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1 Introduction

The purpose of this paper is to discuss bifurcation problems for control sys-
tems viewing them as dynamical systems, i.e., as control flows. Here open loop
control systems are considered as skew product flows where the shift along
the control functions is part of the dynamics.

Basic results from this point of view are contained in the monograph [8]. In
the present paper we survey recent results on bifurcation problems-some new
results are included and a number of open problems is indicated. Pertinent
results from [8] are cited if necessary for an understanding.

We consider control systems in Rd of the form

ẋ(t) = f(α, x(t), u(t)), u ∈ U = {u : R→ Rm, u(t) ∈ U for t ∈ R}, (1)

where the control range U is a subset of Rm and α ∈ A ⊂ R denotes a bi-
furcation parameter. For simplicity we assume that for every initial condition
x(0) = x0 ∈ Rd and every admissible control function u a unique global so-
lution ϕα(t, x0, u), t ∈ R, exists. If the dependence on α is irrelevant, we
suppress α in the notation.

As for differential equations, it is relevant to discuss qualitative changes
in the system behavior when α is varied. Such problems have found much
interest in recent years; see e.g. the contributions in this volume or in [7]. The
bifurcation theory developed here concerns open loop control system. Based
on the concept of the associated control flow, changes in the controllability
behavior come into focus. It turns out that the difference between controlla-
bility and chain controllability (which allows for arbitrarily small jumps) is
decisive for our analysis. Since we discuss open loop systems with restricted
control values, feedback transformations will not be allowed; this is in con-
trast to classical concepts of normal forms in control theory. In particular, this
is a notable difference to the bifurcation and normal form theory developed
recently by A. Krener and W. Kang; see, in particular, Kang [21].
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The contents are as follows: In Section 2 we introduce our framework.
Section 3 discusses bifurcation from a singular point, i.e., a point in the state
space that remains fixed under all controls; here also an approach to normal
forms is discussed. Section 4 treats bifurcations from invariant control sets.

Notation: For A, B ⊂ Rd the distance of A to B is

dist(A, B) = sup
a∈A

inf
b∈B

|a− b|

and the Hausdorff distance is dH(A,B) = max (dist(A,B), dist(B, A)). The
topological closure and interior of a set A are denoted by clA and intA, re-
spectively.

2 Control Flows

System (1) may be viewed as a family of ordinary differential equations in-
dexed by u ∈ U . Since they are non-autonomous, they do not define a flow
or dynamical system. In the theory of non-autonomous differential equations
there is the classical device to embed such an equation into a flow by consider-
ing all time shifts of the right hand side and to include the possible right hand
sides into the state. In the context of uniformly continuous time dependence
this goes back to Bebutov [3]; more recently, such constructions have been used
extensively by R. Johnson and others in the context of non-autonomous (lin-
ear) control systems (e.g. Johnson and Nerurkar [19]); see also Grüne [16] for
a different discussion emphasizing numerical aspects. Here, however, we will
stick to autonomous control systems and only consider the time-dependence
stemming from the control functions. Introduce the shift

(θtu) (τ) = u(t + τ), τ ∈ R,

on the set of control functions. One immediately sees that the map

Φ : (t, u, x0) 7→ (θtu, ϕ(t, x0, u))

defines a flow Φ on U × Rd: Abbreviating Φt = Φ(t, ·, ·), one has

Φ0 = id and Φt+s = Φt ◦ Φs.

Since the state space is infinite-dimensional, additional topological require-
ments are needed. We require that U is contained in L∞(R,Rm). This gives
a reasonable framework, if U ⊂ Rm is compact and convex and the system is
control affine, i.e.,

f(α, x, u) = f0(α, x) +
m∑

i=1

uifi(α, x). (2)
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Then the flow Φ is continuous and U becomes a compact metric space in
the weak∗ topology of L∞(R,Rm) (cp. [8, Lemma 4.2.1 and Lemma 4.3.2]).
We refer to system (1) with right hand side given by (2) for some α ∈ A as
system (2)α; similarly, we denote objects corresponding to this system by a
superfix α. We assume that 0 ∈ intU . Throughout this paper we remain in
this framework.

Remark 1. The class of systems can be extended, if-instead of the shift along
control functions-the shift along the corresponding time dependent vector
fields is considered; cp. [10] for a brief exposition.

