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The predictions given by these two methods are compared.

1 Introduction

A classical method to detect chaotic transitions in perturbed Hamiltonian
systems is Melnikov’s method (Guckenheimer and Holmes [9]; Wiggins [15]).
Though designed as a tool for analyzing chaotic motions, it is also used to
derive a (conservative) criterion for the loss of system integrity under deter-
ministic or stochastic perturbations (Simiu [12]). Another approach to the
investigation of system integrity with respect to deterministic or stochastic
time-varying perturbations is the analysis of invariance and controllabil-
ity properties of an associated control system and the support theorem of
Stroock and Varadhan (Colonius, de la Rubia, and Kliemann [2]).

In the present paper, we compare these two methods by studying two
simple models (in dimensionless form) describing ship roll motion under
the action of ocean waves. In this special situation, we are able to give a
thorough analysis using each of these methods. We show to which degree
Melnikov’s method gives conservative results. In particular, it turns out that
for weakly perturbed Hamiltonian systems Melnikov’s method accurately
predicts when a controlled homoclinic or heteroclinic connection exists (here
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the time-dependent excitation is substituted by piecewise constant control
functions). We show that – under increasing amplitudes of the ocean waves
– this always precedes the loss of invariance. The latter can be characterized
by a control set analysis for which numerical tools are available.

The first model (Kreuzer and Sichermann [10]) has an M−shaped po-
tential V (x) = 1

2x
2 − 1

4αx
4 and a nonlinear viscous damping. For additive

as well as multiplicative excitation the system is given by

ẍ+ β1ẋ+ β3ẋ
3 + [1 + um(t)]x− αx3 = ua(t); (1)

here α, β1, and β3 are nonnegative parameters. The deterministic or ran-
dom perturbations um(t), ua(t) take values in [−ρm, ρm] and [−ρa, ρa], re-
spectively (see below for more specific descriptions).

The second system is the so-called escape equation with time-periodic
excitation (see e.g. Soliman and Thompson [13], Nusse, Ott, and Yorke [11],
Szolnoki [14], Gayer [8]). Here the potential is V (x) = 1

2x
2− 1

3x
3 with linear

viscous damping under the influence of a periodic driving force,

ẍ+ γ ẋ+ x− x2 = F sinωt+ ua(t) (2)

with nonnegative parameters γ, ω, and F . Again the deterministic or ran-
dom perturbations ua(t) take values in [−ρa, ρa]. In this system we only
consider additive perturbations. Note, however, that we allow for a dom-
inant periodic component in the perturbations, while the perturbations in
the first system are unstructured. For both systems we will consider the
question if capsizing occurs, i.e., if the system leaves the potential well with
positive probability. Here we will analyze the behavior for varying maximal
amplitudes ρa and ρm of the perturbations.

We note that the two methods are not directly comparable, since control
set analysis gives results for fixed parameters, while Melnikov’s method only
claims results for sufficiently small ε−perturbations from (Hamiltonian) sys-
tems with homo- or heteroclinic orbits. Hence we will also perform control
set analysis for varying ε.

The paper is organized as follows: In Section 2, we present some es-
sential facts on the relation between the stochastic systems and associated
control systems. Section 3 provides a controllability analysis for the system
with M−potential, while in Section 4 Melnikov’s method is applied and
the results are compared. Section 5 presents an analogous discussion for
the escape equation. Final Section 6 summarizes our major findings and
conclusions.
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2 Background on Control Set Analysis

In this section we recall some facts from [2], [3] about Markov diffusion
systems and their relations to associated control systems. In order to avoid
undue technicalities, we mainly discuss the ship roll model (1); modifications
necessary for the periodically excited system (2) are indicated at the end of
the section.

We start with a slightly more general version of system (1) with stochas-
tic perturbations in the form

ẍ+ β1ẋ+ β3ẋ
3 + [1 +

N∑
i=1

γi cos ηi(t)]x− αx3 =
M∑

i=N+1

γi cos ηi(t), (3)

where γi > 0 and the background noise η = (ηi) is determined by

dηi = Ωit+DidWi for i = 0, 1, ...,M,

with independent white noise dWi with intensity Di > 0.
Writing this, as usual, as a first order equation one obtains the planar

system

ẋ1 = x2, ẋ2 = −β1x2 − β3x
3
2 − x1 + αx3

1 − x1

N∑
i=1

γi cos ηi +
M∑

i=N+1

γi cos ηi.

