the topology of � (�; x0).
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Proposition 6.5 The topology of the manifold � (�; x0) is paracompact and
Hausdor�.

Proof: The space E endowed with the weak* topology is separable. Hence
there exists a dense enumerable set fungn2N in the open subset R of regular
controls. By Proposition 6.3 we have continuity of � with respect to the
weak* topology. Then the continuous image f� (un)gn2N is also dense. Since
separable manifolds are paracompact, it follows that � (�; x0) is paracom-
pact. The Hausdor� property follows at once from Theorem 6.1 combined
with the following lemma.

Lemma 6.6 Let L and N be di�erentiable manifolds and f : L! N a local
di�eomorphism. Then L is Hausdor� if N is Hausdor�.

Proof: Take x 6= y 2 L. If f (x) 6= f (y) choose open sets f (x) 2 U1
and f (y) 2 U2 with U1 \ U2 = ;. Then f�1 (U1) and f�1 (U2) separate x
from y. Thus suppose that f (x) = f (y). Since L is locally euclidean it is
enough to show the existence of an open set y 2 V that does not contain x
in its closure. For this choose V � L with y 2 V so that f : V ! f (V )
is a di�eomorphism and suppose that there exists a sequence xn 2 V with
xn ! x. Then f (xn) ! f (x) = f (y). But the restriction of f to V is a
di�eomorphism. Hence xn ! y contradicting the assumption that x 6= y.
Hence x =2 clV , concluding the proof.

7 Lifting � to � (�; x0)

By Theorem 6.1 the end point map " : � (�; x0) ! AR (�; x0) is a local
di�eomorphism. Hence, the restriction of � to AR (�; x0) can be lifted to

� (�; x0). We denote the lifted system by b�. Accordingly for a vector �eld X
onAR (�; x0) we write bX for its lifting to � (�; x0). Also, we letctrjy (u) be the
trajectory of b� corresponding to the control u and starting at y 2 � (�; x0).
The purpose of this section is to study b� and relate its properties to the

monotonic homotopy of trajectories of �. Here and in the next section we
keep our constructions as closer as possible to the classical case. However,
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we must cope with the fact that in general x0 is not in AR (�; x0), so that we
must take care with the initial point of a lifted curve. This will cause most
of the technical di�culties in our proofs.
The �rst objective is to prove that b� is forward complete if this happens

to �. Take y0 2 � (�; x0), a control u 2 U and put b� = ctrjy0 (u). We must
check that b� is de�ned in the whole interval [0; 1]. For this put z0 = " (y0) 2
AR (�; x0) and let � = trjz0 (u) be the trajectory of � starting at z0. By
assumption � is forward complete, so that � extends to [0; 1]. Also, b� is a
lifting of �. Thus forward completeness follows from Lemma 5.1 if we check
that � lifts completely to � (�; x0).
We construct explicitly the lifting of � as follows: Denote by � the path

in the space of trajectories which is de�ned by

� (s) (t) = � (st) s; t 2 [0; 1]:

Clearly � is continuous with respect to C0 topology and for each s, � (s) is
the piece of � in [0; s].
Let us choose a representative � of y0 2 � (�; x0). The end point of �

is z0, so that for each s 2 [0; 1] we can perform the concatenation � (s) � �.
Proposition 3.2 implies that � (s)�� belongs toR� (x0). Hence it makes sense
to take its class [� (s) � �], de�ning the curve s 7! [� (s) � �] in � (�; x0).

Proposition 7.1 Keep the above notations. Then b� (s) = [� (s) � �], s 2
[0; 1]. In particular, the end point of [� (s) � �] is the class of � � �.

Proof: Note that the end point of s 7! � (s) � � is � (s). Hence, by de�ni-
tion of ", we have "[� (s) � �] = � (s) for all s 2 [0; 1]. Now, � (0) � � = �, so
that [� (0) � �] = y0. Hence, s 7! [� (s) � �] is the unique lifting of � starting
at y0, showing the claim.

By the above discussion this proposition shows immediately that b� is
forward complete. For later reference we record this fact.

Proposition 7.2 If � is forward complete then the lifted system b� is forward
complete.

A well known fact in the theory of covering spaces states that two curves
in a space M with the same initial and end points are homotopic if and only
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if their liftings to the simply connected covering space fM have the same end
point if the initial points coincide.
Next we prove an analogous result in the context of monotonic homotopy.

At this regard we must take care with the fact that in general trajectories
starting at x0 (even the regular ones) are not entirely contained in AR (�; x0).
For example, consider the system � in R2 spanned by the basic vector �elds
@=@x and @=@y. ThenAR (�; 0) = f(x; y) 2 R2 : x; y > 0g and the evaluation
map " : � (�; 0)! AR (�; 0) is a (global) di�eomorphism. Hence, a piecewise
constant normal trajectory which stays for some time in one of the axis is
not contained in AR (�; 0).
Thus we do not have in advance liftings to � (�; x0) of trajectories of

�. In order to avoid this problem we consider the following situation which
is enough to relate liftings to monotonic homotopy: Fixing x0, take z0 2
AR (�; x0). Then we shall prove that two regular trajectories �1 and �2
(starting at z0 and having the same end point) are monotonically homotopic
if and only if the end points of their liftings to � (�; x0) (starting at the
same class y0) are equal. Actually we shall prove a stronger result namely
that � (�; z0) is an open submanifold of � (�; x0) which is di�eomorphic to

AR

�b�; y0�.
The proof of this result requires the following partial converse of Propo-

sition 4.2.