A control set D is a maximal controlled invariant set such that

D ⊂ clO+(x) for all x ∈ D. (3)

Here O+(x) = {ϕ(t, x, u), u ∈ U and t ≥ 0} denotes the reachable set from
x. A control set C is called an invariant control set if clC = clO+(x) for
all x ∈ C. Often we will assume that local accessibility holds, i.e., that the
small time reachable sets in forward and backward time O+

≤T (x) and O−≤T (x),
respectively, have nonvoid interiors for all x and all T > 0. Then intD ⊂ O+(x)
for all x ∈ D. Local accessibility holds, if

dimLA{f0 +
m∑

i=1

uifi, (ui) ∈ U}(x) = d for all x ∈ Rd. (4)

We also recall that a chain control set E is a maximal subset of the state space
such that for all x ∈ E there is u ∈ U with ϕ(t, x, u) ∈ E for all t ∈ R and for
every two elements x, y ∈ E and all ε, T > 0 there are x0 = x, x1, ..., xn = y
in Rd, u0, ..., un ∈ U and T0, ..., Tn−1 > T with d(ϕ(Ti, xi, ui), xi+1) < ε.
Every control set with nonvoid interior is contained in a chain control set;
chain control sets are closed if they are bounded.

Compact chain control sets E uniquely correspond to compact chain re-
current components of the control flow via

E = {(u, x) ∈ U × Rd, ϕ(t, x, u) ∈ E for all t ∈ R}.

Control sets D with nonvoid interior uniquely correspond to maximal topo-
logically transitive sets (such that the projection to Rd has nonvoid interior)
via

D = cl{(u, x) ∈ U × Rd, ϕ(t, x, u) ∈ intD for all t ∈ R}.
It turns out that for parameter-dependent systems, control sets and chain
control sets have complementary semicontinuity properties; see [9].

Theorem 1. Consider parameter-dependent system (2) and fix α0∈ A.
(i) Let Dα0 be a control set with compact closure of (2)α0 , and assume that
system (2)α0 satisfies accessibility rank condition (4) on cl Dα0 . Then for α
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near α0 there are unique control sets Dα of (2)α such that the map α 7−→ clDα

is lower semicontinuous at α = α0.
(ii) Let K ⊂ Rd be compact and suppose that for α near α0 the chain control
sets Eα with Eα ∩K 6= ∅ of (2)α are contained in K. Then α 7→ Eα is upper
semicontinuous at α0 in the sense that

lim sup
α→α0

Eα =
{

x ∈ M,
there are αk → α0 and

xαk ∈ Eαk with xαk → x

}
⊂

⋃
Eα0 ,

where the union is taken over the chain control sets Eα0 ⊂ K of (2)α0 .
(iii) Let Dα0 be a control set of (2)α0 with α0 ∈ A, and assume that sys-
tem (2)α0 satisfies accessibility rank condition (4) on clDα0 . Let Eα be the
chain control set containing the control set Dα (given by (i)) and assume that
clDα0 = Eα0 . Then the control sets Dα depend continuously on α at α = α0,

lim
α→α0

clDα = lim
α→α0

Eα = cl Dα0 = Eα0 .

Remark 2. Gayer [14] shows that (i) in the previous theorem remains true if
(instead of α–dependence) the control range depends lower semicontinuously
on a real parameter ρ.

Thus a chain control set which is the closure of a control set with nonvoid
interior depends continuously on parameters. This equivalence of controlla-
bility and chain controllability may be interpreted as a structural stability
property of control systems. Hence it is important to study when chain con-
trol sets coincide with the closures of control sets.

In order to allow for different maximal amplitudes of the inputs, we con-
sider admissible controls in Uρ = {u ∈ L∞(R,Rm), u(t) ∈ ρ · U}, ρ ≥ 0. It is
easily seen that the corresponding trajectories coincide with the trajectories
ϕρ(t, x, u) of

ẋ(t) = fρ(x(t), u(t)) = f(x(t), ρu(t)), u ∈ U .

Clearly, this is a special case of a parameter-dependent control system as
considered above. The maximal chain transitive sets E0

i of the uncontrolled
system are contained in chain control sets Eρ

i of the ρ-system for every ρ >
0. Their lifts Eρ

i are the maximal chain transitive sets of the corresponding
control flows Φρ. Every chain transitive set for small positive ρ > 0 is of this
form with a unique E0

i , i = 1, ..., m (see [8]). For larger ρ-values, there may
exist further maximal chain transitive sets Eρ containing no chain transitive
set of the unperturbed system. An easy example is obtained by looking at
systems where for some ρ0 > 0 a saddle node bifurcation occurs in ẋ = f(x, ρ).
A more intricate example is [8], Example 4.7.8. Observe that for larger ρ-values
the chain control sets may intersect and hence coincide. From Theorem 1 we
obtain that the maps

ρ 7→ clDρ and ρ 7→ Eρ (5)
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are left and right continuous, respectively. We call (u, x) ∈ U × Rd an inner
pair, if there is T > 0 with ϕ(T, x, u) ∈ intO+(x). The following ρ-inner pair
condition will be relevant:

For all ρ′, ρ ∈ [ρ∗, ρ∗) with ρ′ > ρ and all chain control sets Eρ

every (u, x) ∈ Eρ is an inner pair for (2)ρ′
.

