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1. Introduction. Let N be a positive integer and consider the family of N
control systems

ẋi(t) = Aixi(t) + αi(t)Biui(t), i ∈ {1, . . . , N}, (1.1)

where, for i ∈ {1, . . . , N}, xi(t) ∈ Rdi is the state of the subsystem i, ui(t) ∈ Rmi is the
control input of the subsystem i, di and mi are non-negative integers, Ai and Bi are
matrices with with real entries and appropriate dimensions, and αi : R+ → {0, 1} is a
switching signal determining the activity of the control input on the i-th subsystem.
We assume that at each time the control input is active in exactly one subsystem, i.e.,∑N

i=1
αi(t) = 1 for all t ∈ R+. (1.2)

This paper analyzes the stabilizability of all subsystems in (1.1) by linear feedback
laws ui(t) = Kixi(t) under randomly generated switching signals α1, . . . , αN satisfying
(1.2), and the maximal almost sure exponential decay rates that can be achieved with
such feedbacks.

System (1.1) is a switched control system, where the switching signals α1, . . . , αN
affect the activity of the control input. Switched systems have been extensively studied
in the literature, both for deterministic switching signals, such as in the monographs
Liberzon [23] and Sun and Ge [30] and the surveys Lin and Antsaklis [24], Margaliot
[25], and Shorten, Wirth, Mason, Wulff, and King [28], and for random switching
signals, such as in the monographs Costa, Fragoso, and Todorov [12] and Davis [14],
and papers such as Benäım, Le Borgne, Malrieu, and Zitt [3], Cloez and Hairer [11],
and Guyon, Iovleff, and Yao [18]. Such systems are useful models in several applica-
tions, ranging from air traffic control, electronic circuits, and automotive engines to
chemical processes and population models in biology.

An important motivation for our work comes from the theory of persistently
excited control systems, in which one considers systems of the form

ẋ(t) = Ax(t) + α(t)Bu(t), (1.3)
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with x(t) ∈ Rd, u(t) ∈ Rm, A and B matrices with real entries and appropriate di-
mensions, and α a (T, µ)-persistently exciting (PE) signal for some positive constants
T ≥ µ, i.e., a signal α ∈ L∞(R+, [0, 1]) satisfying, for every t ≥ 0,∫ t+T

t

α(s) ds ≥ µ (1.4)

(cf. Chaillet, Chitour, Loŕıa, and Sigalotti [5], Chitour, Colonius, and Sigalotti [8],
Chitour, Mazanti, and Sigalotti [9], Chitour and Sigalotti [10], Srikant and Akella
[29]). Notice that, when α takes its values in {0, 1}, (1.3) can be seen as a particular
case of (1.1) by adding a trivial subsystem (cf. Remark 5.2). The stabilizability
problem for (1.3) consists in investigating if, given A, B, T , and µ, one can find a linear
feedback u(t) = Kx(t) which stabilizes (1.3) exponentially for every (T, µ)-persistently
exciting signal α. This problem has been considered in [10], where the authors provide
sufficient conditions for stabilizability and prove that, in contrast to the situation for
autonomous linear control systems, controllability does not imply stabilizability with
arbitrary decay rates, even if one considers only persistently exciting signals taking
values in {0, 1}. The main result of our paper, Theorem 5.1, implies that, if one
requires the feedback to stabilize (1.3) for almost every randomly generated signal
α (with respect to the random model described in Section 2), then one can retrieve
stabilizability with arbitrary decay rates, giving thus a positive answer to an open
problem stated by Chitour and Sigalotti.

In this paper, in order to study the stabilizability by linear feedback laws of (1.1),
we rewrite it as

ẋ(t) = Âx(t) + B̂α(t)uα(t)(t), (1.5)

where

x(t) =



x1(t)
x2(t)

...
xi(t)

...
xN (t)


∈ Rd, Â =



A1 0 · · · 0 · · · 0
0 A2 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · Ai · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · AN


, B̂i =



0
0
...
Bi
...
0


,

(1.6)
d = d1 + · · ·+ dN , and α : R+ → {1, . . . , N} is defined from α1, . . . , αN : R+ → {0, 1}
by setting α(t) to be the unique index i ∈ {1, . . . , N} such that αi(t) = 1. We then
look for linear feedback laws of the form ui(t) = KiPix, where Pi ∈ Mdi,d(R) is the
matrix associated with the canonical projection onto the i-th factor of the product
Rd = Rd1 × · · · × RdN . With such feedback laws, (1.5) reads

ẋ(t) =
(
Â+ B̂α(t)Kα(t)Pα(t)

)
x(t).