The corresponding control system is

ẋ1 = x2, ẋ2 = −β1x2 − β3x
3
2 − x1 + αx3

1 − x1

N∑
i=1

γiui(t) +
M∑

i=N+1

γiui(t);

here, formally, cos ηi has been replaced by arbitrary piecewise continuous
functions ui(t) taking values in [−1, 1]; the ui are considered as controls.

Remark 2.1 We remark that, alternatively, the same noise may act addi-
tively and multiplicatively. This is easily taken into account by inserting the
same control function in the additive and multiplicative terms.

Obviously, the controllability properties of this system are the same as
those of the system with only two controls

ẋ1 = x2, ẋ2 = −β1x2 − β3x
3
2 − x1 + αx3

1 − um(t)x1 + ua(t), (4)
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where

(um(t), ua(t)) ∈ [−ρm, ρm]× [−ρa, ρa] and ρm :=
N∑

i=1

γi and ρa :=
M∑

i=N+1

γi.

In other words: the controllability properties of the corresponding deter-
ministic system are independent of the number of the stochastic perturba-
tions. Hence we restrict attention to just one additive perturbation ηa and
one multiplicative perturbation ηm. Then the stochastic system (3) (with
N = 1,M = 2) corresponding to (4) may be considered with state variables
(x, ηa, ηm) in the state space R2 × S1 × S1, where S1 denotes the unit circle
parametrized by [0, 2π).

We need some notations and results from control theory (see [5] for
a thorough discussion). Denote the solution of (4) with initial state x ∈
R2 at time t = 0 by ϕ(t, x, u). It depends on the control function u =
(ua, um) in the set U of control functions determined by the parameter ρ =
(ρa, ρm); dependence on ρ is here suppressed in the notation. The positive
and negative orbits at time t > 0 are

O+
t (x) = {ϕ(t, x, u), u ∈ U}, O−t (x) = {ϕ(−t, x, u), u ∈ U},

and we set

O+
≤T (x) =

⋃
t∈[0,T ]

O+
t (x), O−≤T (x) =

⋃
t∈[0,T ]

O−t (x),O+(x) =
⋃

t∈[0,∞)

O+
t (x).

A set D ⊂ M with nonvoid interior is a control set if it is a maximal set
with the property D ⊂ clO+(x) for every x ∈ D. A control set D with
D = clO+(x) for every x ∈ D is an invariant control set, the others are
called variant. If ρa > 0, the considered system is locally accessible, i.e., for
all x ∈ R2

intO+
≤T (x) 6= ∅ and intO−≤T (x) 6= ∅ for all T > 0.

Then intD ⊂ O+(x) for all x ∈ D. If only multiplicative perturbations
act on the system (i.e., ρa = 0), the origin in R2 remains fixed and local
accessibility holds on R2 \ {0}.

Note that for system (3), (4) the required (Lie algebraic) assumptions
from [2], [4], [3] are satisfied. The background noise η admits a unique in-
variant measure on N = S1 × S1. The natural probability space to work
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in is Ω̂ := C(R+
0 ,R2 × N) = {ω : R+

0 → R2 × N, continuous} and for fixed
initial conditions (x, q) ∈ R2 ×N the pair process (4) induces a probability
measure P̂(x,q) on Ω̂. By P̂(x,η∗) we denote the measure corresponding to the
stationary Markov solution {η∗t , t ≥ 0} in the η−component. Its marginal
distribution on Ω := C(R+

0 ,R2) will be denoted by Px, x ∈ R2. The trajec-
tories of the pair process are (ϕ(t, (x, q), ω), η(t, q, ω)) for (x, q) ∈ R2 × N ,
and we will write the x−component under {η∗t , t ≥ 0} as ϕ(t, x, ω), x ∈ R2.
The transition probability from x ∈ R2 to a set A ⊂ R2 in time t ≥ 0 is

P (t, x, A) = Px(ϕ(t, x, ω) ∈ A).

Using the tube method introduced by Arnold and Kliemann, it follows from
the support theorem of Stroock and Varadhan that

supp P (t, x, ·) = cl
{
y ∈ R2 | there is a piecewise continuous

u ∈ U such that ϕ(t, x, u) = y

}
.

It now follows from [4] that the invariant Markov probability measures µ of
(4) have support given by suppµ = D ×N , where D is an invariant control
set of (4), and these measures are unique on each set of this form. Every
bounded invariant control set D of (4) has the property that D ×N is the
support of some invariant Markov measure. All other points in R2 ×N are
transient.