(6)

By [8, Corollary 4.1.12] the ρ-inner pair condition and local accessibility imply
that for increasing families of control sets Dρ and chain control sets Eρ with
Dρ ⊂ Eρ the number of discontinuity points of (5) is at most countable;
they coincide for both maps and at common continuity points clDρ = Eρ.
The number of discontinuity points may be dense (without the inner pair
condition, there may be “large” discontinuities which persist for all ρ > 0).

Remark 3. The inner-pair condition (6) may appear unduly strong. However
it is easily verified for small ρ > 0 if the unperturbed system has a controllable
linearization (more information is given in [8], Chapter 4.) For general ρ > 0
the inner pair condition holds, e.g., for coupled oscillators if the number of
controls is equal to the degrees of freedom; for this result and more general
conditions see Gayer [14].)

Next we show that the number of discontinuity points with a lower bound
on the discontinuity size is finite in every compact ρ-interval. Thus, from a
practical point of view, only finitely many may be relevant.

Lemma 1. Consider families of increasing control sets Dρ and chain control
sets Eρ with Dρ ⊂ Eρ.
(i) Let ρ0 ≥ 0 and assume that Eρ0 ⊂ clDρ for ρ > ρ0. For every ε > 0 there
is δ > 0 such that for all ρ > ρ0

ρ− ρ0 < δ implies dH(clDρ, Eρ) < ε.

(ii) Let ρ0 > 0 and assume that Eρ ⊂ clDρ0 for ρ < ρ0. For every ε > 0 there
is δ > 0 such that for all ρ < ρ0

ρ0 − ρ < δ implies dH(clDρ, Eρ) < ε.

Proof. (i) Since for all ρ the inclusion clDρ ⊂ Eρ holds, one only has to show
that

dist(Eρ, clDρ) = sup{d(x, clDρ), x ∈ Eρ) < ε.

Let ε > 0. By right continuity of ρ 7→ Eρ there is δ > 0 such that
dist(Eρ, Eρ0) < ε for all ρ with δ > ρ − ρ0 > 0 and we know that
Eρ0 ⊂ clDρ ⊂ Eρ. Thus

dist(Eρ, clDρ) = sup{d(x, clDρ), x ∈ Eρ}
≤ sup{d(x,Eρ0), x ∈ Eρ}
= dist(Eρ, Eρ0) < ε.
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(ii) Similarly, left continuity of ρ 7→ clDρ yields for ε > 0 a number δ > 0 such
that dH(clDρ0 , clDρ) = dist(clDρ0 , clDρ) < ε for all ρ with −δ < ρ − ρ0 < 0
and we know that Eρ ⊂ clDρ0 . Thus

dist(Eρ, clDρ) = sup{d(x, clDρ), x ∈ Eρ}
≤ sup{d(x, clDρ), x ∈ clDρ0}
= dist(clDρ0 , clDρ) < ε.

Proposition 1. Suppose that the ρ-inner pair condition (6) holds on an in-
terval [ρ∗, ρ∗] ⊂ [0,∞). Then for every ε > 0 there are only finitely many
points ρ ∈ [ρ∗, ρ∗] where dH(clDρ, Eρ) ≥ ε.

Proof. The inner pair condition guarantees that for all ρ < ρ′ in [ρ∗, ρ∗] one
has Eρ ⊂ clDρ′ ; see [8, Section 4.8]. Let ε > 0. By the preceding lemma one
finds for every point ρ0 ∈ [ρ∗, ρ∗] a number δ > 0 such that for all ρ 6= ρ0 in
U(ρ0) := [ρ∗, ρ∗] ∩(ρ0 − δ, ρ0 + δ)

dH(clDρ, Eρ) < ε.

Now compactness implies that [ρ∗, ρ∗] is covered by finitely many of these sets
U(ρ0). Only their midpoints ρ0 may have d(clDρ0 , Eρ0) ≥ ε.

Remark 4. The same arguments show that the reachable sets enjoy the same
properties, if their closures are compact and the ρ-inner pair condition holds
everywhere.

3 Bifurcation from a singular point

In this section we discuss bifurcation of control sets and chain control sets from
a singular point x0. Here the linearized system is a (homogeneous) bilinear
control system; the associated control flow is a linear skew product flow over
the base of control functions.