Before considering the stabilizability of (1.5), we begin the paper by the stability
analysis of the linear switched system with random switching

ẋ(t) = Lα(t)x(t), (1.7)

where L1, . . . , LN ∈ Md(R) and α : R+ → {1, . . . , N} is as before. We characterize
its exponential behavior through its Lyapunov exponents, using the classical Multi-
plicative Ergodic Theorem due to Oseledets (cf. Arnold [1]). It turns out that a direct
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application of this theorem to systems in continuous time with random switching is
not feasible, since in general they do not define random dynamical systems in the
sense of [1] (cf. Example 2.5). Instead, we apply the Multiplicative Ergodic Theorem
to an associated system in discrete time and then deduce results for the Lyapunov
exponents of the continuous-time system. We remark that Lyapunov exponents for
continuous-time systems with random switching are also considered by Li, Chen, Lam,
and Mao in [22], but under assumptions on the random switching signal α guaran-
teeing that the corresponding switched system is a random dynamical system, which
allows the direct use of the Multiplicative Ergodic Theorem in continuous time.

The considered linear equations with random switching (1.7) form Piecewise De-
terministic Markov Processes (PDMP). These processes were introduced in Davis [13]
and have since been extensively studied in the literature. For an analysis of their in-
variant measures, in particular, their supports, cf. Bakhtin and Hurth [2] and Benäım,
Le Borgne, Malrieu, and Zitt [3], also for further references. An important particu-
lar case which also attracts much research interest is that of Markovian jump linear
systems (MJLS), in which one assumes that the random switching signal is generated
by a continuous-time Markov chain. For more details, we refer to Bolzern, Colaneri,
and De Nicolao [4], Fang and Loparo [15], and to the monograph Costa, Fragoso, and
Todorov [12]. The case of nonlinear switched systems with random switching signals
has also been considered in the literature, cf. e.g. Chatterjee and Liberzon [6], where
multiple Lyapunov functions are used to derive a stability criterion under some slow
switching condition that contains as a particular case switching signals coming from
continuous-time Markov chains. We also remark that several different notions of sta-
bility for systems with random switching have been used in the literature; see, e.g.,
Feng, Loparo, Ji, and Chizeck [16] for a comparison between the usual notions in the
context of MJLS. The one considered in this paper is that of almost sure stability.

The contents of this paper is as follows:
Section 2 constructs the random signals α in (1.5) and (1.7). Example 2.5 shows

that, in general, (1.7) endowed with such random switching signals does not define a
random dynamical system, and Remark 2.6 discusses the relation to previous works
in the literature. Section 3 introduces an associated system in discrete time, which
defines a random dynamical system in discrete time. We discuss relations between
the Lyapunov exponents for continuous- and discrete-time systems and state the con-
clusions we obtain from the Multiplicative Ergodic Theorem. Section 4 derives a
formula for the maximal Lyapunov exponent, which is the main ingredient in the
stability analysis of (1.7). Finally, Section 5 presents the main result of this paper,
namely that almost sure stabilization can be achieved for (1.1) with arbitrary decay
rate under a controllability hypothesis.

Notation: The sets N∗ and N are used to denote the positive and nonnegative
integers, respectively. For N ∈ N∗ we let N := {1, ..., N} and R+ := [0,∞),R∗+ :=
(0,∞).

2. Random model for the switching signal. Let N, d ∈ N∗ and L1, . . . , LN ∈
Md(R) and consider System (1.7) with a switching signal α belonging to the set P
defined by

P := {α : R+ → N piecewise constant and right continuous} .