Lemma 7.3 Take trajectories �i 2 R� (x0), i = 1; 2, with the same end
point z0 2 AR (�; x0). Let � be a trajectory of � starting at z0. Then
�1 'm �2 if � � �1 'm � � �2.

Proof: Suppose by contradiction that �1 is not homotopic to �2, that is,
[�1] 6= [�2]. For i = 1; 2 denote by 
i the liftings of � starting at [�i], respec-
tively. Then 
i = ctrj[�i] (u), i = 1; 2, where u is a control function de�ning
�. Since [�1] 6= [�2], it follows that the end points of 
1 and 
2 are di�erent,
by the uniqueness of the liftings (see Lemma 5.1). But by Proposition 7.1
the end point of 
i is the class [� � �i], i = 1; 2, showing that �1 'm �2 if
� � �1 'm � � �2.

By reverting time we get an analogous relation between monotonic ho-
motopy and concatenations on the right.
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Corollary 7.4 Let � be a regular trajectory starting at x0 and having end
point at z0 2 AR (�; x0). Then two regular trajectories �i, i = 1; 2, starting
at z0 and having the same end point are monotonic homotopic if and only if
�1 � � 'm �2 � �.

Proof: Follows immediately from the previous lemma and the fact that
monotonic homotopy and regularity are maintained under time reversal of
the trajectories.

Now we can relate � (�; z0) to � (�; x0), z0 2 AR (�; x0). Fix a trajectory
� from x0 to z0. Then the concatenation � 7! � � � maps R� (z0) into
R� (x0). By Corollary 7.4, �1 � � ' �2 � � if �1 ' �2. Hence, we have a well
de�ned map I� : � (�; z0) ! � (�; x0), I�[�] = [� � �]. Again by Corollary
7.4, �1 ' �2 if �1 � � ' �2 � �, which means that I� is injective.

Proposition 7.5 With the notations as above let � be regular. Then image

of I� is AR

�b�; [�]� and I� : � (�; z0) ! AR

�b�; [�]� is a di�eomorphism
onto its image. Furthermore, if �1 and �2 are regular trajectories from x0 to
z0 then I�1 = I�2 if and only if �1 'm �2.

Proof: It was checked before that the liftings of trajectories of � are trajec-

tories of b�. Hence, the image of I� is contained in AR

�b�; [�]�. Conversely,
I� is onto AR

�b�; [�]� because trajectories of b� are projected into trajecto-
ries of �. Since I� is injective, it follows that I� : � (�; z0)! AR

�b�; [�]� is
a bijection. Now, by Proposition 7.1, I�[�] is the end point of the lifting b�,
so that locally I� = "�1x0 �"z0 where "�1x0 is a local inverse of the end point map
"x0 : � (�; x0) ! AR (�; x0). Hence I� is di�erentiable and its di�erential is
an isomorphism at every point, showing that it is a di�eomorphism.

From this proposition it follows at once that trajectories of � starting at
z0 and having the same end point are monotonically homotopic if and only if
their liftings have the same end point. For later reference we state this fact.

Corollary 7.6 Let z0 2 AR (�; x0) and �x y0 2 "�1x0 fz0g. Let �1 and �2
be regular trajectories of � starting at z0 and having the same end point.
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Denote by b�1 and b�2, respectively, their liftings to � (�; x0) starting at y0.
Then �1 'm �2 if and only if b�1 and b�2 have the same end point.
Now we look at monotonic homotopy for trajectories in � (�; x0).

Proposition 7.7 Let �1 and �2 be trajectories of b� in � (�; x0) having the
same initial point y0 2 � (�; x0). Then �1 and �2 are monotonic homotopic
in � (�; x0) if and only if they have the same end point.

Proof: The trajectories of �, �i = " (�i) have the same initial and end
points in AR (�; x0), and their liftings are �1 and �2, respectively. By the
previous corollary �1 ' �2, hence there is a homotopy by trajectories ht
linking them. For each t the corresponding trajectory lifts to a trajectory bht
of b� starting at y0. Note that bht is continuous by Lemma 5.2. Using again
the previous corollary, it follows that the end point of each bht is the same as
of �i. Hence, bht is a homotopy linking �1 and �2, concluding the proof.
The above proposition shows that � (�; x0) is simply connected in the

sense that trajectories with the same initial and end points are monotonic
homotopic. Alternatively, the covering construction for b� does not provide
new manifolds:

Corollary 7.8 For any y0 2 � (�; x0) the space �
�b�; y0� coincides with

AR

�b�; y0� and hence with � (�; z0) if z0 = "x0 (y0).