Assume that x0 ∈ Rd remains fixed for all α and for all controls, i.e.,

fi(α, x0) = 0 for i = 0, 1, ..., m. (7)

Then the system linearized with respect to x is

ẏ(t) =

[
A0 +

m∑

i=1

ui(t)Ai

]
y(t), u ∈ U , (8)

where Ai := Dfi(x0). The solutions are y(t, y0, u) = D2ϕ(t, x0, u)(y0) and the
associated linearized control flow has the form

TΦt(x0) : U×Rd → U×Rd, (u, y) → (θtu, y(t, y0, u)).
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Clearly this flow is linear in the fibers {u}×Rd, since it corresponds to linear
homogeneous differential equations.

The singular point is a trivial control set which is invariant. It need not
be a chain control set. The bifurcation from this control set can be analyzed
using the Lyapunov exponents of the linearized system which are given by

λ(u, y0) = lim supt→∞
1
t

log
∥∥y(t, y0, u)

∥∥ . (9)

We note that there are a number of closely related notions for this general-
ization of the real parts of eigenvalues to nonautonomous linear differential
equations. Basic results are given by Johnson, Palmer, and Sell [20]; see [8,
Section 5.5] for some additional information.

The following result due to Grünvogel [17] shows that control sets near
the singular point are determined by the Lyapunov exponents; note that for
periodic controls, the Lyapunov exponents are just the Floquet exponents.

Theorem 2. Consider the control-affine systems (2) with a singular point
x0 ∈ Rd satisfying (7) and assume that the accessibility rank condition (4)
holds for all x 6= x0. Furthermore assume that
(i) there are periodic control functions us and uh such that for us the linearized
system is exponentially stable, i.e., the corresponding Lyapunov exponents sat-
isfy

0 > λs
1 > ... > λs

d,

and for uh the corresponding Lyapunov exponents satisfy

λh
1 ≥ ... ≥ λh

k > 0 > λh
k+1 > ... > λh

d ;

(ii) all pairs (uh, x) ∈ U × Rd with x 6= x0 are strong inner pairs, i.e.,
ϕ(t, x, uh) ∈ intO+(x) for all t > 0.
Then there exists a control set D with nonvoid interior such that x0 ∈ ∂D.

Using this result one observes in a number of control systems, e.g., in the
Duffing-Van der Pol oscillator [17], that for some α-values the singular point
x0 is exponentially stable for all controls, hence there are no control sets near
x0. Then, for increasing α-values, control sets Dα occur with x0 ∈ ∂Dα. For
some upper α-value, they move away from x0.

Remark 5. Assumption (i) in Theorem 2 is in particular satisfied, if 0 is in the
interior of the highest Floquet spectral interval (cp. [8]) and the corresponding
subbundle is one-dimensional.

Remark 6. Grünvogel [17] also shows that there are no control sets in a neigh-
borhood of the origin if zero is not in the interior of the Morse spectrum of
the linearized system (8). This also follows from a Hartman-Grobman Theo-
rem for skew product flows; see Bronstein/Kopanskii [4]. One has to take into
account that the spectral condition implies hyperbolicity, since the base space
U is chain recurrent. Then the use of appropriate cut-off functions yields the
desired local version.
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Remark 7. Using averaging techniques, Grammel/Shi [15] considered the sta-
bility behavior and the Lyapunov spectrum of bilinear control systems per-
turbed by a fast subsystem.

Remark 8. A number of questions remains open in this context: Is the control
set containing the singular point x0 on its boundary invariant? (certainly
it is not closed.) Can one also prove a bifurcation of control sets if other
spectral intervals (instead of the highest interval) contain 0? What happens
if the corresponding subbundles are higher dimensional? Is the consideration
of periodic controls necessary?

We see that a characteristic of bifurcations from a singular point is that
there is (at least) one transitional state. Here the control set {x0} has al-
ready split into two or more control sets which, however, still form a single
chain control set. The bifurcation is complete when also the chain control set
has split. This should be compared with L. Arnold’s bifurcation pattern for
stochastic systems [1]; see in particular the discussion in Johnson, Kloeden,
and Pavani [18].

The Hartman-Grobman Theorem alluded to in Remark 6 gives a topolog-
ical conjugacy result. As for differential equations, a natural next step is to
classify the bifurcation behavior by introducing normal forms of nonlinear sys-
tems based on smooth conjugacies. Since we discuss open loop systems with
restricted control values, feedback transformations will not be allowed (thus
this is different from classical concepts of normal forms in control theory).
The admissible transformations have to depend continuously on the control
functions u in the base space U of the skew product flow. This makes it pos-
sible (see [11]) to use methods from normal forms of nonautonomous differ-
ential equations (Siegmund [25]). Then conjugacies eliminate all nonresonant
terms in the Taylor expansion without changing the other terms up to the
same order. We note that there is also related work in the theory of random
dynamical systems which can be considered as skew product flows with an
invariant measure on the base space; compare L. Arnold [1].

