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Abstract

This paper proposes a topological framework for the analysis of
the time shift on behaviors. It is shown that controllability is not a
property of the time shift, while chain controllability is. This also
leads to a global decomposition.
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1 Introduction

The analysis of di¤erential equations and, more generally, dynamical sys-
tems, via the time shift on a space of trajectories is a classical approach
going at least back to the work of Bebutov [1] in 1940 and has fostered the
development of topological dynamics, compare Sell [10]. In control theory,
the analysis of input and output functions has a long tradition. A new par-
adigm, called the behavioral approach to control, has been introduced by
Willems [12] considering systems interacting with the environment without
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making a di¤erence between inputs and outputs. However, so far, this lat-
ter theory has essentially been restricted to an algebraic framework. The
present paper aims at the analysis of behaviors via topological dynamics of
the time shift. It turns out that the basic notion of controllability does not
directly lend itself to such an analysis. However, a weakened version, chain
controllability, is intimately related to the classical notion of chain transitiv-
ity in topological dynamics (see, e.g., Easton [6], Robinson [9]). Additional
assumptions allow us are to infer controllability from chain controllability.
Our initial goal1 was to generalize the state space theory of control sets

(i.e., of maximal controllable subsets) to input-output systems. This entails
that instead of control �ows (on the state space of the control system together
with the input functions [2], [3]) pairs of input and output functions have
to be considered. Now, in this setting, the di¤erence between inputs and
outputs turns out to be irrelevant. Thus it appears to us that behaviors
provide an appropriate point of view. Clearly, this framework is much more
general, and includes, in particular, many implicit systems. However, we will
not pursue this direction in the present paper.
The contents are as follows: In Section 2, we consider shift invariant

subsets of L1 endowed with the weak� topology. Restricted to compact
subsets, the shift is continuous and we de�ne and analyze controllable and
chain controllable subsets in this context. In particular, maximal chain con-
trollable sets are characterized as maximal chain transitive sets. In Section
3 topological behaviors are de�ned via �ltrations in L1. A regular growth
condition is used to show that, generically, controllability is obtained from
chain controllability.

2 Control Sets and Chain Control Sets for
the Time Shift

In this section, we study controllability properties for the time shift on subsets
of L1�spaces.
Let the time domain T be equal to R or Z. Fix a ���nite measure � on

the Lebesgue ��algebra in R and de�ne the time shift � by

� : T� L1(T;Rd; �)! L1(T;Rd; �); (t; w) 7! (�tw)(s) = w(t+ s); s 2 T:
1

A preliminary version of this paper appeared in [4]
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A set B � L1(T;Rd; �) is ��invariant if w 2 B implies �tw 2 B for
every t 2 T. Recall that L1(T;Rd; �) is dual to L1(T;Rd; �) and that the
weak� topology on L1(T;Rd�) is the weakest topology such that for all
� 2 L1(T;Rd) the maps

L1(T;Rd; �)! R; w 7!
Z
T
w(t)T�(t) �(dt)

are continuous. Fixing a countable dense subset (�i) � L1(T;Rd; �), the
restriction of the metric

d(v; w) =

1X
i=1

2�i
��R
T[v(t)� w(t)]

T�i(t) �(dt)
��

1 +
��R
T[v(t)� w(t)]T�i(t) �(dt)

�� : (1)

to a norm-bounded subset of L1(T;Rd; �) induces the weak� topology. Note
also that every weak� compact subset of L1(T;Rd; �) is bounded.
Obviously, the time shift � on L1(T;Rd; �) de�nes a dynamical system,

since �t+s = �t ��s for all s; t 2 T and �0 = id. The following proposition
shows that the restriction to compact subsets is continuous. It follows from
a minor modi�cation of the proof of Lemma 4.2.4 in [3].

Proposition 2.1 Let K be a weak� compact subset of L1(T;Rd; �). Then
the restriction of the time shift � : T�K ! L1(T;Rd; �) is weak� continuous.

In the following we suppose that a ��invariant subset B � L1(T;Rd; �)
is given. We de�ne controllability for the time shift by adapting a proposal
by Jan Willems to our situation.

De�nition 2.2 For v 2 B the positive orbit at time T > 0 is de�ned as

O+
T (v) =

�
w 2 B; there is w1 2 B with w1(t) =

�
v(t) for t � 0

w(t� T ) for t � T

�
;

and the positive orbit is de�ned by

O+(v) =
[
T>0

O+
T (v).