In order to describe the consequences of the support theorem for the
relationship between the Markov diffusion process and the control system
in more detail, we define the first exit time from a set A ⊂ R2 starting at a
point x ∈ R2 as the random variable

σx(A) := inf{t ≥ 0, ϕ(t, x, ω) /∈ A}.

Due to Theorem 3.19 in [4], for invariant control sets D ⊂ R2 of system (4)
the equation Px(σx(D) <∞) = 0 holds for all x ∈ D. For bounded variant
control sets D ⊂ R2 on the other hand, it holds that Px(σx(D) < ∞) = 1
for all x ∈ D. Under the measure Px we even have that the expectation of
the sojourn time Ex[σx(D)] is finite. Furthermore, for an invariant control
set D every point in the set

{x ∈ R2, for all u ∈ U there is T > 0 with ϕ(T, x, u) ∈ D}

has finite first entrance time into D with probability one.
In conclusion we see that the question if capsizing occurs in finite time in

system (3) occurs with positive probability with the origin as initial value,
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is equivalent to existence an invariant control set (around the origin). If
only multiplicative perturbations act, the origin is invariant, and one has
to look for initial values near the origin. For computation of the capsizing
probabilities, we have to recur to Monte Carlo simulation (see e.g. [3]).

For the periodic escape equation (2), similar concepts can be applied by
adding t ∈ [0, 2π) to the state variables (see Gayer [8]). It is well known
that the behavior of the differential equation

ẍ+ γ ẋ+ x− x2 = 0

may change drastically, when time-periodic perturbations act. For example,
bifurcations may occur with respect to F ≥ 0 in

ẍ+ γ ẋ+ x− x2 = F sinωt.

If the intensity Di of the noise ηi is very small it is not adequate to insert an
arbitrary control. Instead it will be more appropriate to consider stochastic
perturbations of this periodic differential equation as in Section 5.

3 Control Set Analysis for the M–Potential

In this section we give a description of the controllability properties of system
(3) in the phase plane and discuss the consequences for the stochastically
perturbed system.

We first consider the deterministic control system (4) and throughout
we restrict the analysis to the technically relevant parameter values (for
following seas) given in Kreuzer and Sichermann [10]

α = 0.674, β1 = 0.231, β3 = 0.375.

A sketch of the corresponding M–potential

V (x) =
1
2
x2 − α

4
x4,

∂V (x)
∂x

= x− αx3

is shown in Figure 1. It is easily seen that the unperturbed system (i.e., ua =
um = 0) has three equilibria, the asymptotically stable equilibrium e0 = 0 at
the origin and hyperbolic equilibria e1 and e2 on the negative and positive
x1−axis, respectively. Without damping, we obtain a Hamiltonian system
with two heteroclinic orbits connecting the hyperbolic equilibria (Figure 1).

For small ρa, ρm there are an invariant control set D0(ρa, ρm) around
the origin and two variant control sets D1(ρa, ρm) and D2(ρa, ρm) around
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Figure 1: M–potential (left) and heteroclinic orbits of the associated Hamil-
tonian system (right).

the hyperbolic equilibria (for (ρa, ρm) → (0, 0) they converge to the corre-
sponding equilibria). Numerical experiments indicate that in addition to
this regime, there are two further regimes, depending on ρ = (ρa, ρm). For
increasing ρ−values, the two control sets around the hyperbolic equilibria
are first connected by ‘control heteroclinic’ trajectories and merge and form
a control set D12(ρ). Only later they merge with the invariant control set
and form a control set D012(ρ) containing the origin; here invariance is lost.
Typical situations are shown in Figures 2, 3, 4 and 5.

For a quantitative description we specify two curves in ρa − ρm−space,
where these qualitative changes occur.

Definition 3.1 The heteroclinic margin is

H(ρa) = inf{ρm > 0, ∃D12(ρa, ρm)},

and the invariance margin is

I(ρa) = inf{ρm > 0, ∃D012(ρa, ρm)}.