Recall that a piecewise constant function has only finitely many discontinuity points
on any bounded interval. Given an initial condition x0 ∈ Rd and α ∈ P, system (1.7)
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admits a unique solution defined on R+, which we denote by ϕc(·;x0, α). In order
to simplify the notation, for i ∈ N , we denote by Φi the linear flow defined by the
matrix Li, i.e., Φit = eLit for every t ∈ R.

We suppose in this paper that the signal α is randomly generated according to a
Markov process which we describe now. Let M ∈MN (R) be an irreducible stochastic

matrix, i.e., the irreducible matrix M has nonnegative entries and
∑N
j=1Mij = 1 for

every i ∈ N . Let p be the unique probability vector in RN invariant under M ,
i.e., p ∈ [0, 1]N is regarded as a row vector p = (p1, . . . , pN ) with

∑N
i=1 pi = 1 and

pM = p. Finally, let µ1, . . . , µN be probability measures on R∗+ with the Borel σ-
algebra B with finite expectation and denote by τi the expected value of µi, i.e.,
τi =

∫
R∗+
tdµi(t) ∈ (0,∞) for every i ∈ N . Whenever necessary, we will use that

µ1, . . . , µN define probability measures on R+ with its Borel σ-algebra, that we also
denote by B for simplicity.

The random model for the signal α can be described as follows. We choose a ran-
dom initial state i ∈ N according to the probability law defined by p. Then, at every
time the system switches to a state i, we choose a random positive time T according
to the probability law µi and stay in i during the time T , before switching to the next
state, which is chosen randomly according to the probability law corresponding to the
i-th row (Mij)

N
j=1 of the matrix M . Let us perform this construction more precisely.

Definition 2.1. Let Ω = (N × R+)N
∗

and endow Ω with the product σ-algebra
F = (P(N)×B)N

∗
(cf. Halmos [20, §38, §49]), where P(N) is the σ-algebra containing

all subsets of N . We define the probability measure P in (Ω,F), for n ∈ N∗, i1, . . . , in ∈
N , and U1, . . . , Un ∈ B, by

P
(

({i1} × U1)× ({i2} × U2)× · · · × ({in} × Un)× (N × R+)
N∗\n

)
= pi1µi1(U1)Mi1i2µi2(U2) · · ·Min−1inµin(Un).

Remark 2.2. The construction from Definition 2.1 is a Markov chain in the state
space N × R+. More precisely, denoting by Pr(X) the set of all probability measures
on a given measurable space X and by xn : Ω = (N ×R+)N

∗ → N ×R+ the canonical
projection onto the n-th coordinate for n ∈ N∗, one has that (xn)∞n=1 is the unique
Markov process in N × R+ with transition probability P : N × R+ → Pr(N × R+)
defined by

P (i, t)({j} × U) = Mijµj(U), ∀i, j ∈ N, ∀t ∈ R+, ∀U ∈ B, (2.1)

and with initial law ν1 given by

ν1({j} × U) = pjµj(U), ∀j ∈ N, ∀U ∈ B.

The transition operator T : Pr(N × R+)→ Pr(N × R+) of this process is given by

Tν({j} × U) =

N∑
i=1

ν({i} × R+)Mijµj(U), ∀j ∈ N, ∀U ∈ B. (2.2)

(For the definition of a Markov process and its transition probability, initial law, and
transition operator, we refer to Hairer [19].) This can be proved by a straightforward
computation using the definition of P and [19, Definition 2.13 and Proposition 2.38].
Notice that the canonical projection of N×R+ onto N transforms the Markov process
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(xn)∞n=1 into a discrete Markov chain in the finite state space N with transition matrix
M and initial distribution p.

To construct a random switching signal α from a certain ω = (in, tn)∞n=1 ∈ Ω, we
regard (in)∞n=1 as the sequence of states taken by α and tn as the time spent in the
state in.