Of particular interest are subsets of complete controllability de�ned as
follows.
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De�nition 2.3 A control set is a nonvoid maximal ��invariant subset D �
B with D � O+(v) for all v 2 D.

More explicitly, a nonvoid ��invariant subset D is a control set if for all
v; w 2 D there are w1 2 B and a time T > 0 satisfying

w1(t) =

�
v(t) for t � 0

w(t� T ) for t � T ;

and every set D0 with D � D0 � B with this property satis�es D0 = D.

Remark 2.4 Using maximality, it is easy to show that w1 with the property
above is also in D. Note also that the controllability property is required
within the set B � L1(T;Rd; �).

As an example we consider input-output pairs of continuous-time, control-
a¢ ne systems in Rn described by

_x(t) = f0(x(t)) +
mX
i=1

ui(t)fi(x(t)); (2)

y(t) = h(x(t); u(t)) = h0(x(t)) +
mX
i=1

ui(t)hi(x(t));

with inputs (ui) taking values in Rm; furthermore, the fi are smooth (C1�)
vector �elds and the output functions hi : Rn ! Rk are also smooth. Assume
that for every x 2 Rn and every input u 2 L1(R;Rm) (here we take the
Lebesgue measure � on R) there exists a unique absolutely continuous global
solution '(t; x; u); t 2 R. Also denote

U = fu 2 L1(R;Rm); u(t) 2 U for almost all t 2 Rg

where U is a subset of Rm.

Proposition 2.5 Consider the input-output system (2). For every compact
set K � Rn and every compact convex set U � Rm the sets

BK�U =
�
(u; y) 2 L1(R;Rm+k);

u 2 U and there is x 2 Rn s.t. for t 2 R
'(t; x; u) 2 K and y(t) = h('(t; x; u); u(t))

�
are weak� compact and shift invariant.
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Proof. Shift invariance is clear by de�nition. The set U � L1(R;Rm) is
weak� compact (compare [3, Lemma 4.2.1]) and the map

(t; x; u) 7! ('(t; x; u); u(t+ �)) : R�K � U ! K � U

is continuous, uniformly on bounded intervals in R, by [3, Lemma 4.3.2].
Then the desired compactness follows, since K is compact and h is control
a¢ ne.

Remark 2.6 For control-a¢ ne systems (2), a control set D with nonvoid
interior in the state space Rn is de�ned a maximal set of approximate con-
trollability [3]. If the system is locally accessible, exact controllability in the
interior follows and one easily sees that the following set is contained in a
control set D in the sense of De�nition 2.3:�

(u; y) 2 B; there is x0 2 intD with '(t; x0; u) 2 intD
and y(t) = h('(t; x0; u); u(t)) for all t 2 R

�
:

In fact, the controllability property is immediate. For input-state systems
(i.e., y = x) note the di¤erence to the lift of a control set as de�ned in
[3] where, instead of input-trajectory pairs, the closure of the set of pairs
(u; x0) 2 U � intD with '(t; x0; u) 2 intD for all t is considered.

Example 2.7 Consider a linear control systems _x = Ax+Bu with u(t) 2 U ,
for a compact and convex subset U � Rm containing the origin in its interior.
Here it is known (see Colonius and Spadini [5]) that there exists a unique
bounded control set in Rn if the pair (A;B) is controllable and A is hyperbolic.
This implies that for K � Rn large enough, system (9) has a control set
obtained as in Remark 2.6.

For control-a¢ ne state space systems, control sets can be characterized
[3] as maximal topologically transitive sets of an associated dynamical system
on U � Rn provided that local accessibility holds (a topologically transitive
set is the !�limit set of one of its elements). The following simple example
shows that one cannot, in general, expect that control sets, as de�ned above,
coincide with the maximal topologically transitive sets.