We consider the control affine system (2) and assume that f0, . . . , fm are
Ck vector fields for some k ≥ 2. Then the associated control flow Φ is, for
fixed u ∈ U , k times continuously differentiable with respect to x. Our no-
tion of conjugacies which, naturally, depend on u is specified in the following
definition.

Definition 1. Let ϕ : R × U × Rd → Rd and ψ : R × U × Rd → Rd be two
control systems of the form (2) with common singular point x0. Then ϕ and
ψ are said to be Ck conjugate if there exists a bundle mapping

U × Rd 3 (u, x) 7→ (u,H(x, u)) ∈ U × Rd

which preserves the zero section U × {0}, such that

(i) x 7→ H(x, u) is a local Ck diffeomorphism (near x0 = 0) for each fixed
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u ∈ U (with inverse denoted by y 7→ H(y, u)−1),

(ii) (u, x) 7→ H(x, u) and (u, y) 7→ H(y, u)−1 are continuous,

(iii) for all t ∈ R, x ∈ Rd and u ∈ U the conjugacy

ψ(t, u, H(x, u)) = H(θtu, ϕ(t, x, u))

holds.

Next we discuss the Taylor expansions and the terms which are to be
eliminated by conjugacies. We rewrite system (2) in the form

ẋ = A(u(t))x(t) + F (x(t), u(t)), (10)

where the nonlinearity is given by

F (x(t), u(t)) = f0(x(t))−A0x(t) +
m∑

i=1

ui(t)(fi(x(t))−Aix(t)).

In the following we assume that the linearized system is in block diagonal
form and that the nonlinearity is Ck-bounded. More precisely we assume
A = diag(A(1), . . . , A(n)) with A(i) : U → Rdi×di , d1 + · · · + dn = d and
‖Di

xF (x0, u)‖ ≤ M for i = 1, . . . , k, u ∈ U , with a constant M > 0.
The block diagonalization of the linearized system into the matrices

A(i) corresponds to a decomposition of Rd into di-dimensional subspaces.
Corresponding to the block diagonal structure of A one can write x =
(x(1), . . . , x(n)) ∈ Rd and F = (F (1), . . . , F (n)) with the component func-
tions F (i) : Rd × U → Rdi . For a multi-index ` = (`1, . . . , `n) ∈ N`

0 let
|`| = `1 + · · ·+ `n denote the order and define

D`
xF = D`1

x(1) · · ·D`n

x(n)F and x` = x(1) · · ·x(1)︸ ︷︷ ︸
`1-times

· · ·x(n) · · ·x(n)︸ ︷︷ ︸
`n-times

.

Now we can expand F (·, u(t)) into a Taylor series at x0

F (x, u(t)) =
∑

`∈Nn
0 : 2≤|`|≤k

1
`!

D`
xF (x0, u(t)) · (x− x0)` + o(‖x− x0‖k) ,

where `! = `1! · · · `n!. For simplicity we assume without loss of generality
that x0 = 0. We are looking for a condition which ensures the existence of a
Ck conjugacy which eliminates the j-th component D`

xF (j)(0, u(t)) · x` of a
summand in the Taylor expansion of F .

Let Φ = diag(Φ(1), . . . , Φ(n)) denote the solution of the linearized system
(8), i.e., Φ(i)(t, u)y(i) solves the control system

ẏ(i)(t) = A(i)(u(t))y(i)(t) in Rdi , u ∈ U ,
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with Φ(i)(0, u)y(i) = y(i). The nonresonance condition will be based on expo-
nential dichotomies: we associate to each Φ(i) an interval Λi = [ai, bi] such
that for every ε > 0 there is K > 0 with

‖Φ(i)(s, u)−1‖ ≤ Ke−(ai−ε)s and ‖Φ(i)(s, u)‖ ≤ Ke(bi+ε)s (11)

for s ≥ 0, u ∈ U .

Remark 9. Condition (11) holds if we define, for the Lyapunov exponents as
in (9),

ai = inf{λ(u, y(i)), (u, y(i)) ∈ U×Rdi}, bi = sup{λ(u, y(i)), (u, y(i)) ∈ U×Rdi}.
Then [ai, bi] contains the dynamical spectrum of the corresponding system on
Rdi and the assertion follows from its properties; see [24] or [8, Section 5.4].

Next we state the normal form theorem for control systems at a singular
point. It shows that nonresonant terms in the Taylor expansion can be elimi-
nated without changing the other coefficients up to the same order. The proof
of this theorem is given in [11], where also some first examples are indicated.

For compact sets K1, K2 ⊂ R and integers `1, `2 ∈ Z we define the compact
set `1K1 + `2K2 := {`1k1 + `2k2 : ki ∈ Ki} and we write K1 < K2 iff
maxK1 < min K2 and similarly for K1 > K2.