The results in the preceding section imply that as long as the invariant
control set D0(ρ) exists, the system remains with probability one in the
potential well, more precisely, in the set {x ∈ R2, for all u ∈ U there is
T > 0 with ϕ(T, x, u) ∈ D0}. Outside of this set, the ship will capsize with
probability one. If the invariant control set has vanished (i.e., ρm > I(ρa)),
the ship will capsize from any initial point with probability one. It is clear
that for applications the invariance margin is the relevant object. On the
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Figure 2: The regime for small amplitudes: one invariant control set D0 in
the center, two variant control sets D1 (on the left) and D2 (on the right)
around the hyperbolic equilibria (ρa = 0.20, ρm = 0.10).

Figure 3: Heteroclinic regime: one invariant control set D0 in the cen-
ter, one variant control set D12 containing both hyperbolic equilibria (ρa =
0.00, ρm = 0.37).
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Figure 4: Heteroclinic regime: one invariant control set D0 in the cen-
ter, one variant control set D12 containing both hyperbolic equilibria (ρa =
0.00, ρm = 0.40).

Figure 5: Variant regime: only one control set D012 which is variant (ρa =
0.30, ρm = 0.06).
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other hand, the heteroclinic margin is important in order to understand the
mechanisms leading to loss of invariance.

The numerical computations of control sets are based on set-valued nu-
merics (Dellnitz and Hohmann [6]); we use the MATLAB version of the
program package GAIO from Junge. The control sets are found using the
implementation due to Szolnoki [14]. If we fix the amplitude ρa ≥ 0 of the
additive perturbations, one can numerically determine the invariance mar-
gin by bisection. This yields the following results for the invariance margin
I(ρa)

I(0) ∈ (0.42, 0.43)

and for I−1(ρm)

I−1(0.0) ∈ (0.21, 0.22), I−1(0.1) ∈ (0.15, 0.16), (5)

I−1(0.2) ∈ (0.10, 0.11), I−1(0.3) ∈ (0.05, 0.06).

Thus we obtain an approximately linear relation given by

I(ρa) ≈ −2ρa + 0.42. (6)

Numerical computation of control sets near mergers is notoriously difficult.
Hence we also follow an alternative approach to determine the heteroclinic
and the invariance margin. It is based on numerical computation of stable
and unstable manifolds, also performed using GAIO. This approach uses
special properties of the considered second order system.

3.1 The Heteroclinic Margin

First we observe that the control system (3) is symmetric with respect to
the x2−axis in the following sense: For every solution (x1(t), x2(t)) one finds
that (y1(t), y2(t)) := (−x1(t),−x2(t)) satisfies

ẏ1 = y2

ẏ2 = −ẋ2 = β1x2 + β3x
3
2 + x1 − αx3

1 + um(t)x1 − ua(t)

= −β1y2 − β3y
3
2 − y1 + αy3

1 − um(t)y1 − ua(t).

Thus
ϕ(t, x1, x2, ua, um) = −ϕ(t,−x1,−x2,−ua, um).

This implies for every control set D that also −D is a control set (here
D = −D is possible). Hence we restrict our analysis to the lower halfplane
with x2 ≤ 0.
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The equilibria of the system (3) with constant controls are given by
x2 = 0 and the three roots of

−x1 + αx3
1 + ua = 0.

There are three equilibria, all on the x1−axis, one near the origin and de-
noted by e0(ρa) and two hyperbolic equilibria denoted by e1(ρa) and e2(ρa)
(note that they are independent of ρm). For ua = 0 the origin is an equilib-
rium and the hyperbolic equilibria e2(ρa = 0) and e1(ρa = 0) have abscissa
given by

x1 = ±
√

1/α = ±
√

1/0.674 ≈ ±1.2181.

A phase plane analysis shows that, for given ρ = (ρa, ρm), there are sets of
complete controllability around the hyperbolic equilibria: For the set around
the equilibrium e2(0), the left-most point on the x1−axis is the hyperbolic
equilibrium e2(ρa) corresponding to ua = ρa and the right-most point is the
hyperbolic equilibrium e2(−ρa) corresponding to ua = −ρa. Analogously,
the set of complete controllability around e1(0) has as left-most point the
equilibrium e1(ρa) and as right-most point the equilibrium e1(−ρa). For
ρm ≤ H(ρa), these sets are control sets D2 and D1. If ρm is in the interval
(H(ρa), I(ρa)] they are both contained in a single control set D12, but they
are still maximal within a neighborhood, and hence called local control sets.
The boundary of the (local) control set D2 is given by parts of the unstable
and stable manifolds of the equilibria e2(ρa) and e2(−ρa), analogously for
D1.