Example 2.8 Consider a scalar control system given by

_x = u(t)f(x)
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with

f(x) =

�
0 for jxj � 1
> 0 for jxj < 1 and u(t) 2 U = [�1; 1]:

There exists a control u0 2 U = fu 2 L1(R;R); u(t) 2 [�1; 1] for all tg
such that for the corresponding trajectory starting in the origin there are
tk; sk !1 with

'(tk; 0; u0) = 0 and '(sk; 0; u0)! 1:

Then one may choose u0 such that

!(u0; '(�; 0; u0)) � L1(R;R� R)

is topologically transitive. Clearly, it not contained in a control set. Note
also that it has nonvoid intersection with the control set

f(u; x0) 2 L1(R;R� R); u(t) 2 [�1; 1] for all t and x0 � 1g:

The de�nition of a behavioral control set requires that one can precisely
�hit� the function w after some time. It may appear natural to introduce
the following weaker concept, in analogy to chain controllability in the state
space. Hopefully, also in the present situation this will lead to sets, which
are better behaved. Observe that again this de�nition is not given in the
�ow context; it is strictly analogous to the de�nition of control sets. First
observe that a notion of approximate controllability is obtained by requiring
that the following semi-distance on L1(T;Rd; �)

d+(v; w) = d(�[0;1) � v; �[0;1) � w)

is small; here �[0;1) is the characteristic function of [0;1). Thus this only
takes into account the future. Then we de�ne sets of chain controllability in
the following way.

De�nition 2.9 For "; T > 0 an ("; T )+�chain from v 2 B to w 2 B is given
by

n 2 N; w0 = v; w1; :::; wn = w 2 B; T0; :::; Tn�1 � T;
such that

d+(�Ti(wi); wi+1) < " for all i.

If for all "; T > 0 there is an ("; T )+�chain from v 2 B to w 2 B, we say
that v is chain controllable to w. The chain orbit of v 2 B is

O+
c (v) :=

�
w 2 B; for all " > 0 there is an ("; 1)+ � chain from v to w

	
:
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We will consider maximal subsets which are chain controllable.

De�nition 2.10 A nonvoid invariant subset E � B is a chain control set if
it is a maximal set such that for all v; w 2 E and all "; T > 0 there is an
("; T )+�chain in E from v to w.

For these sets, contrary to control sets, we will be able to provide a
complete characterization in terms of the �ow. Recall from the theory of
dynamical systems (see [9]) that an ("; T )�chain for a continuous �ow is
de�ned as in De�nition 2.9, but with the semidistance d+ replaced by the
distance d in the metric space. They give rise to chain transitive sets in
analogy to De�nition 2.10. Furthermore the restriction of the time shift to a
compact shift invariant subset of L1 de�nes a continuous �ow on a compact
metrizable space.

Theorem 2.11 Let B � L1(T;Rd; �) be given. A nonempty compact and
shift invariant set E � B is a chain control set if and only if the restriction
of the shift to E is chain transitive and E is a maximal set with this property,
i.e., if E � E 0 � B and E 0 is compact and invariant such that the shift
restricted to E 0 is chain transitive, then E = E 0:

Proof. Suppose that E is a chain control set. Let v; w 2 E and pick "; T > 0:
Recall the de�nition of the metric d on E and choose k 2 N large enough
such that

1X
i=k+1

2�i < ": (3)

For the �nitely many �1; :::; �k 2 L1(T;Rd; �) there is S > 0 such that for
all i Z

Tn[�S;S]
j�i(�)j �(d�) <

"

diamE : (4)

We may assume without loss of generality that T > S. Chain controlla-
bility from v to w(�S + �) yields the existence of n 2 N and v0; :::; vn 2
E ; T0; :::; Tn�1 > T + S with v0 = v; vn = w(�S + �) and

d+(�Tivi; vi+1) < " for j = 0; :::; n� 1: (5)

Now construct an ("; T )-chain from v to w in the following way (�we jump
later�). De�ne

w0 = v; wj = �Svj for j = 1; :::; n� 1; wn = �Svn = w;
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and let the jump times be tj = Tj + S. Then

d(�t0w0; w1) = d(�T0+Sv;�Sv1)

=

1X
i=1

2�i

���RT [v(t+ T0 + S)� v1(t+ S)]T �i(t) �(dt)���
1 +

���RT [v(t+ T0 + S)� v1(t+ S)]T �i(t) �(dt)���
�

kX
i=1

2�i

���RT [v(t+ T0 + S)� v1(t+ S)]T �i(t) �(dt)���
1 +

���RT [v(t+ T0 + S)� v1(t+ S)]T �i(t) �(dt)��� + ":
Now for i = 1; :::; k����Z

T
[v(t+ T0 + S)� v1(t+ S)]T �i(t) �(dt)