Proof: In fact, regular trajectories starting at y0 are monotonic homotopic
if and only if they have the same end point.

We conclude this section with a discussion about the topology used for
the monotonic homotopy. According to our de�nition two trajectories are
monotonic homotopic if they belong to the same path component ofR (�; x; y),
which was endowed with the C1-topology. Let us consider instead the C0

topology. It is clear that two trajectories which are C1 monotonic homotopic
are also C0 monotonic homotopic, since a C1 continuous path is also C0

continuous (the C0 topology is weaker than the C1). Next we shall apply
the lifting results of this section to see that the C0 topology yields the same
monotonic homotopy classes.
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Proposition 7.9 Let � and � be regular trajectories in R (�; x; z) and sup-
pose that there exists a path � in R (�; x; z) which links � to � and is C0

continuous. Then � and � are C1 monotonic homotopic.

Proof: Take x0 with x 2 AR (�; x0), so that � (�; x) equals AR

�b�; y� for
any y 2 "�1x0 (x). Also, put H (s; t) = � (s) (t). By Lemma 5.2, H lifts to a

homotopy eH in AR

�b�; y�, because the curves t 7! H (s; t) are trajectories

so that they lift to AR

�b�; y�. The liftings b� and b�, starting at y, are given
by b� (t) = eH (0; 1) and b� (t) = eH (1; t). Since eH is a lifting of H, it follows

that b� and b� have the same end point. Therefore by Corollary 7.6, � and �
are C1 monotonic homotopic.

8 Universal property

In this section we consider a (surjective) control covering � : N ! AR (�; x0)

between a system e� on N and � (or rather its restriction to AR (�; x0)). Our
objective is to prove the existence of a control mapping f : � (�; x0) ! N

between b� and e�. This construction is the analogue of the classical one
which gives the covering spaces from the simply connected covering. We
note however that, contrary to the classical case, the mapping f is not in
general surjective, that is, it is not a control covering. This is due to the lack
of controllability of e�.
Throughout this section we assume that the system satis�es the Lie al-

gebra rank condition.
A natural way to de�ne f : � (�; x0) ! N would be to take a regular

trajectory starting at x0 and lift it to both � (�; x0) and N obtaining f by
comparing the two liftings. To perform this construction trajectories must
belong to AR (�; x0), which is in general not true. To overcome this prob-
lem we lift trajectories starting at points z0 2 AR (�; x0), getting mappings
de�ned on � (�; z0). Then we extend these mappings to the whole � (�; x0).

We assume throughout that the system e� on N is forward complete.
Under this condition any trajectory � of � lifts uniquely to a trajectory of e�
as soon as an initial point y0 is prescribed. In fact, if u is a control de�ning
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� then e� = ftrjy0 (u) is such lifting, where ftrjy0 (u) denotes the trajectory ofe� corresponding to u starting at y0. In the sequel we use freely these liftings.
Our approach requires a curve linking x0 to z0 which is entirely contained

in AR (�; x0) except possibly for the initial point x0. Hence we start by
building such curve backwards as follows.

Lemma 8.1 Assume the system satis�es the Lie algebra rank condition,
and take x0 2 M and z0 2 AR (�; x0). Then there exists a sequence zn
in AR (�; x0) with lim zn = x0 and such that zm 2 AR (�; zn) if m < n.

Proof: We construct the sequence inductively, starting from z0. First
choose a sequence of open neighborhoods Un, n � 1, of x0 such that fx0g =T
n�1 Un. Now de�ne z1 2 U1 \ AR (�; x0) as follows: Take a control func-

tion u 2 R� (x0) such that the end point of the corresponding trajectory
ex0 (u) = z0. By reverting time we see that �u is a regular control at z0
for ��. Thus if we write e�z0 for the map which associates a control in ��
to the end point of the trajectory starting at z0, it follows that its image
ime�z0 covers a neighborhood of x0. Thus AR (��; z0) \ U1 \ AR (�; x0) is
not empty. Any z in this intersection satis�es our requirements because
z0 2 AR (�; z1) if z1 2 AR (��; z0). Now proceed by induction and de�ne
analogously zn+1 2 AR (��; zn) \ Un+1 \ AR (�; x0), using a regular trajec-
tory from x0 to zn. At each step we get zn 2 AR (�; zn+1) implying that
zm 2 AR (�; zn) if m < n.

Given a sequence zn as built in this lemma we link zn+1 to zn by a tra-
jectory, say �n, of �. In principle �n is de�ned in [0; 1], but we can shift
time so that �n becomes de�ned in the interval [�n� 1;�n]. Concatenating
successively these trajectories we obtain a continuous curve de�ned in the
interval (�1; 0] which is entirely contained in AR (�; x0).

Lemma 8.2 Let the notations and assumptions be as above. Then there
exists a continuous curve � : (�1; 0] ! AR (�; x0) such that � (0) = z0,
each piece �j[a;b] , a < b � 0, of � is a (reparametrization of a) trajectory of
�, and there exists a sequence tn ! �1 such that � (tn)! x0.