The trajectories obey the following monotonicity condition: Since

ẋ2 = −β1x2 − β3x
3
2 − x1 + αx3

1 − um(t)x1 + ua(t),

one finds for constant controls and t > 0 that the second state component
satisfies for x1 > 0

um > u′m and ua ≤ u′a implies ϕ2(t, x, um, ua) < ϕ2(t, x, u′m, u
′
a), (7)

and for x1 < 0

um > u′m and ua ≥ u′a implies ϕ2(t, x, um, ua) > ϕ2(t, x, u′m, u
′
a), (8)

Now consider the unstable manifolds W−(e2(−ρa), ρm,−ρa) of the equilib-
rium e2(−ρa) and the stable manifold W+(e1(−ρa), ρm,−ρa) of the equilib-
rium e1(−ρa). They intersect the negative x2− axis transversally in unique
points with ordinate

w−(ρm,−ρa) and w+(−ρm,−ρa).

11



As a consequence of (7) and (8), one finds the following monotonicity prop-
erties (consider the unstable manifold in the quadrant x1 > 0, x2 < 0 and
the stable manifold in the quadrant x1 < 0, x2 < 0):

if ρm > ρ′m, then w−(ρm,−ρa) < w−(ρ′m,−ρa),
if ρm > ρ′m, then w+(−ρm,−ρa) > w+(−ρ′m,−ρa).

This implies that for fixed ρa, there is a unique ρm = ρm(ρa) with

w−(ρm,−ρa) = w+(−ρm,−ρa).

Furthermore, only for ρm > ρm(ρa) it is possible to steer the system from
D2 to D1. Using the symmetry property indicated above, it follows that
one obtains a completely analogous situation in the upper halfplane. Thus
we conclude that H(ρa) = ρm(ρa) (see Figure 3 for an illustration of the
control sets where ρm − H(ρa) > 0 is small). This reduces computation
of the heteroclinic margin to computation of stable and unstable manifolds
and their intersections with the x2−axis. Thus, using bisection, one can
approximate H(ρa).

Figure 6 depicts the situation in the lower half plane. It shows part of the
stable manifold (to the left of the x2−axis) and the unstable manifold (to the
right of the x2−axis). On the left hand side are results for ρm < H(ρa), i.e.,
the two control sets around the hyperbolic equilibria remain distinct, and
on the right hand side are results for ρm > H(ρa), i.e. the control set D12

containing the right and left equilibria exists. It turns out that numerically
the heteroclinic margin is approximately linear. More precisely, we obtain
the following results for H(ρa)

H(0.00) ∈ (0.37, 0.38), H(0.01) ∈ (0.35, 0.36), H(0.11) ∈ (0.180, 0.185),

and for H−1(ρm)

H−1(0.02) ∈ (0.20, 0.21), H−1(0.00) ∈ (0.22, 0.23). (9)

Note that Figure 3 shows a numerically computed set D12 which in fact, as
indicated above, does not exist, since H(0) > 0.37.

These results were obtained using GAIO (computing times on a LINUX
PC with 2.8 Mz approximately 90 minutes for standard box depth 26; where
needed, box depth is taken as 28 with computing time approximately 150
minutes).

For a comparison of these results with Melnikov’s method, it will also be
necessary to consider the equations

ẋ1 = x2, ẋ2 = −εβ1x2 − εβ3x
3
2 − x1 + αx3

1 − εum(t)x1 + εua(t). (10)
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Figure 6: Stable manifolds W+(e1(−ρa),−ρm,−ρa) and unstable manifolds
W−(e2(−ρa), ρm,−ρa) near the x2−axis for ρa = 0.000 and ρm = 0.370
(left) and ρm = 0.380 (right).

They represent small perturbations from the Hamiltonian situation. One
obtains

for ε =
1
2

: H(0) ∈ (0.385, 0.395), H−1(0) ∈ (0.230, 0.240); (11)

for ε =
1
4

: H(0) ∈ (0.390.0.400), H−1(0) ∈ (0.235, 0.245).