����
�
Z
Tn[�S;S]

j�i(t)j �(dt) 2diamE +
����Z S

�S
[v(t+ T0 + S)� v1(t+ S)]T �i(t) �(dt)

����
< 2"+

����Z 2S

0

[v(t+ T0)� v1(t)]T �i(t)�(dt)
���� < 5";

since by (5) and (4)����Z 2S

0

[v(t+ T0)� v1(t)]T �i(t) �(dt)
����

=

����Z 1

0

[v(t+ T0)� v1(t)]T �i(t) �(dt)�
Z 1

2S

[v(t+ T0)� v1(t)]T �i(t) �(dt)
����

�
����Z 1

0

[v(t+ T0)� v1(t)]T �i(t) �(dt)
����+ 2" < 3":

Thus
d(�t0w0; w1) < 6":

Analogously, one shows that d(�tjwj; wj+1) < 6" for all j = 1; :::; n�1. This
proves that the restriction of � to the chain control set E is chain transitive.
Conversely, suppose that E is a chain transitive set, and let v; w 2 E .

By assumption one �nds for all "; T > 0 an ("; T )�chain given by v0 =
v; v1; :::; vn = �Sw in E and T0; :::; Tn�1 > T from v to w with

d(�Ti(vi; vi+1) < ": (6)
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We may assume that conditions (3) and (4) are satis�ed and that Tj�S > T .
This gives rise to an ("; T )+�chain in the following way (�we jump earlier�).
De�ne

w0 = v; wj = ��Svj for j = 1; :::; n� 1; wn = ��Svn = w;

and let the jump times be tj = Tj � S. Then

d+(�t0w0; w1) = d
+(�T0�Sv;��Sv1)

=
1X
i=1

2�i

���R10 [v(t+ T0 � S)� v1(t� S)]T �i(t) �(dt)
���

1 +
���R10 [v(t+ T0 � S)� v1(t� S)]T �i(t) �(dt)

���
�

kX
i=1

2�i

���R10 [v(t+ T0 � S)� v1(t� S)]T �i(t) �(dt)
���

1 +
���R10 [v(t+ T0 � S)� v1(t� S)]T �i(t) �(dt)

��� + ":
Now for i = 1; :::; k����Z 1

0

[v(t+ T0 � S)� v1(t� S)]T �i(t) �(dt)
����

�
Z 1

2S

j�i(t)j �(dt) 2diamE +
����Z 2S

0

[v(t+ T0 � S)� v1(t� S)]T �i(t) �(dt)
����

< 2"+

����Z S

�S
[v(t+ T0)� v1(t)]T �i(t) �(dt)

���� < 5";
since by (6) and (4)����Z S

�S
[v(t+ T0)� v1(t)]T �i(t) �(dt)

����
=

����Z
T
[v(t+ T0)� v1(t)]T �i(t) �(dt)�

Z
Tn[�S;S]

[v(t+ T0)� v1(t)]T �i(t) �(dt)
����

�
����Z
T
[v(t+ T0)� v1(t)]T �i(t) �(dt)

����+ 2" < 3":
Thus

d+(�t0w0; w1) < 6":

Analogously, one shows that d+(�tjwj; wj+1) < 6" for all j = 1; :::; n� 1.
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It only remains to show the maximality properties. A chain control set
E is a maximal chain transitive set: In fact, suppose that the restriction of
� to E 0 � E is chain transitive. Then it follows that E 0 = E , since chain
transitivity of E 0 implies, as just proven, that E 0 is chain controllable and E
is a maximal chain controllable set. In the same way, one sees that a chain
control set E is a maximal set with the property that the restriction of � to
E is chain transitive.

Remark 2.12 (On connections) Let B1 and B2 be ��invariant subsets of
L1(T;Rd; �) given by input-output pairs (ui; yi). Suppose that E1 and E2 are
chain control sets of B1 and B2, respectively, and the intersection

fy1; there is u1 with (u1; y1) 2 E1g\fu2; there is y2 with (u2; y2) 2 E2g (7)

is nonvoid and compact. Then this set has nonvoid intersection with a chain
control set of the new behavior

B1 � B2 := f(u1; y2); there is y1 = u2 with (u1; y1g 2 B1 and (u2; y2) 2 B2g:

This follows since the set in (7) is compact and ��invariant (but not neces-
sarily chain transitive). Hence it contains a chain transitive subset.