Next we lift the curve � in the lemma to a curve b� in � (�; x0). To
avoid the problem of existence of such liftings we construct b� by embedding
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AR (�; x0) into AR (�; x1) for some x1 with x0 2 AR (�; x1). By Proposition

7.5, � (�; x0) becomes di�eomorphic to AR

�b�; bx� if bx 2 � (�; x1) is chosen
so that it projects down to x0. Thus the above lemma applies, giving a curve

in AR

�b�; bx� instead of AR (�; x).

Lemma 8.3 Let bx 2 � (�; x1) be chosen so that it projects down to x0 and
�x y0 2 � (�; x0) = AR

�b�; bx�. Then there exists a continuous curve b� :
(�1; 0] ! AR

�b�; bx� such that b� (0) = y0, each piece b�j[a;b] , a < b � 0, ofb� is a (reparametrization of a) trajectory of b�, and there exists a sequence
tn ! �1 such that b� (tn)! bx.
Now we can start the construction of the desired map � (�; x0) ! N .

Let � : N ! AR (�; x0) be a control covering and �x z0 2 AR (�; x0),
y0 2 "�1fz0g and w0 2 ��1fz0g. Given these points we de�ne a mapping

fz0;y0;w0 : � (�; z0)! N

as follows: By Proposition 7.5, � (�; z0) is di�eomorphic toAR

�b�; y0�. Now,
take y 2 AR

�b�; y0�. Then there exists a regular trajectory � of � starting
at z0 such that its lifting b� with initial point y0 has end point y. Denote bye� the lifting of � to N with initial point w0. Then we declare fz0;y0;w0 (y) to
be the end point of e�.
Lemma 8.4 The mapping fz0;y0;w0 is independent of the trajectory � used in
the de�nition.

Proof: Let �1 be another trajectory whose lifting b�1 also has end point
y. Denote by e�1 the lifting of �1 to N with initial point w0. Since the end
points of b� and b�1 coincide, it follows by Corollary 7.6 that �1 is monotonic
homotopic to �. Hence the liftings e� and e�1 to N have the same end point,
since the initial point w0 is the same (see Lemma 5.3). Thus fz0;y0;w0 is well
de�ned.

Lemma 8.5 The mapping fz0;y0;w0 is a local di�eomorphism.
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Proof: In fact, since fz0;y0;w0 is de�ned by the end point of a lifting it satis-
�es � � fz0;y0;w0 = ". But � is a local di�eomorphism. Hence, locally fz0;y0;w0
is given by ��1 � ", where ��1 is a local inverse of �. It follows that fz0;y0;w0
is also a local di�eomorphism.

Having obtained a map AR

�b�; y0� ! N , we repeat the same construc-

tion along the path b� : (�1; 0]! � (�; x0) = AR

�b�; bx� of Lemma 8.3.
With z0, y0 and w0 as above, let b� be the curve of Lemma 8.3 and put

� = "
�b��. Also, let e� be the lifting of � to N with e� (0) = w0. For each

t 2 (�1; 0] we have a local di�eomorphism

f�(t);b�(t);e�(t) : � (�; � (t))! N:

For simplicity we write ft instead of f�(t);b�(t);e�(t). The next lemmas show that
these maps are combined together to form a local di�eomorphism � (�; x0)!
N .

Lemma 8.6 � (�; x0) =
S
t2(�1;0]AR

�b�; b� (t)�.
Proof: As in Lemma 8.3 we view � (�; x0) as the accessible setAR

�b�; bx� �
� (�; x1) with x0 2 AR (�; x1). Take y 2 � (�; x0) and let b� be a trajectory
of b� regular at bx ending at y. Reverting time we see that b�� is regular at
y for �b�. Therefore there exists a neighborhood U of bx in � (�; x1) such
that for every y0 2 U , y 2 AR

�b�; y0�. Since b� (t) ! bx, it follows that
y 2 AR

�b�; b� (t)� for some t, concluding the proof.
Lemma 8.7 Given t1; t2 2 (�1; 0], suppose that y 2 AR

�b�; b� (t1)� \
AR

�b�; b� (t2)�. Then ft1 (y) = ft2 (y).

Proof: To �x ideas suppose that t1 < t2 and denote by b�t1;t2 the restriction
of b� to [t1; t2], which is a trajectory of b�. Analogously let �t1;t2 be the

projection of b�t1;t2 to AR (�; x0).
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Now take regular trajectories b�i of b� starting at b� (ti), i = 1; 2, and
having y as end point. Denote by �i their projections to AR (�; x0), and lete�1 be the lifting of �1 to N starting at e� (t1) and e�2 the lifting of �2 starting
at e� (t2). By de�nition fti (y) is the end point of e�i, i = 1; 2.
Note that the end point of b�t1;t2 is b� (t2), so that it makes sense to take

the concatenation b�2 � b�t1;t2 , obtaining a trajectory of b� starting at b� (t1)
and ending at y. Thus both b�1 and b�2 � b�t1;t2 have the same end point y,
implying that their projections �1 and �2 ��t1;t2 , respectively, are monotonic
homotopic. Hence, their liftings e�1 and (�2 � �t1;t2)e starting at e� (t1) have
the same end point. Therefore, to conclude the proof it is enough to observe
that the end points of e�2 and (�2 � �t1;t2)e coincide. But this follows from the
fact that e�2 starts at e� (t2), which implies that (�2 � �t1;t2)e= e�2 � e�t1;t2 , so
that the end points are indeed the same, showing that ft1 (y) = ft2 (y).