3.2 The Invariance Margin

Next we turn to the computation of the invariance margin I(ρa). First we
show that

H(ρa) < I(ρa). (12)

In fact, for ρm = H(ρa) consider the trajectory ϕ̂ starting in the left-most
point e2(ρa) of the control set D2 with control

ua = −ρa and ûm =
{
ρm in the quadrant x1 > 0, x2 ≤ 0
−ρm in the quadrant x1 ≤ 0, x2 ≤ 0

. (13)

This is the trajectory minimizing the x2−component. It reaches the x1−axis
in finite time t > 0. In the quadrant x1 > 0, x2 ≤ 0 it remains above the
unstable manifoldW−(e2(−ρa), ρm,−ρa) and in the quadrant x1 ≤ 0, x2 ≤ 0
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it remains above the stable manifold W+(e1(−ρa),−ρm,−ρa). Thus, using
monotonicity again, the region bounded by the x2−axis and ϕ̂(t) in the
lower half plane can only be left through the x2−axis. Analogous properties
hold in the upper halfplane. Thus there exists an invariant control set in
this positively invariant region (cp. [5, Theorem 3.1.5]). The same situation
occurs if ρm > H(ρa) and the trajectory ϕ̂ intersects (for the first time) the
x2−axis above the point w+(−ρm,−ρa), cp. Figure 7.

Note that the bounded region R bounded by the control set D12 is pos-
itively invariant; this follows from the definition of control sets as maxi-
mal sets of complete controllability and the fact that every point R can be
reached from D12. Now suppose that the intersection point of ϕ̂ with the
x2−axis is below w+(−ρm,−ρa), then it is possible to steer the system from
e2(−ρa) to −∞. By continuous dependence on the initial value, this is also
possible from points in R (cp. Figure 8). This contradicts positive invari-
ance, implying that the region R is void, i.e., ρm ≥ I(ρa). We have shown
that I(ρa) is given by the ρm−value where the intersection point of ϕ̂ with
the x2−axis coincides with w+(−ρm,−ρa).

Figure 7: Stable manifoldW+(e1(−ρa),−ρm,−ρa) (blue), unstable manifold
W−(e2(−ρa), ρm,−ρa) (red) and trajectory ϕ̂(·) (green) corresponding to
control (13) for ρa = 0.000 and ρm = 0.380. Here H(0) < ρm < I(0).

Again using monotonicity one can, by bisection, approximate the invari-
ance margin by analyzing the relative positions of intersection points with
the x2−axis. Hence, in analogy to the heteroclinic margin, computation of
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Figure 8: Stable manifoldW+(e1(−ρa),−ρm,−ρa) (blue), unstable manifold
W−(e2(−ρa), ρm,−ρa) (red) and trajectory ϕ̂(·) (green) corresponding to
control (13) for ρa = 0.230 and ρm = 0.000. Here ρa > I−1(0).

the stable manifold W+(e1(−ρa),−ρm,−ρa) and the trajectory ϕ̂ near the
x2−axis yields the following inclusions for the invariance margin I(ρa):

I(0) ∈ (0.42, 0.43), I−1(0.30) ∈ (0.06, 0.07), I(0.11) ∈ (0.20, 0.21). (14)

One finds good agreement with the results (5) based on control set numerics.
However, for ρm = 0 a slightly higher interval is obtained:

I−1(0) ∈ (0.22, 0.23). (15)

4 Melnikov Analysis and Comparison

In this section, we apply Melnikov’s method to the system with M–potential
(10) and compare the results to those from the control set analysis in the
preceding section. We freely use results for Melnikov’s method originally
developed on the basis of a two-dimensional Poincaré map of a periodically
forced planar system (for a detailed discussion see [9] and [15]). An extension
to a sequence of maps for quasi-periodically forced systems of the type (3)
was given by Beigie, Leonard, and Wiggins [1]. In the limiting case (as the
number of frequency components tends to infinity) a generalized Melnikov
function can be defined for an arbitrary time-dependent excitation [12].
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Setting ε = 0 in system (10) we obtain the Hamiltonian equation

ẋ1 = x2, ẋ2 = −x1 + αx3
1.

The equilibria are the origin (a center) and the hyperbolic equilibria e1(0)
and e2(0). Furthermore, one finds two heteroclinic orbits connecting e1(0)
and e2(0) and vice versa given explicitly (cp. [12, Section 6.1]) by

x1h(t) = ± 1√
α

tanh
t√
2

and x2h(t) = ± 1√
2α

sech2 t√
2

with −∞ < t <∞.
For ε > 0 the Melnikov function M(t0) measures the distance between

the stable and the unstable manifold in a two-dimensional cross section in
phase space at time t0

M(t0) = −
∫ ∞

−∞

[
β1x

2
2h(t) + β3x

4
2h(t)

]
dt

+
∫ ∞

−∞
[ρaua(t+ t0)x2h(t)− ρmum(t+ t0)x1h(t)x2h(t)] dt.