Having identi�ed the chain control sets as the maximal chain transitive
sets, one obtains the following result on global decompositions from Conley�s
Fundamental Theorem. The stable set of a closed ��invariant set Y is
de�ned as

W s(Y ) = fx 2 X; d(�tw; Y )! 0 for t!1g:

Corollary 2.13 Let K be a compact subset of a ��invariant set B � L1(T;Rd; �).
Then K is the disjoint union of the stable sets of the chain control sets in K
together with the set L of the points in K leaving K in positive time.

Proof. For discrete time systems, i.e., T = Z, this is proved in Easton
[6] (with slightly di¤erent, but equivalent notions). For T = R, one has to
observe that in a maximal chain transitive set one may take all jump times
equal to 1 (the relevant arguments are given e.g. in Szolnoki [11]). Thus the
continuous time case can be reduced to the discrete time case.
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3 Topological Behaviors and Regular Growth

In this section, we de�ne topological behaviors, and show that under a regular
growth condition chain control sets and control sets generically coincide.
Recall that a quasi-order on a set A is a relation � that is re�exive and

transitive. As usual, we write � < � if � � � and � 6= �. The following
examples where the order is given by inclusion will be relevant.

Example 3.1 Let co(Rd) denote the family of all compact subsets of Rd. For
K;L 2 co(Rd), de�ne a quasi-order by L � K if L � K. Other examples
are the family Co0(Rd) of all compact convex subsets of Rd that contain the
origin in their interior, or the set of all compact subsets of Rd. If we �x K 2
Co0(Rd), the family of sets K� := � �K; � > 0; is quasi-ordered. In product
spaces also combinations of these quasi-ordered sets yield quasi-ordered sets.

Now we de�ne the central notion of this paper.

De�nition 3.2 A topological behavior B is a ��invariant subset of L1(T;Rd; �)
together with a �ltration fB�g�2A in the following sense: The sets B� are
weak� compact in L1(T;Rd; �) and A is quasi-ordered with

B =
[
�2A
B� and � � � in A implies B� � B�.

The following proposition shows how topological behaviors arise from
control-a¢ ne input-output systems.

Proposition 3.3 Consider system (2) and assume that there is a real func-
tion �(t) � 1; t 2 R, which is locally Lebesgue integrable with the following
property: for every compact set K � U � Rn � Rm there is �K;U > 0 such
that for all x 2 K and u 2 U

jh('(t; x; u); u(t))j � �(t)�K;U for almost all t 2 R. (8)

De�ne a measure � by � = �(�)�1�. Then

B =
�
(u; y) 2 L1(R;Rm � Rk; �),

u 2 L1(R;Rm) and there is x 2 Rn
with y(t) = h('(t; x; u); u(t)) for t 2 R

�
is a topological behavior with �ltration given by the sets BK�U de�ned in
Proposition 2.5 and A = fK � U; K 2 co(Rn) and U 2 Co0(Rm)g quasi-
ordered by inclusion.
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Proof. Observe that the assumptions on � guarantee that 0 < �(t)�1 � 1
and hence Lp(R;Rm) � Lp(R;Rm; �(�)�1�); p = 1;1. Furthermore note that
for every x 2 Rn and u 2 L1(R;Rm) the output y 2 L1(R;Rk; �), since

jy(t)j�(t)�1 = jh('(t; x; u); u(t)j�(t)�1 � �K;U
where U is taken as the ball around the origin with radius kuk1. Invariance
of B is obvious by de�nition. For a compact and convex subset U the set U
is also a weak� compact subset of L1(R;Rm; �) (compare [3, Lemma 4.2.1]).
Then the other assertions follow from Proposition 2.5.
The following example shows that observed linear control systems de�ne

a behavior in the sense above.