From these two lemmas we have a well de�ned mapping

f : � (�; x0) �! N (6)

given by f (y) = ft (y) where t 2 (�1; 0] is any value such that y 2
AR

�b�; b� (t)�. Summarizing, we have
Theorem 8.8 Assume that the system � on M satis�es the Lie algebra rank
condition and consider x0 2M . Let � : N ! AR (�; x0) be a control covering

for a system e� on N , and assume � and e� are forward complete. Then there
exists a control mapping f : � (�; x0)! N such that � � f = ".

Proof: By construction f is equal to ft on the open set AR

�b�; b� (t)�.
Hence the properties of ft are inherited by f , showing that it is a local dif-
feomorphism which maps b� into e�.
We note that in general the mapping f : � (�; x0)! N is not surjective.

In fact, the image of ft is the accessible set AR

�e�; e� (t)�, so that the image
of f is

imf =
[

t2(�1;0]

AR

�e�; e� (t)� ; (7)

27



which may be a proper subset of N , since e� may not be controllable. In
Section 10, below we give an example with N = AR (�; x0)

e, the universal
covering of AR (�; x0), where the lifted system e� is not controllable.
9 Control sets

In this section we specialize the previous results to forward orbits starting at
x0 2M such that x0 2 AR (�; x0), or equivalently x0 2 intA (x0). As is well
known this condition holds if and only if x0 belongs to the interior of a control
set of �. In this case our previous constructions become more transparent
and closer to the classical situation, since in any covering of AR (�; x0) we can
always take a reference point above x0. Also, the existence of periodic regular
trajectories through x0 allows the introduction of a fundamental semigroup
based at x0, analogous to the fundamental group of a topological space (cf.
[3]).
Before proceeding we note that the condition x0 2 intA (x0) implies that

A (x0) is open, and hence (under the Lie algebra rank condition) coincides
with AR (�; x0), that is, every point attainable from x0 is actually regularly
attainable.
As before, let b� be the system lifted to � (�; x0). Recall that by Propo-

sition 7.5, � (�; x0) is di�eomorphic to its subset AR

�b�; z0� for any z0 2
"�1 (x0). Thus we can take AR

�b�; z0� as a realization of � (�; x0), and get
an easier construction of the covering mapping given by Theorem 8.8.

Proposition 9.1 For x0 2 intA (x0) let � : N ! A (x0) be a control cov-
ering and take y0 2 "�1 (x0) and w0 2 ��1 (x0). Then there exists a unique
control mapping f : � (�; x0)! N such that � � f = " and f (y0) = w0.

Proof: See Lemmas 8.4 and 8.5.

Another object which can be constructed in the context of control sets is
the fundamental semigroup related to monotonic homotopy (cf. [3]). Fix as
above x0 2 intA (x0) and put P (�; x0) = R (�; x0; x0) for the set of regular
periodic trajectories through x0. Clearly, the concatenation of trajectories
de�nes a product in P (�; x0). Note that by the way we de�ned the concate-
nation, this product is not associative, since �� (� � 
) and (� � �)�
 do not
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have the same parametrizations. However, it is a consequence of Corollary
7.6 that the curves � � (� � 
) and (� � �) � 
 in P (�; x0) are monotonic
homotopic. In fact, the liftings of these curves to � (�; x0) (starting at a
prescribed y0) are the successive concatenations of the liftings of 
, � and
�. Although these curves are not equally parametrized, they have the same
trace. In particular, the liftings have the same end point. Hence, by Corol-
lary 7.6, � � (� � 
) 'm (� � �) � 
. Since by Proposition 4.2 monotonic
homotopy is well behaved under concatenation, it follows that the quotient
space P (�; x0) = 'm is an associative semigroup.

De�nition 9.2 Suppose x0 2 intA (x0). Then the fundamental semigroup
based at x0 is de�ned as � (�; x0) = P (�; x0) = 'm.

Remark: In the above de�nition we restricted attention to regular trajec-
tories because this is the case which �ts to our results. Of course, one can
de�ne a semigroup � (�; x0) for arbitrary periodic trajectories. But then the
associativity property must be veri�ed directly.
By the results of Section 7, it follows that two trajectories in P (�; x0)

are monotonic homotopic if and only if their liftings to � (�; x0), starting at
a given point, have the same end point. Using this fact it is easy to prove
that � (�; x0) is given by the �ber of " : � (�; x0)! AR (�; x0) above x0. Of
course, this result is analogous to the well known fact that the fundamental
group is isomorphic to the group of deck transformations, and hence to the
�ber of the simply connected covering.