If the Melnikov function has simple zeros, the stable and the unstable man-
ifolds intersect transversally for small ε > 0.

Considering the harmonic control functions

ua(t) = ρa cos(ωat+ ψa), um(t) = ρm cos(ωmt+ ψm), (16)

the Melnikov function yields

M(t0) = −β1
2
√

2
3α

− β3
8
√

2
35α2

+ ρa

√
2πωa cos(ωat0 + ψa)
√
α sinh

√
2πωa
2

− ρm
πω2

m sin(ωmt0 + ψm)

α sinh
√

2πωm
2

.

For given frequencies ωa, ωm and phases ψa, ψm one may find amplitudes
ρa, ρm such that M(t0) = 0, i.e. that transverse intersections occur.

Concerning the relation between the control set analysis and Melnikov’s
method, we have the following results.

Theorem 4.1 Suppose that the Melnikov function for the periodic control
functions (16) with amplitudes ρa and ρm, respectively, has a simple zero at
ε = 0. Then for all ε > 0, small enough, there exists a heteroclinic control
set Dε

12 containing both sets of hyperbolic equilibria for system (10).
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Proof. Fix ε > 0, small enough. The equilibrium eε2(0, 0) of the system
with ρa = ρm = 0 is in the interior of a control set Dε

2. The period map
for (16) has a hyperbolic fixed point fε

2 (ρa, ρm) and it is in the interior of a
control set. Also for all σa ∈ [0, ρa) and σm ∈ [0, ρm) the hyperbolic fixed
points fε

2 (σa, σm) corresponding to the periodic controls

ua(t) = σa cos(ωat+ ψa), um(t) = σm cos(ωmt+ ψm)

are in the interior of some control sets. Since these fixed points change
continuously with σa and σm and fε

2 (0, 0) = eε2(0, 0) , all these points are
in the interior of the same control set. The same arguments apply to the
hyperbolic fixed points fε

1 (σa, σm) on the left side.
Since the Melnikov function depends continuously differentiable on the

amplitudes σa and σm of the periodic controls, it also has a simple zero for
amplitudes less than ρa and ρm. Thus, in the lower halfplane, one finds,
arbitrarily close to the hyperbolic fixed points fε

2 (σa, σm) and fε
1 (σa, σm),

points on the unstable and on the stable manifolds. Hence it is possible
to steer the system from the control set around the right set of equilibria
to the control around the left set of equilibria. Similarly, one can steer the
system in the upper halfplane in the other direction. This proves that the
heteroclinic control Dε

12 containing both sets of hyperbolic equilibria exists.

A consequence of this theorem is that Melnikov’s method will predict a
positive capsize probability for all

ρm > inf
ε>0

Hε(ρa),

where Hε(ρa) is the heteroclinic margin for system (10).
Next we compare the results above with those obtained from the control

set analysis in Section 3. Replacing the harmonic functions by

ua(t) = ρa, um(t) = −ρmsgn t,

the Melnikov function yields

M(t0) = −2
√

2β1

3α
− 8

√
2β3

35α2
+

2ρa√
α

+
ρm

α
sech2 t0√

2
.

Obviously, the Melnikov function has simple zeros for

ρm >
2
√

2β1

3
+

8
√

2β3

35α
− 2

√
αρa.
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For the parameter values α = 0.674, β1 = 0.231, and β3 = 0.375, we obtain

ρm > 0.3976− 1.6420ρa.

These results are compared to the numerical computation for ε = 1, 1
2 ,

1
4 ,

see Table 1. Apparently, the heteroclinic margin for ε → 0 approaches the
critical value predicted by Melnikov’s method.

Table 1: Comparison of the heteroclinic margin and the results of Melnikov’s
method for ε = 1, 1

2 ,
1
4 .

Case H(ρa = 0) H−1(ρm = 0)
ε = 1 0.370 . . . 0.380 0.220 . . . 0.230
ε = 1

2 0.385 . . . 0.395 0.230 . . . 0.240
ε = 1

4 0.390 . . . 0.400 0.235 . . . 0.245
Melnikov 0.398 0.242

5 The Perturbed Escape Equation

In this section we discuss the perturbed escape equation and again compare
results from Melnikov’s method with results based on control set analysis;
for the latter, we rely in particular on the paper by Gayer [8].