Example 3.4 Consider

_x = Ax+Bu; y = Cx+Du (9)

with matrices A;B;C;D of appropriate dimensions. Let �max := maxfjRe �jg,
where the maximum is taken over the eigenvalues � of A. There is a constant
c0 > 0 such that, by the variations-of-constants formula,

k'(t; x0; u)k � c0e�maxjtj [kx0k+ kBk kuk1] + kBk kuk1 ; t 2 R:

Since
jh('(t; x; u); u(t))j � kCk k'(t; x0; u)k+ kDk ku(t)k ;

this furnishes the desired estimate (8) with �(t) = maxf1; e�maxjtjg and

�K;U = maxf1; c0 kCk [kx0k+ kBk kuk] + kDk kuk ; x0 2 K and u 2 Ug:

Thus Proposition 3.3 describes the input-output behavior of system (9).

For a topological behavior B, one can study the controllability properties
of each of the (not-invariant) sets B�. We denote the corresponding objects
by an index �; e.g. O�;+(v) denotes the positive orbit in B�. The condition of
regular growth formulated below allows us to show that, generically, control
sets and chain control sets coincide.

De�nition 3.5 For a topological behavior B, let � 2 A. A function v 2 B�
is inner if there is T > 0 such that for all � > � there is " > 0 such that

d+(w;�Tv) < " in B� implies w 2 O�;+
�T (v):

A behavior fB�g�2A has regular growth if for all � 2 A the elements of B�
are uniformly inner, i.e., one may choose " = "(�; T ) independent of v 2 B�.
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The following proposition shows that for control a¢ ne systems the regular
growth condition reduces to a condition in the state space.

Proposition 3.6 Consider a topological behavior associated to a control-
a¢ ne system as in Proposition 3.3 with h(x; u) = x and �ltration given
by

K � f�U; � � 0g;
where K 2 co(Rn) and U 2 Co0(Rm) are �xed (thus A = f� � 0g). Then
for � � 0 and u 2 � � U ; x 2 Rn the following conditions are equivalent:
(i) The input-state pair v = (u; '(�; x; u)) with u 2 � � U is inner for the
behavior speci�ed above.
(ii) There is T > 0 such that for all �0 > �

'(T; x; u) 2 intf'(t; x; u0); 0 � t � T and u0 2 �0 � Ug:

Proof. Suppose that (ii) holds. Then there is T > 0 such that for �0 > �

'(T; x; u) 2 intf'(t; x; u0); 0 � t � T and u0 2 �0 � Ug:

Consider wk = ('(�; xk; uk); uk) with uk 2 � � U and let

d+(wk;�Tv) < "k:

We claim that for "k & 0 it follows that xk ! '(T; x; u). For every sub-
sequence there is x� 2 K with xk ! x�. Now d+(wk;�Tv) ! 0 implies
weak� convergence uk ! u(T + �) on [0;1) and hence uniform convergence
on bounded intervals of '(t; xk; uk) to '(t; x�; u(T + �)). This implies weak�
convergence and hence it follows that

d+(wk; v
�)! 0 with v� := (x�; u(T + �)):

Since the limit is unique on [0;1), we obtain x� = '(T; x; u) as claimed.
We conclude, using (ii), that for " > 0, small enough, d+(w;�Tv) < "

implies that xk = '(t; x; u�) for some t 2 [0; T ] and some u� 2 �0 � U . This
shows that (i) holds.
Conversely, suppose that (i) holds and let �0 > �. Then there is " > 0

such that d+(w;�Tv) < " in B� implies w 2 O�0;+
�T (v). There is � > 0 such

that jy � '(T + �; x; u)j < � implies for w := ('(�; y; u); u(T + �)) that

d+(w; ('(T + �; x; u); u(T + �)) = d+(w;�Tv) < ":

Thus w 2 O�0;+(v) and hence y 2 O�0;+(x) as claimed.
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Remark 3.7 Condition (ii) in Proposition 3.6 has been used in order to
analyze the relation between control sets and chain control sets for control-
a¢ ne systems [3]. Gayer [7] shows that it is satis�ed for a large class of
control systems.

We return to general topological behaviors B. Let � 7! �(�) : [��; �
�) !

A, �� < ��, be an increasing map. Then for all v 2 B�0 the maps � 7!
clO�;+(v) and � 7! O�;+

c (v) de�ned for � � �0 are increasing.

Lemma 3.8 Let � 7! �(�) : [��; �
�) ! A, �� < ��, be an increasing map,

such that � 7! B�(�) is Hausdor¤ continuous. Then for all but at most count-
ably many ��values the maps � 7! clO�(�);+(v) and � 7! O�(�);+

c (v) are
increasing and continuous.