Proposition 9.3 Let x0 2 intA (x0) and take y0 2 "�1 (x0). Then � (�; x0)
is in bijection with "�1 (x0) \ AR

�b�; y0�.
Proof: Clearly, the periodic trajectories in P (�; x0) are the trajecto-
ries whose liftings to � (�; x0) starting at y0 have end point in the �ber

"�1 (x0)\AR

�b�; y0�. The result is then an immediate consequence of Propo-
sition 7.5, which ensures that � (�; x0) is di�eomorphic to AR

�b�; y0�.
Remark: Proposition 9.3 implies that the topology of the fundamental semi-
group is discrete. In fact, as the �ber over a point it is a discrete set because
of the local di�eomorphism property of the end point mapping ".
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Regarding the structure of � (�; x0) we note the following useful algebraic
property.

Proposition 9.4 The semigroup � (�; x0) is cancellative, that is, y = z if
either xy = xz or yx = zx.

Proof: Note that the cancellative property to the left is exactly the state-
ment of Lemma 7.3. To see the cancellation to the right, take trajectories
�; �; 
 2 P (�; x0). Then � � � 'm 
 � � means that the liftings to � (�; x0)
of these curves have the same end point, say w 2 � (�; x0). But then the
liftings of � and 
 have the same end point because by Lemma 5.1 the lifting
of � having w as end point is unique.

Now we pose the problem of relating monotonic homotopy to plain homo-
topy between trajectories. Of course, monotonic homotopy implies homotopy
between the trajectories. In general the converse is not true, as shows the
example of Section 10. Thus it is required to understand when geometric
homotopy implies dynamic homotopy.
In order to state this question precisely, note that it is relevant to specify

the set where the homotopies take place. Since two monotonic homotopic
trajectories (with the same end points) are homotopic inside the interior of
the accessible set of the common starting point, the right question to be posed
is whether geometric homotopy inside A (x0) entails monotonic homotopy.
Having this in mind we write � 'A � if � and � are homotopic (with �xed
end points) inside A (x0), where x0 is the common initial point.

De�nition 9.5 We say that a system � is geometric at x0 if monotonic
homotopy is equivalent to geometric homotopy. Precisely, if � and � are
regular trajectories starting at x0 and having the same end point, then � 'A �
implies � 'm �.

Remark: In the context of topological semigroups Lawson [8], uses the
term compatible homotopy structure when geometric homotopy coincides with
monotonic homotopy.
Regarding the geometric property of � our main result is the example

of next section. Here we shall prove only the following simple result, which
shows that this problem is related to the possibility of lifting homotopies to
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� (�; x0). Recall that a mapping p : E ! B is said to satisfy the covering
homotopy property (CHP) for a space X if for every mapping f � : X ! E
and every homotopy H : [0; 1] � X ! B with f0 = p � f �, there exists a
lifting H� : [0; 1]�X ! E with H� (0; �) = f � (see e.g. [4]).

Proposition 9.6 Let x0 2 intA (x0) and suppose that " : � (�; x0)! A (x0)
satis�es CHP for [0; 1]. Then � is geometric at x0.

Proof: Take �; � 2 R (�; x; z) which are homotopic in A (x). Fix y 2
"�1x (x) and let b� be the lifting starting at y. Also, let H be a homotopy (with

�xed end points) between � and �. By CHP, H lifts to bH with bH (0; �) = b�.
Since bH is a lifting of H, it follows that bH (1; �) = b�. Therefore, b� and b� have
the same end points, because H �xes end points. This shows that � 'm �,
concluding the proof.

Corollary 9.7 Let x0 2 intA (x0) and suppose that " : � (�; x0) ! A (x0)
is a covering. Then � is geometric at x0. In particular, the fundamental
semigroup �(�; x0) coincides with the fundamental group.

Proof: In fact, any covering satis�es CHP for [0; 1].

Remark: These results should be true without the assumption that x0 2
intA (x0). We note, however, that without this assumption a technical dif-
�culty arises due to the fact that trajectories in A (x0) may not lift to
� (�; x0).

10 An example

We shall exhibit here an example of a system � admitting trajectories which
are homotopic but not monotonic homotopic. The idea is to take � evolving
on M which is controllable from some x0 2 M but in such a way that the
system e� lifted to the simply connected covering fM of M is not controllable
from w0 2 fM sitting above x0. Then we search for trajectories e� and e� ofe� starting at w0, having the same end points, but which are not homotopic
inside the accessible set from w0. The projections to M of these trajectories,
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say � and �, are homotopic (because their liftings have the same end points)

but not monotonic homotopic (otherwise e� and e� would be homotopic within
the accessible set of w0).
We take M to be the 
ag manifold F = F3 (1; 2) whose elements are 
ags

(V1 � V2) where Vl � R3 is a subspace with dimVl = l, l = 1; 2. Let us recall
some properties of F. First the group Sl (3;R) of 3� 3 unimodular matrices
acts transitively on F by g (V1 � V2) = (gV1 � gV2). This action restricts
to an action of SO (3;R) which is transitive as well. By these actions there
are identi�cations of F either with Sl (3;R) =P or with SO (3;R) =Z0, where
P � Sl (3;R) is the subgroup of upper triangular matrices and Z0 � SO (3;R)
is the subgroup of diagonal matrices with �1 entries.
As usual we denote by sl (3;R) and so (3;R) the Lie algebras of Sl (3;R)

and SO (3;R), respectively, viewed as the set of right invariant vector �elds.
The sphere S3 is the simply connected covering of both F and SO (3;R).