Definition 2.3. We define the map ααα : Ω→ P as follows: for ω = (in, tn)∞n=1 ∈
Ω, we set s0 = 0, sn =

∑n
k=1 tk for n ∈ N∗, and ααα(ω)(t) = in for t ∈ [sn−1, sn),

n ∈ N∗.
Notice that ααα(ω) is not well-defined if ω = (in, tn)∞n=1 ∈ Ω is such that

∑∞
n=1 tn <

∞. However, a straightforward argument using the definition of P shows that
∑∞
n=1 tn

=∞ for almost every ω = (in, tn)∞n=1 ∈ Ω, and hence ααα : Ω→ P is well-defined almost
everywhere on Ω. In the sequel, we denote by Ω0 the set of ω = (in, tn)∞n=1 ∈ Ω for
which

∑∞
n=1 tn =∞, so that P(Ω0) = 1 and ααα is well-defined on Ω0.

In order to consider solutions of (1.7) for signals α chosen randomly according to
the previous construction, we use the solution map ϕc of (1.7) to provide the following
definition.

Definition 2.4. We define the continuous-time map

ϕrc :

{
R+ × Rd × Ω0 → Rd

(t;x0, ω) 7→ ϕc(t;x0,ααα(ω)).
(2.3)

For x0 ∈ Rd \ {0} and almost every ω ∈ Ω, we define the Lyapunov exponent of the
continuous-time system (2.3) by

λrc(x0, ω) = lim sup
t→∞

1

t
log ‖ϕrc(t;x0, ω)‖ . (2.4)

The Lyapunov exponent λrc is used to characterize the asymptotic behavior of
(2.3). A natural idea to obtain information on such Lyapunov exponents would be
to apply the continuous-time Multiplicative Ergodic Theorem (see, e.g., Arnold [1,
Theorem 3.4.1]). To do so, ϕrc should define a random dynamical system on Rd ×Ω,
i.e., one would have to provide a metric dynamical system θ on Ω — a measurable
dynamical system θ : R+×Ω→ Ω on (Ω,F,P) such that θt preserves P for every t ≥ 0
— in such a way that ϕrc becomes a cocycle over θ. However, in general the natural
choice for θ to obtain the cocycle property for ϕrc, namely the time shift, does not
define such a measure preserving map, as shown in the following example.

Example 2.5. For t ≥ 0, let θt : Ω → Ω be defined for almost every ω ∈ Ω
as follows. For ω = (ij , tj)

∞
j=1 ∈ Ω0, set s0 = 0, sk =

∑k
j=1 tj for k ∈ N∗. Let

n ∈ N∗ be the unique integer such that t ∈ [sn−1, sn). We define θt(ω) = (i∗j , t
∗
j )
∞
j=1 by

i∗j = in+j−1 for j ∈ N∗, t∗1 = sn − t, t∗j = tn+j−1 for j ≥ 2. One immediately verifies
that θt corresponds to the time shift in P, i.e., for every t, s ≥ 0 and ω ∈ Ω0, one has

ααα(θtω)(s) = ααα(ω)(t+ s).

However, the map θt in (Ω,F) does not preserve the measure P in general. Indeed,
suppose that µi = δ1 for every i ∈ N , where δ1 denotes the Dirac measure at 1. In
particular, a set E ∈ F has nonzero measure only if E contains a point (ij , tj)

∞
j=1 with

tj = 1 for every j ∈ N∗. For r ∈ N∗ and i1, . . . , ir ∈ N , let

E = ({i1} × {1})× · · · × ({ir} × {1})× (N × R+)
N∗\r

.
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Then P(E) = pi1Mi1i2 · · ·Mir−1ir , and, for t ≥ 0, θ−1
t (E) is the set of points (i∗j , t

∗
j )
∞
j=1

such that, setting s∗0 = 0, s∗k =
∑k
j=1 t

∗
j for k ∈ N∗, and n ∈ N∗ the unique integer such

that t ∈
[
s∗n−1, s

∗
n

)
, one has s∗n − t = 1, t∗n+j−1 = 1 for j = 2, . . . , r, and i∗n+j−1 = ij

for j ∈ r. If t /∈ N, then s∗n = t+ 1 /∈ N, and thus there exists j ∈ n such that t∗j 6= 1.