Proof. Monotonicity is obvious. The continuity assertion follows from
Scherbina�s Lemma ([8] or [3, Proposition B.1.5]) which states that increas-
ing, compact-valued mappings de�ned on [0;1) are continuous with respect
to the Hausdor¤ metric for all but at most countably many ��values.

Proposition 3.9 Let � 2 A and suppose that the elements of B� are uni-
formly inner. Then O�;+

c (v) � O�;+(v) for all v 2 B� and for all � > �.

Proof. Let � > �. Then there is " > 0 such that for v 2 B�

d+(w;�Tv) < " in B� implies w 2 O�;+
�T (v):

Thus the assertion follows since " > 0 does not depend on the considered
element of B�.

Remark 3.10 For the state space theory, [3, Lemma 4.5.5] uses local ac-
cessibility in a crucial way in order to show that inner pairs in an invariant
compact set are uniformly inner.

If E� is a chain control set and � > �, there exists a unique chain control
set E� of B� containing E�; similarly for control sets. With this notation, the
following results hold.
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Lemma 3.11 Let � 7! �(�) : [��; �
�) ! A, �� < ��, be a strictly increasing

map such that � 7! B�(�) is Hausdor¤ continuous. Then the corresponding
control sets and chain control sets satisfy for all but at most countably many
��values

E�(�) =
\
�0>�

E�(�0) and clD� =
\
�0>�

clD�(�0):

Proof. This again is Scherbina�s Lemma.
The next theorem shows that under the assumption of regular growth,

generically the chain orbits are the closures of orbits, and, similarly, the
control sets are the closures of control sets.

Theorem 3.12 Suppose that B is a topological behavior with regular growth
and let � 7! �(�) : [��; �

�) ! A; �� < ��; be a strictly increasing map such
that � 7! B�(�) is Hausdor¤ continuous. Then, abbreviating E� := E�(�) and
D� := D�(�) one has
(i) for all chain control sets E�� there are chain control sets E� with E�� �

E� for all � > ��;
(ii) for all but at most countably many ��values the chain orbits are the

closures of orbits and the chain control sets E� are the closures of control sets
D�.

Proof. Assertion (i) is obvious. For assertion (ii) observe that � < �0 implies

E� � D�0 ;

since E� � O�;+
c (v) � O�0;+(v) for all v 2 E�. Furthermore for all but at most

countably many ��values

clD� � E� �
\
�0>�

D�0 �
\
�0>�

E�0 �
\
�0>�

D�0 = clD�;

here the fourth inclusion follows since one �nds for �0 > � a �00 with �0 >
�00 > � and hence �(�0) > �(�00) > �(�).

Remark 3.13 A linear behavior is given by a behavior on a vector bundle V
for which the time shifts are linear �ows (for each � 2 A). An example are
bilinear control systems (without output): As a special case of (3.3), consider

_x = [A0 +
mX
i=1

ui(t)Ai]x; y = x

15



with matrices Ai 2 Rn�n Then the input-state pairs

f(u; x) 2 L1(R;Rm�Rn; �); there is x0 2 Rn with x(t) = '(t; x0; u) for t 2 Rg

may be considered as a vector bundle over the chain transitive base space
U (here the measure � has a density with respect to Lebesgue measure de-
termined by the maximal and and minimal Lyapunov exponents). Hence
Selgrade�s Theorem (see e.g. [3, Theorem 5.2.5]) implies that there are at
most n chain control sets in the projective bundle; they form a �nest Morse
decomposition.

Next we show that a control set of an input-output system (2) uniquely
determines a control set in the state space, if the input-output pair determines
the state trajectory.

Proposition 3.14 Consider a set BK�U � L1(R;Rm � Rk; �) of input-
output pairs as in Proposition 2.5 with K 2 co(Rn) and U 2 Co0(Rm) and
assume that for all (u; y) 2 BK�U and all T > 0 there is a unique point
x 2 Rn such that

y(t) = h('(t; x; u); u(t)); t 2 [0; T ].

Let D � BK�U be a control set. Then there is a unique control set D � Rn
such that (u; y) 2 D implies that there is x 2 D with y(t) = h('(t; x; u); u(t))
for all t 2 R.