Theorem 3. Consider a class of Ck control affine systems (2) satisfying the
assumptions above. Suppose that to each block an interval Λi is associated with
property (11). Let ` = (`1, . . . , `n) ∈ Nn

0 be a multi-index of order 2 ≤ |`| ≤ k
and assume that for some j the nonresonance condition

Λj <

n∑

i=1

`iΛi or Λj >

n∑

i=1

`iΛi

holds. Then there exists a Ck conjugacy between (10) and a system

ẋ = A(u(t))x(t) + G(x(t), u(t)) (12)

which eliminates the j-th Taylor component 1
`!D

`
xF (j)(0, u(t)) ·x` belonging to

the multi index ` and leaves fixed all other Taylor coefficients up to order |`|,
Remark 10. This result shows that-under a non-resonance condition-some
terms can be eliminated without changing the other terms up to the same
order. We would like to stress that higher order terms may be changed; no
analysis of terms of arbitrarily high order appears feasible in this context.

Remark 11. The theorem above leads to the problem to find a complete cat-
alogue of systems of order k without terms which can be eliminated. Such an
analysis must be made for every control range (i.e. for every base flow). It is
an interesting question, when different control ranges may lead to the same
normal forms.
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Remark 12. The Lyapunov exponents generalize the real part of eigenvalues.
The imaginary parts of eigenvalues determine the rotational behavior and
hence are also of relevance in describing the bifurcation behavior. For stochas-
tic equations (where an ergodic invariant measure on the base space is given),
Arnold/San Martin [2] and Ruffino [23] have discussed a corresponding rota-
tion number. Another concept is used by Johnson and others for Hamiltonian
skew product flows; in particular, the latter is used for a generalization [13] of
a theorem due to Yakubovich who analyzed linear quadratic optimal control
problems for periodic systems.

4 Bifurcation from invariant control sets

The previous section dealt with bifurcation of control sets from a singular
point. Other singular scenarios where bifurcation phenomena occur are totally
unexplored. The present section concentrates on the regular situation where
local accessibility holds. Bifurcations will be considered for an invariant object
in the state space (not for the more general case of invariant objects for the
lifted system in U ×M).

A first question concerns the role of hyperbolicity in this regular con-
text. In the theory of chaotic dynamical systems a classical tool is Bowen’s
shadowing lemma. It allows one to find close to (ε, T )-chains trajectories of
a hyperbolic differential equation or discrete dynamical system. In the con-
text of control flows, a generalization has been given in Colonius/Du [5]. The
required hyperbolicity condition refers to the linearized system given by

ẋ = f(x, u), ẏ = D1f(x, u)y, u ∈ Uρ. (13)

Theorem 4. Suppose that the uncontrolled system ẋ = f(x, 0) is hyperbolic
on a compact chain transitive component M and assume local accessibility for
all ρ > 0. Furthermore assume that the chain control set Eρ containing M
has nonvoid interior. Then for ρ > 0, small enough, Eρ = clDρ for a control
set Dρ with nonvoid interior.

Remark 13. Since control flows are special skew product flows, it may appear
natural to ask if a shadowing lemma for general skew product flows can be
used in this context. However, closing the gap between chain controllability
and controllability also requires to close gaps in the base space. Here, in gen-
eral, hyperbolicity which only refers to the fibers cannot be used. Thus the
shadowing lemma for general discrete-time skew product flows by Meyer and
Sell [22] can not be used since it excludes jumps in the base space.

In another direction one can analyze the behavior near a hyperbolic equi-
librium of the uncontrolled system. Then a natural question is if the local
uniqueness of the equilibrium of the uncontrolled system transfers to the
controlled system. A positive answer has been given in Remark 6 for the
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case of a singular equilibrium. The following result from Colonius/Spadini
[12] gives an analogous result in the regular situation. For the formula-
tion we need the notion of local control sets: For a subset N ⊂ Rd denote
O+

N (x) = {ϕ(T, x, u), T > 0, u ∈ U and ϕ(t, x, u) ∈ N for all 0 ≤ t ≤ T}.
A subset D ⊂ Rd is called a local control set, if there exists a neighborhood
N of clD such that D ⊂ clO+

N (x) for all x ∈ D and D is maximal with this
property.

Consider a parameter-dependent family of control systems

ẋ(t) = f(α, x(t), u(t)), u(t) ∈ ρU, (14)

where α ∈ R, ρ > 0 and U ⊂ Rm is bounded, convex and contains the origin in
its interior. We consider the behavior near an equilibrium of the uncontrolled
system with α = α0 for small control range.