We have shown that, if t /∈ N, then, for every ω = (i∗j , t
∗
j )
∞
j=1 ∈ θ

−1
t (E), there exists

j ∈ N∗ such that t∗j 6= 1, and thus P(θ−1
t (E)) = 0, hence θt does not preserve the

measure P.
Remark 2.6. For some particular choices of µ1, . . . , µN , the time-shift θt may

preserve P, in which case the continuous-time Multiplicative Ergodic Theorem can
be applied directly to (2.3). This special case falls in the framework of Li, Chen,
Lam, and Mao [22]. An important particular case where θt preserves P is when
µ1, . . . , µN are chosen in such a way that ααα becomes a homogeneous continuous-time
Markov chain, which is the case treated, e.g., in Bolzern, Colaneri, and De Nicolao
[4], and in Fang and Loparo [15]. The results we provide in Section 4 generalize the
corresponding almost sure stability criteria from [4, 15, 22] to randomly switching
signals constructed according to Definitions 2.1 and 2.3.

3. Associated discrete-time system and Lyapunov exponents. Example
2.5 shows that in general one cannot expect to obtain a random dynamical system
from ϕrc in order to apply the continuous-time Multiplicative Ergodic Theorem. Our
strategy to study the exponential behavior of ϕrc relies instead on defining a suitable
discrete-time map ϕrd associated with ϕrc, in such a way that ϕrd does define a
discrete-time random dynamical system — to which the discrete-time Multiplicative
Ergodic Theorem can be applied — and that the exponential behavior of ϕrc and ϕrd

can be compared.
Definition 3.1. For ω = (in, tn)∞n=1 ∈ Ω, we set sn(ω) =

∑n
k=1 tk for n ∈ N∗

and s0(ω) = 0. We define the discrete-time map ϕrd by

ϕrd :

{
N× Rd × Ω0 → Rd

(n;x0, ω) 7→ ϕrc(sn(ω);x0, ω).
(3.1)

For x0 ∈ Rd \ {0} and almost every ω ∈ Ω, we define the Lyapunov exponent of the
discrete-time system (3.1) by

λrd(x0, ω) = lim sup
n→∞

1

n
log ‖ϕrd(n;x0, ω)‖ . (3.2)

The map ϕrd corresponds to regarding the continuous-time map ϕrc only at the
switching times sn(ω). It is the solution map of the random discrete-time equation

xn = eLin tnxn−1. (3.3)

System (3.3) is obtained from (1.7) by taking the values of a continuous-time solution
at the discrete times sn(ω). The sequence (sn(ω))∞n=0 contains all the discontinuities
of ααα(ω) and may also contain times with trivial jumps. The Lyapunov exponent λrd

characterizes the asymptotic behavior of ϕrd.
Notice that the solution maps ϕrc and ϕrd satisfy, for every x0 ∈ Rd and almost

every ω = (in, tn)∞n=1 ∈ Ω,

ϕrc(0;x0, ω) = x0,

ϕrc(t;x0, ω) = Φ
ααα(ω)(sn(ω))
t−sn(ω) ϕrc(sn(ω);x0, ω), for n ∈ N and t ∈ (sn(ω), sn+1(ω)] ,

(3.4)
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and

ϕrd(0;x0, ω) = x0,

ϕrd(n+ 1;x0, ω) = Φ
ααα(ω)(sn(ω))
tn+1

ϕrd(n;x0, ω), for n ∈ N. (3.5)

We now prove that ϕrd defines a discrete-time random dynamical system on Rd×
Ω. To do so, we must first provide a discrete-time metric dynamical system θ on
(Ω,F,P), which can be chosen simply as the usual shift operator. Let θ : Ω → Ω be
defined by

θ((in, tn)∞n=1) = (in+1, tn+1)∞n=1. (3.6)

One can easily verify, using Definition 2.1 and the fact that pM = p, that the measure
P is invariant under θ, and thus θ is a discrete-time metric dynamical system in (Ω,F,
P). Moreover, since θ(Ω0) = Ω0, θ also defines a metric dynamical system in (Ω0,F,P)
(where F and P are understood to be restricted to Ω0).

We now consider the ergodicity of θ. We start by providing the following defini-
tion.