Consider the perturbed escape equation

ẋ1 = x2, ẋ2 = −εγ x2 − x1 + x1
2 + εF sinωt+ εua(t)

with u(t) ∈ [−ρa, ρa] and parameter values

γ = 0.1, ω = 0.85, F = 0.06. (17)

The corresponding Hamiltonian system (ε = 0, see Figure 9) has an equilib-
rium at the origin (a center) and a hyperbolic equilibrium e0 = (1, 0) with
a homoclinic orbit given by

x1h(t) =
3
2

tanh2 t

2
− 1

2
, x2h(t) =

3
2
sech2 t

2
tanh

t

2
. (18)

For the perturbation ua(t) = ρasgn t, we obtain the Melnikov function

M(t0) = −6γ
5

+
6Fπω2 cosωt0

sinhπω
+ 3ρasech2 t0

2
.

18



Figure 9: Potential (left) and corresponding homoclinic orbit (right) of the
escape equation.

Thus, transverse intersections occur first close to t0 = 0 if

ρa >
2γ
5
− 2Fπω2

sinhπω
.

In the absence of periodic forcing (i.e., F = 0), the critical control amplitude
is

ρa = 0.04.

This value coincides with the numerical calculations in [7] (for ε = 1). For
the parameters (17) the critical control amplitude is

ρa = 0.0021. (19)

On the other hand, the numerical control set analysis performed in Gayer
[8] for the case ε = 1 shows the following, more elaborate pattern when the
amplitude ρa is increased:

First we recall that the uncontrolled system suffers a bifurcation when
F is increased from zero. For the parameters (17) there are two orbitally
stable periodic solutions and two hyperbolic periodic solutions. Then, for
small amplitude ρa = 0.005, they are included in the interior of control sets
D1, D2, D3, D4. Here D1 and D3 are invariant control sets, while D2 (in
the potential well) and D4 (on the potential hill top) are variant control
sets. For ρa = 0.0085, the two control sets D1 and D2 have merged into a
variant control set D12, while D3 and D4 remain distinct. For ρa = 0.01
also the control sets D12 and the invariant control set D3 have merged into
an invariant control set D123 and, finally, for ρa = 0.013 also the control set
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D4 has merged with D123 forming a variant control set D1234. In this latter
situation, no invariance properties prevail. Hence Gayer’s numerical results
in [8] show that the invariance margin Iinv(ρa) satisfies

0.01 < I−1
inv(0) < 0.013.

This is an enclosure for the critical amplitude where loss of invariance occurs,
since for ρa ≤ 0.01 all points in the invariant control set D123 containing the
origin remain in this set with probability one; for ρa ≥ 0.013 the control set
D1234 around the origin has lost its invariance and for every x in this control
set the expectation of the sojourn time is finite.

As a consequence of the Melnikov result, we see that, due to the transver-
sal intersections of the stable and unstable manifolds of the hyperbolic fixed
point fε(ρa), there exists a homoclinic control set Dε

44 for small ε > 0 pro-
vided that ρa is greater than the critical amplitude (19). In its interior it
contains the (chaotic) invariant set of a k−fold concatenation of the period
map as predicted by Melnikov; furthermore it contains the hyperbolic fixed
point fε

4 (0). Thus the set of complete controllability Dε
4 containing the peri-

odic solution on the hill top is a proper subset of Dε
44 and hence Dε

4 is not a
control set, but just a local control, i.e., a subset of complete controllability
which is maximal only in a neighborhood. Note, however, that analytically,
it is not clear if the control set Dε

44 also exists for ε = 1 (this is the situation
discussed in [8]).

6 Conclusions

The analysis of two models for ship roll motion and capsizing illustrates that
Melnikov’s method does not indicate the loss of integrity; instead it is related
to the existence of heteroclinic connections and hence to the heteroclinic
margin which is strictly less than the invariance margin. The same appears
to hold as well for perturbations of Hamiltonian systems with homoclinic
orbits. Furthermore, in its range of validity Melnikov’s methods gives very
accurate predictions for the homoclinic or heteroclinic margin.

For a dominant sinusoidal (in the escape equation), the value predicted
by the Melnikov method is far below numerical results for the invariance
margin. Hence it appears to be far too conservative. Certainly, the situ-
ation of perturbations with dominant sinusoidal components needs further
analysis.
Acknowledgement. The numerical computation of the control sets are
due to Johannes Taubert and Dirk Wohlgemuth.
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