The covering maps p : S3 ! F and � : S3 ! SO (3;R) are described via Lie
group actions as follows: Denote by fi; j; kg the standard basis of R3, viewed
as the imaginary part of the space H of quaternions a1+a2i+a3j+a4k with
real coe�cients.
The unit sphere S3 � H is a compact group with quaternionic multi-

plication, having so (3;R) as Lie algebra. It represents in the three dimen-
sional space of imaginary quaternions via the onto homomorphism � : S3 !
SO (3;R), by � (z)w = zwz, having ker � = f�1g. Thus S3 is a two-fold
covering of SO (3;R). By composing the action of SO (3;R) with � we obtain
an action of S3 on F. An easy computation yields � (i) = diagf1;�1;�1g,
� (j) = diagf�1; 1;�1g and � (k) = diagf�1;�1; 1g. This implies that
through the action of S3 on F, we can identify F with S3=Z, where

Z = ��1 (Z0) = f�1;�i;�j;�kg:

Hence, the canonical map p : S3 ! F = S3=Z is an eight-fold covering of
F. Furthermore, Z acts on the right on S3 and its orbits are the �bers of p.
Explicitly, p is given by

p : z 2 S3 7! (spanfzizg � spanfziz; zjzg) 2 F: (8)

Denote by G the simply connected covering of Sl (3;R), which is a Lie
group with Lie algebra sl (3;R), and contains a copy of S3. We denote also
by � : G ! Sl (3;R) the covering homomorphism, since it extends � : S3 !
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SO (3;R). The group G has Iwasawa decomposition G = S3T , with S3 being
the maximal compact subgroup and T a subgroup isomorphic to P . Thus G
acts on S3 by identifying it with G=T . Any action of Sl (3;R) can be turned
into an action of G by composing with �.
In the sequel we let e� and e�1 be the following circles in S3:e� (t) = cos t+ i sin t e�1 (t) = e� (t) j = j cos t+ k sin t t 2 [0; 2�]:

We de�ne now the system on F. Recall that X 2 sl (3;R) induces a vector
�eld

�!
X on the coset space F by �!X (x) =

d

dt
(exp tX) � xjt=0 . Then the set

E = f�!X : X 2 sl (3;R)g

is a �nite dimensional vector space of vector �elds on F. A similar construc-
tion holds in S3 and since p : S3 ! F intertwines the actions of G on S3 and
F, the vector �elds thus obtained on S3 are the liftings of the vector �elds in
E under p.
The system � will be given by a convex cone in the Lie algebra sl (3;R).

To de�ne it let W � R3 be a pointed cone (i.e., W \ �W = f0g) which
contains i in its interior and such that W \ spanfj; kg = f0g (any such cone
will do). Put

� = fX 2 sl (3;R) : 8t > 0; exp (�tX)W � Wg and �1 = ��:

Denote by S the semigroup in Sl (3;R) generated by exp (�) and let S1 = S�1

be the semigroup generated by exp (�1). It follows that �1 is a cone in
sl (3;R) which contains in its interior any diagonal matrix diagf2a;�a;�ag,
a > 0 (see [11], Theorem 6.12). This implies that S1 and S have interior
points in Sl (3;R). The accessible sets of �1 are the orbits of S1, and the
accessible sets of � are the orbits of S. Analogously, the cones �;�1 �
sl (3;R) generate semigroups eS; eS1 � G whose orbits on S3 = G=T are the

accessible sets of the systems e� and e�1 lifted to S3.
The description of the accessible sets on S3 and F are given by the corre-

sponding control sets. The control sets of S1 in F are known (see [10]):

Proposition 10.1 The semigroup S1 has a unique invariant control set in
F. It is given by

C = f(V1 � V2) 2 F : V1 � W [ �Wg: (9)
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This implies that intC is a control set of S (and �) and by uniqueness � is
controllable from any x 2 intC.

Now we describe the minimal control sets of eS (and hence of e�) in S3
which is the same as the interior of the invariant control sets of eS1. Any
such control set in S3 projects down to intC under p. Moreover, since the
left action of G on S3 commutes with the right action of Z, it follows that if
D � S3 is a control set and m 2 Z then D �m is also a control set.

Proposition 10.2 There are exactly two invariant control sets D1 and D2

of eS1 in S3 = G=T , namely

D1 = fz 2 S3 : ziz 2 Wg D2 = fz 2 S3 : ziz 2 �Wg:

Hence the minimal control sets of eS (and e�) on S3 are intD1 and intD2.