Definition 3.2. Let (Ω,F) be the measurable space from Definition 2.1 and
ν ∈ Pr(N × R+). We define the probability measure Pν in (Ω,F) by requiring that,
for every n ∈ N∗, i1, . . . , in ∈ N , and U1, . . . , Un ∈ B,

Pν
(

({i1} × U1)× ({i2} × U2)× · · · × ({in} × Un)× (N × R+)
N∗\n

)
= ν({i1} × U1)Mi1i2µi2(U2) · · ·Min−1inµin(Un). (3.7)

Remark 3.3. If ν({i} × U) = piµi(U) for every i ∈ N and U ∈ B, then Pν
coincides with the measure P from Definition 2.1. Moreover, for every ν ∈ Pr(N ×
R+), Pν is the probability measure associated with a Markov process in N × R+ with
transition probability P given by (2.1), transition operator T given by (2.2), and with
initial law ν.

Lemma 3.4. The measure Pν is invariant under the shift θ if and only if ν({i}×
U) = piµi(U) for every i ∈ N and U ∈ B.

Proof. Notice that Pν is invariant under θ if and only if Tν = ν. Hence Pν is
invariant under θ if and only if

ν({j} × U) =

N∑
i=1

ν({i} × R+)Mijµj(U), ∀j ∈ N, ∀U ∈ B. (3.8)

If (3.8) holds, we apply it to U = R+ to get that (ν({i} × R+))
N
i=1 is a left eigenvector

of M associated with the eigenvalue 1. Since M is irreducible, we then obtain than
ν({i} × R+) = pi for i ∈ N . It follows that ν({j} × U) = pjµj(U) for every j ∈ N
and U ∈ B. The converse is immediate.

Lemma 3.4 shows that the only invariant measure for θ under the form Pν is the
measure P from Definition 2.1. In particular, we obtain immediately from Hairer [19,
Theorem 5.7] the following result.

Corollary 3.5. The metric dynamical system θ is ergodic in (Ω,F,P).
Now that we have defined the random discrete-time system (3.1) and provided

the metric dynamical system θ, we can show that the pair (θ, ϕrd) defines a random
dynamical system.
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Proposition 3.6. (θ, ϕrd) is a discrete-time random dynamical system over
(Ω,F,P).

Proof. Since θ is a discrete-time metric dynamical system over (Ω,F,P), one is
only left to show that ϕrd satisfies the cocycle property

ϕrd(n+m;x0, ω) = ϕrd(n;ϕrd(m;x0, ω), θm(ω)), ∀n,m ∈ N, ∀x0 ∈ Rd, ∀ω ∈ Ω0.
(3.9)

Let ω = (in, tn)∞n=1 ∈ Ω0. Then it follows immediately from the definitions of ααα and
sn that, for n,m ∈ N,

sn(θm(ω)) =

n∑
k=1

tk+m =

m+n∑
k=m+1

tk = sn+m(ω)− sm(ω),

ααα(θm(ω))(sn(θm(ω))) = in+m = ααα(ω)(sn+m(ω)).

We prove (3.9) by induction on n. When n = 0, (3.9) is clearly satisfied for every
m ∈ N, x0 ∈ Rd, and ω ∈ Ω0. Suppose now that n ∈ N is such that (3.9) is satisfied
for every m ∈ N, x0 ∈ Rd, and ω ∈ Ω0. Using (3.5), we obtain

ϕrd(n+ 1;ϕrd(m;x0, ω), θm(ω))

= Φ
ααα(θm(ω))(sn(θm(ω)))
sn+1(θm(ω))−sn(θm(ω))ϕrd(n;ϕrd(m;x0, ω), θm(ω))

= Φ
ααα(ω)(sn+m(ω))
sn+m+1(ω)−sn+m(ω)ϕrd(n+m;x0, ω) = ϕrd(n+m+ 1;x0, ω),

which concludes the proof of (3.9).
We now compare the asymptotic behavior of (2.3) and (3.1) by considering the

relation between the Lyapunov exponents λrc(x0, ω) and λrd(x0, ω) of the continuous-
and discrete-time systems. We first establish the following result.