Theorem 5. Let f : R × Rd × Rm → Rd be a continuous map which is
C1 with respect to the last two variables. Consider a continuous family of
equilibria xα ∈ Rd such that f(α, xα, 0) = 0 and assume that the pair of
matrices

(
D2f(α0, xα0 , 0), D3f(α0, xα0 , 0)

)
is controllable and D2f(α0, xα0 , 0)

is hyperbolic. Then there exist ε0 > 0, ρ0 > 0 and δ0 > 0 such that, for all
|α− α0| < ε0 and all 0 < ρ < ρ0, the ball B(xα0 , δ0) contains exactly one
local control set for (14) with parameter value α.

Without hyperbolicity this claim is false. We proceed to a partial general-
ization of Grünvogel’s theorem, Theorem 2. Since we discuss bifurcation from
a nontrivial invariant set, here the direction of the unstable manifold will be
important (it must be directed outward).

For an invariant control set C with nonvoid interior and compact closure
we denote the lift of C by C,

C = cl{(u, x) ∈ U × Rd, ϕ(t, x, u) ∈ intC for all t ∈ R}.
The linearized flow over C is obtained by restricting attention to solutions of
(13) with (u, x, y) ∈ C × Rd. The corresponding Lyapunov exponents are

λ(u, x, y) = lim supt→∞
1
t
log |D2ϕ(t, x, u)y(t)| .

For x ∈ ∂C define the outer cone in x for C by

KxC =
{

y ∈ Rd,
there are β, λ0 > 0 such that for all z ∈ Rd with
|z − y| < β and all 0 < λ < λ0 one has x + λz /∈ C

}
.

Theorem 6. Assume that the system is locally accessible and let C be an in-
variant control set with nonvoid interior and compact closure. Assume that
there exists a compact invariant subset J ⊂ C with the following properties:
(i) The unstable part of J is nontrivial, i.e., there is a subbundle decomposi-
tion of the vector bundle J × Rd into subbundles V− 6= 0 and V+, which are
invariant under the linearized flow and exponentially separated, such that
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J × Rd = V+ ⊕ V−,

all Lyapunov exponents attained in V− are positive, and there are constants
γ, c > 0 with

TΦt(u, x, y−) < c exp(γt)TΦt(u, x, y+) for (u, x, y±) ∈ V±,

(ii) There is (u, x, y−) ∈ V− such that (u, x) ∈ J and x ∈ ∂C and y− ∈ KxC,
the outer cone in x for C.
Then the invariant control set C is a proper subset of the chain control set E
containing it.

Proof. We will construct a chain controllable set which has nontrivial intersec-
tions with C and the complement of C. This implies the assertion. Consider
the point x as specified in the second assumption. Since x is in the boundary
of C, there are v ∈ U , τ > 0, and a neighborhood N of x such that for all
z ∈ N one has ϕ(τ, z, v) ∈ intC. By an appropriately general version of the
Unstable Manifold Theorem, see, e.g., [8, Section 6.4], our assumptions imply,
that the set J has a nontrivial unstable manifold W−, which is Lipschitz close
to V−. In particular, for (u, x, y−) ∈ V− as specified in the assumptions, there
is x− ∈ N ∩ (Rd \C) with x− ∈ W−(u, x). Thus d(ϕ(t, x−, u), ϕ(t, x, u)) → 0
for t → −∞. Since (u, x) ∈ J ∩ C it follows that ϕ(t, x, u) ∈ C for all t ∈ R.
By compactness of C, there are z ∈ C and tk → −∞ with

ϕ(tk, x, u) → z for k →∞,

Now fix ε > 0 and T > 0. We will construct a controlled (ε, T )-chain connect-
ing x− and C. Start in x0 := x− and define u0 ∈ U as the concatenation of
v with any control which keeps the trajectory in C up to time T and has the
property that for some T0 > T one has

d(ϕ(T0, x
−, u0), z) <

ε

2
.

There is τ > T such that

d(ϕ(−τ, x−, u), z) <
ε

2
.

Thus we define x1 := ϕ(−τ, x−, u), u1 := u(−τ + ·), and T1 := τ . This yields
the desired (ε, T )- chain from x− to x− hitting C.

The result above is only a first step, since it does not answer the question,
if the gap between the control set D and the chain control set E ⊃ D is due
to the presence of another control set sitting in E. A partial answer is given
in the following result from [10] which shows when the loss of invariance is
due to the merger with a variant control set. We need some preparations. Let
K ⊂ Rd be compact and invariant. An attractor for the control flow Φ is a
compact invariant set A ⊂ U ×K that admits a neighborhood N such that
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A = ω(N) = {(u, x) ∈ U × K, there are tk → ∞ and (uk, xk) ∈ N with
Φ(tk, uk, xk) → (u, x)}. Define for chain recurrent components E , E ′

[E , E ′] = {(u, x) ∈ U ×K, ω∗(u, x) ⊂ E and ω(u, x) ⊂ E ′};

here ω∗(u, x) denotes the limit set for t → −∞. The structure of attractors and
their relation to chain control sets is described in the following proposition.