Proof: First we note that the invariant control sets of eS1 are the connected
components of p�1 (C). In fact, the invariant control sets are connected,
and hence contained in connected components. On the other hand by [9],

Proposition 4.3, eS1 is transitive in the interior of each connected component,
thus the connected components are indeed the invariant control sets.
Now, by the expressions of p in (8) and of C in (9), it follows that

p�1 (C) = fz 2 S3 : ziz 2 W [ �Wg:

Consequently the invariant control sets are D1 and D2 as in the statement.

Corollary 10.3 The circle e� is contained in intD1 while e�1 is contained in
intD2.

Proof: Is a consequence of the proposition and the following straightforward
computations:

(cos t+ i sin t) i (cos t� i sin t) = i (j cos t+ k sin t) i (j cos t+ k sin t) = i
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We can now look at a pair of trajectories � and � of � in F that have
the same end point and are homotopic but not monotonic homotopic. Both
trajectories start at x0 and end at x1 where

x0 = (spanfig � spanfi; jg) x1 = (spanfig � spanfi; kg) :

In fact, they are projections of the two sides of the circle e� = fcos t+ i sin t :
t 2 Rg 2 S3 lying between 1 and �1 and passing through �i, respectively.

Lemma 10.4 The curves e�; e� : [0; �]! S3, e� (t) = cos t+ i sin t and e� (t) =
cos t� i sin t are (reparametrizations of) trajectories of e�.
Proof: Put � = � (e�). Since 1 is mapped into x0 and

� (cos t+ i sin t) =

0@ 1 0 0
0 cos 2t � sin 2t
0 sin 2t cos 2t

1A ;

it follows that � is the curve fs = (V1 � V s
2 ), s 2 R, where V s

2 is the subspace
spanned by i and j cos 2s + k sin 2s. Now, take a diagonal matrix H =
diagf�1; �2; �3g in int�, with �1 < �2 < �3. The existence of such matrix
comes from the fact, mentioned earlier that e.g. X = diagf2;�1;�1g belongs
to int�1 � sl (3;R), so that �X 2 int�. Thus we can choose H 2 int� close
to �X.
Looking at the concrete realization of � we see that exp (tH), t 2 R,

leaves this circle invariant. In fact, V1 is invariant under exp (tH) as well
as the subspace spanfj; kg. Furthermore, the one-parameter group exp (tH)
has just two �xed-points in �, since the only lines in spanfj; kg invariant
under exp (tH) are those spanned by j and k. The other points of � are in
two trajectories of exp (tH), running from f0 to f�=4.
Consider now the one-parameter group exp (tH) in G. By equivariance it

leaves invariant e�, and since e� is a two-fold covering of �, exp (tH) has four
�xed-points and four trajectories, say �1 and �2 running from 1 to i and from
i to �1, respectively, and �3 and �4, which go from 1 to �i and from �i to
�1, respectively.
Since H 2 �, each �i may be seen as trajectory of � de�ned on the whole

real line.
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To conclude the proof we shall link the �xed points between the �i's to
get trajectories de�ned in compact intervals. For this take for instance the
�xed-point 1 and let us link it to �1. Since H 2 int� there exists a > 0 small
enough such that

X = H +

0@ 0 0 0
0 0 �a
0 a 0

1A 2 int�:

Then the one-parameter group exp (tX) 2 G leaves invariant e� and 1 is not
a �xed-point. If we take t small enough we link 1 to �1. Proceeding analo-
gously with the other �xed-points we verify that the half-circles are indeed
trajectories of �, concluding the proof.

We denote by � and � the projections into F of e� and e�, respectively.
Since e� and e� are trajectories of e�, it follows that � and � are trajectories of
�. Also, the end points of e� and e� coincide, so that � and � are homotopic
in F (= AR (�; x0)).

Finally, we prove that e� and e� are not monotonic homotopic. This implies
that � and � are not monotonic homotopic, since an eventual monotonic
homotopy between � and � could be lifted to a monotonic homotopy betweene� and e�.
For the proof that e� and e� are not monotonically homotopic we combine

the following facts:

1. By Corollary 10.3 the circle e� = cos t+ i sin t is contained in intD1 ande�1 = j cos t+ k sin t is contained in intD2.

2. The set intD2 is a minimal control set of e� hence invariant under back-
ward trajectories of this system. This means that forward trajectories
of � starting outside intD2 never goes inside this set. Hence, a trajec-
tory starting at 1 2 intD1 does not cross intD2.

3. The circle e� is not homotopic to a point in S3 n e�1 (that is, the linking
number of e� and e�1 is not trivial). To see this make a stereographic
projection S3 n fNg ! R3 with the north pole N taken in e�1. Thene�1 goes to a straight line l through the origin in R3, while e� goes to
a circle which cannot be shrinked to a point without crossing l (see
Bott-Tu [1], page 238).
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Therefore a homotopy between e� and e� must cross e�2 and hence is not
a monotonic homotopy for otherwise we would have a trajectory starting
at 1 and crossing e�2 2 intD2. This concludes the proof that � and � are
homotopic trajectories in F which are not monotonic homotopic.
Remark: By Corollary 9.7, it follows that in this example the local di�eo-
morphism " : � (�; x0)! AR (�; x0) is not a covering.
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