Proposition 3.7. For almost every ω ∈ Ω, one has

lim
n→∞

sn(ω)

n
=

N∑
i=1

pi

∫
R+

tdµi(t) =

N∑
i=1

piτi =: m. (3.10)

Proof. Consider the map f : Ω0 → R∗+ given by f((in, tn)∞i=1) = t1. For every
k ∈ N, f ◦ θk((in, tn)∞n=1) = tk+1. Since θ is ergodic, Birkhoff’s Ergodic Theorem
shows that, for almost every ω ∈ Ω,

lim
n→∞

sn(ω)

n
= lim
n→∞

1

n

n−1∑
k=0

f ◦ θk(ω) =

∫
Ω

f(ω) dP(ω) =

N∑
i=1

pi

∫
R+

tdµi(t),

as required.
The next result provides the relation between λrc and λrd.
Proposition 3.8. For every x0 ∈ Rd\{0} and almost every ω ∈ Ω, the Lyapunov

exponents of the continuous- and discrete-time systems (2.3) and (3.1), given by (2.4)
and (3.2), are related by

λrd(x0, ω) = mλrc(x0, ω).

Proof. Let us first show that λrd(x0, ω) ≤ mλrc(x0, ω). For every n ∈ N∗, one has

1

n
log ‖ϕrd(n;x0, ω)‖ =

sn(ω)

n

1

sn(ω)
log ‖ϕrc(sn(ω);x0, ω)‖ .

8



Moreover

lim sup
n→∞

1

sn(ω)
log ‖ϕrc(sn(ω);x0, ω)‖ ≤ lim sup

t→∞

1

t
log ‖ϕrc(t;x0, ω)‖ ,

and then the conclusion follows since sn(ω)
n → m as n→∞ for almost every ω ∈ Ω.

We now turn to the proof of the inequality λrd(x0, ω) ≥ mλrc(x0, ω). Let C, γ > 0
be such that

∥∥Φitx
∥∥ ≤ Ceγt ‖x‖ for every i ∈ N , x ∈ Rd, and t ≥ 0. For x0 ∈ Rd \ {0}

and t > 0, let nt ∈ N be the unique integer such that t ∈ (snt(ω), snt+1(ω)], which is
well-defined for almost every ω ∈ Ω. Then

1

t
log ‖ϕrc(t;x0, ω)‖ =

1

t
log
∥∥∥Φ

ααα(ω)(snt (ω))

t−snt (ω) ϕrc(snt(ω);x0, ω)
∥∥∥

=
1

t
log
∥∥∥Φ

ααα(ω)(snt (ω))

t−snt (ω) ϕrd(nt;x0, ω)
∥∥∥ ≤ logC

t
+ γ

t− snt(ω)

t
+

1

t
log ‖ϕrd(nt;x0, ω)‖ .

(3.11)

Since t ∈ (snt(ω), snt+1(ω)], one has, for almost every ω ∈ Ω,

0 ≤ t− snt(ω)

t
≤ snt+1(ω)

snt(ω)
− 1 −−−→

t→∞
0, (3.12)

where we use (3.10) to obtain that
snt+1(ω)

snt (ω) → 1 as t→∞. We write 1
t = nt

t
1
nt

. Since

t ∈ (snt(ω), snt+1(ω)], one has nt
t ∈

[
nt

snt+1(ω) ,
nt

snt (ω)

)
. Now

lim
t→∞

nt
snt(ω)

=
1

m
and lim

t→∞

nt
snt+1(ω)

= lim
t→∞

(
nt + 1

snt+1(ω)
− 1

snt+1(ω)

)
=

1

m
,

and thus nt
t →

1
m as t → ∞. Using this fact and inserting (3.12) into (3.11), one

obtains the conclusion of the theorem by letting t→∞.
We also find it useful to prove the following proposition, which evaluates the

average time spent in a certain state k.
Proposition 3.9. Let i ∈ N . For almost every ω ∈ Ω, one has

lim
T→∞

L{t ∈ [0, T ] | ααα(ω)(t) = i}
T

=
piτi
m

,

where L denotes the Lebesgue measure in R.
Proof. Fix i ∈ N . Let ϕi : Ω→ R+ be given by

ϕi((in, tn)∞n=1) =

{
t1, if i1 = i,
0, otherwise.