Proposition 2. Assume that for every ρ > 0 every chain recurrent component
Eρ contains a chain recurrent component E0

i of the unperturbed system. Then
there is ρ0 > 0 such that for all ρ with ρ0 > ρ > 0 the attractors Aρ of the
ρ-system are given by

Aρ =
⋃

i,j∈J

[Eρ
j , Eρ

k

]

where the allowed index sets J coincide with those for ρ = 0. The chain
recurrent components Eρ

i depend upper semicontinuously on ρ and converge for
ρ → 0 toward U×E0

i ; all Eρ
j are different and they have attractor neighborhoods

of the form U ×B with B ⊂ K.

For a set I ⊂ K the invariant domain of attraction is

Ainv(I) =
{

x ∈ K,
if C ⊂ clO+(x) is an invariant

control set, then C ⊂ I

}
. (15)

The invariant domain of attraction is closed and invariant.
For simplicity we assume that all control sets are in the interior of K. By

local accessibility, all invariant control sets have nonvoid interiors.
We will assume that for all ρ with ρ1 > ρ > 0 the chain control sets Eρ

i

are the closures of control sets Dρ
i with nonvoid interior; observe that some of

the control sets in the attractor must be invariant, since every point can be
steered into an invariant control set. Then Eρ

i = clDρ
i implies that also the

lifts coincide, i.e., Eρ
i = Dρ

i . It follows that the attractors are given by

Aρ =
⋃

i,j∈J

[Dρ
i ,Dρ

j

]
. (16)

We will analyze the case where for ρ = ρ1 the set Aρ1 has lost the attractor
property.

Theorem 7. Consider the control system (2) in Rd and assume that K =
cl intK ⊂ Rd is a compact and connected set which is invariant for the sys-
tem with input range given by ρ1U with ρ1 > 0. Assume that the following
strong invariance conditions describing the behavior near the boundary of K
are satisfied:
(i) For all x ∈ L there is εx > 0 with d(ϕ(t, x, u), ∂K) ≥ εx for all u ∈ U and
t ≥ 0.
(ii) There is ε0 > 0 such that for all x ∈ clL and u ∈ U
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y = lim
k→∞

ϕ(tk, x, u) ∈ L for tk →∞ implies d(y, ∂K) ≥ ε0. (17)

Consider the invariant sets in Uρ ×K

Iρ =
⋃

i,j∈J

[Dρ
i ,Dρ

j

]
,

and assume that they are attractors for ρ < ρ1 and that the projection Iρ1 to
Rd of Iρ1 intersects the boundary of its invariant domain of attraction defined
in (15), i.e.,

Iρ1 ∩ ∂Ainv(Iρ1) 6= ∅.

Then every attractor containing Iρ1 contains a lifted variant control set Dρ1

with Dρ1 ∩ Iρ1 = ∅.

This theorem shows that the loss of the attraction property due to in-
creased input ranges is connected with the merger of the attractor with a
variant control set Dρ1 . Connections to Input-to-State Stability are discussed
in [10].

Remark 14. The abstract Hartman-Grobman Theorem from [4] can also be
applied to the system over an invariant control set. Here, for the linearized
system, the base space is the lift of the invariant control set. However, for
parameter-dependent systems, this entails that the base space changes with
the parameter. Hence it does not appear feasible to obtain results which yield
conjugacy for small parameter changes. Here, presumably, normal hyperbol-
icity assumptions are required.

Remark 15. Consider a family of increasing control set Dρ corresponding to
increasing control ranges. Assume that they are invariant for ρ ≤ ρ0 and
variant for ρ > ρ0 Then Gayer [14] has shown that the map ρ 7→ clDρ has a
discontinuity at ρ0. This is a consequence of his careful analysis of the different
parts of the boundary of control sets. This also allows him to describe in detail
the merging of an invariant control set with a variant control set.

Finally we remark that the intuitive idea of a slowly varying bifurcation
parameter is made more precise, if the bifurcation parameter actually is sub-
ject to slow variations. This leads to concepts of dynamic bifurcations. The
fate of control sets for frozen parameters under slow parameter variations is
characterized in Colonius/Fabbri [6].
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7. F. Colonius and L. Grüne, eds., Dynamics, Bifurcations and Control,
Springer-Verlag, 2002.

8. F. Colonius and W. Kliemann, The Dynamics of Control, Birkhäuser, 2000.
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