Proof. For i = 0; 2 let (ui; yi) 2 D. Then there are unique xi 2 Rn such
that for all t

yi(t) = h('(t; xi; ui); ui(t)):

One can control from (u0; y0) to (u2; y2), i.e., one �nds (u1; y1) 2 D and T > 0
with

(u1(t); y1(t)) =

�
(u0(t); y0(t)) for t � 0
(u2(t� T ); y2(t� T )) for t � T :

There is a unique x1 2 Rn with

y1(t) = h('(t; x1; u1); u1(t)) for all t 2 R.

Since, by our assumption, the corresponding point in Rn is already deter-
mined by any time interval, this implies that

x1 = x0 and '(T; x1; u1) = x2:

16



Reversing the roles of (u0; y0) and (u2; y2), one sees that x0 and x1 lie in
a control set D � Rn. Using shift invariance of D, one also sees that
'(t; x0; u0) 2 D for all t 2 R. Hence the inclusion follows. Uniqueness is
clear.

Remark 3.15 If local accessibility holds, then one has exact controllability
in the interior of a control set in the state space. Thus for all x in the interior
of a control set D in Rn there is a control set D with

'(t; x; u) 2 intD and y(t) = h('(t; x; u); u(t)) for all t 2 R implies (u; y) 2 D.

Remark 3.16 The assumption of Proposition 3.14 holds, e.g., for systems
of the type

�x+ g0(x) _x+ g1(x) = u(t); y = x

with smooth real functions g0; g1. Here on any nontrivial interval the function
y(t) = x(t) determines the state (x(t); _x(t)) and hence the initial state x 2 R2.

We add a simple example, where the behavioral control set is not just the
projected lift of a control set in the state space.

Example 3.17 Consider an observed a¢ ne control system

_x = Ax+Bu+ d; u(t) 2 U; y = Cx: (10)

Suppose that

A =

�
A1 0
0 In�k

�
; B =

�
B1
0

�
; C =

�
Ik 0

�
; d =

�
0
d2

�
:

Assume that (A1; B1) 2 Rk�k �Rk�m is controllable and 0 6= d2 2 Rn�k, and
U is compact and convex with 0 2 intU . The trajectories of (10) with initial
condition x(0) = (x01; x

0
2)
T are given by

'(t; x; u) =

�
eA1tx01
etx02

�
+

Z t

0

�
eA1(t�s)B1u(s)
e(t�s)d2

�
ds

=

0@ eA1tx01 +

Z t

0

eA1(t�s)B1u(s) ds

etx02 + (e
t � 1) d2

1A :
17



This system has no control set, since at least one of the last n�k components
is strictly monotone. On the other hand, the linear system

_x1 = A1x1 +B1u; u(t) 2 U

has a unique control set D1 � Rk (cp. [3, Example 3.2.16]). Denote the
corresponding trajectories by '1(t; x1; u) and consider

D = f(u; y); there is x1 2 D1 with y(t) = '1(t; x1; u) for t 2 Rg:

Clearly, for all (x1; x2)

'1(t; x1; u) = e
A1tx1

Z t

0

eA1(t�s)B1u(s) ds = C'(t; (x1; x2); u):

Thus it easily follows that the subset D � L1(R;Rm+k; �) (with � as in
Example 3.4) de�ned by

D := f(u; y); there are x1 2 D1 and x2 2 Rn�k with y = C'(t; (x1; x2); u) for t 2 Rg

is a control set for system (10).

Remark 3.18 System (10) is not locally accessible. However, it can be easily
modi�ed in the following way: Replace B by

B =

�
B1 0
0 Ik

�
;

and replace the control range by

U � [0; 1]k:

Then the resulting system is locally accessible, while it has no control set.
The other arguments remain valid.

Remark 3.19 Using the positive orbits introduced in De�nition 2.2, one
might introduce a notion of accessibility of behaviors, as the property that the
interior of O+(v) is nonvoid. The consequences of such a property remain
to be explored.
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4 Conclusions

The present paper introduces a topological notion of behaviors by considering
the time shift on L1�spaces. Subsets of complete controllability and chain
controllability are studied. While controllability is not, in general, a notion of
the corresponding topological dynamical system, chain controllability turns
out to be equivalent to chain transitivity. This is obtained by an appropriate
generalization of results from the theory of continuous-time control-a¢ ne
state space systems.
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