Then, by Birkhoff’s Ergodic Theorem, one has, for almost every ω ∈ Ω,

lim
n→∞

1

n

n−1∑
j=0

ϕi(θ
jω) =

∫
Ω

ϕi(ω) dP(ω) = piτi. (3.13)

On the other hand, by definition of ααα, for almost every ω = (in, tn)∞n=1 ∈ Ω,

n−1∑
j=0

ϕi(θ
jω) =

n∑
j=1
ij=i

tj = L{t ∈ [0, sn(ω)] | ααα(ω)(t) = i}.

9



Hence it follows from Proposition 3.7 and (3.13) that, for almost every ω ∈ Ω,

lim
n→∞

L{t ∈ [0, sn(ω)] | ααα(ω)(t) = i}
sn(ω)

= lim
n→∞

n

sn(ω)

1

n

n−1∑
j=0

ϕi(θ
jω) =

piτi
m

. (3.14)

Let ω ∈ Ω be such that (3.14) holds and take T ∈ R+. Choose nT ∈ N such that
snT (ω) ≤ T < snT+1(ω). Then

1

T
L{t ∈ [0, T ] | ααα(ω)(t) = i} ≤ 1

snT (ω)
L{t ∈ [0, snT+1(ω)] | ααα(ω)(t) = i}

and

1

T
L{t ∈ [0, T ] | ααα(ω)(t) = i} ≥ 1

snT+1(ω)
L{t ∈ [0, snT (ω)] | ααα(ω)(t) = i}.

The conclusion of the proposition then follows since, by Proposition 3.7, sn+1(ω)
sn(ω) → 1

as n→∞ for almost every ω ∈ Ω.
Remark 3.10. The choice of sn in Definition 3.1 is not unique, and one might

be interested in other possible choices. The times sn(ω) correspond to the transitions
of the Markov chain from Remark 2.2. However, if some of the diagonal elements
of M are non-zero, then the discrete part of the Markov chain, i.e., its component
in N , may switch from a certain state to itself. In practical situations, it may be
possible to observe only switches between different states, and another possible choice
for sn(ω) that may be of practical interest is to consider only the times corresponding
to such non-trivial switches. Defining θ as the shift to the next different state, θ
defines a metric dynamical system if we suppose that, instead of having pM = p, we
have pM̃ = p, where M̃ij =

Mij

1−Mii
for i, j ∈ N with i 6= j and M̃ii = 0 for i ∈ N .

(Notice that Mii 6= 1 for every i ∈ N since M is irreducible.) The counterparts of the
previous results can be proved in this framework with no extra difficulty.

Remark 3.11. The fact that systems (1.7) and (3.3) are linear has been used
only in the proof of Proposition 3.8, where one uses an exponential bound on the
growth of the flows Φit = eLit, namely that there exist constants C, γ > 0 such that∥∥eLit∥∥ ≤ Ceγt for every t ≥ 0 and i ∈ N . If we consider, instead of system (1.7), the
nonlinear switched system

ẋ(t) = fα(t)(x(t)),

where f1, . . . , fN are complete vector fields generating flows Φ1, . . . ,ΦN , and modify
the discrete-time system (3.3) accordingly, all the previous results remain true, with
the same proofs, under the additional assumption that there exist constants C, γ > 0
such that

∥∥Φitx
∥∥ ≤ Ceγt ‖x‖ for every t ≥ 0, i ∈ N , and x ∈ Rd. However, the next

results do not generalize to the nonlinear framework.
In order to conclude this section, we apply the discrete-time Multiplicative Er-

godic Theorem (see, e.g., Arnold [1, Theorem 3.4.1]) in the one-sided invertible case
to system (3.1) and we use Proposition 3.8 to obtain that several of its conclusions
also hold for the continuous-time system (2.3).

Let L : Ω→Md(R) be the function defined for ω = (in, tn)∞n=1 by L(ω) = eLi1 t1 ,
so that ϕrd(n;x0, ω) = L(θn−1ω)ϕrd(n − 1;x0, ω) for every x0 ∈ Rd, n ∈ N∗, and
almost every ω ∈ Ω. For n ∈ N and almost every ω ∈ Ω, we denote Φ(n, ω) the linear
operator defined by Φ(n, ω)x = ϕrd(n;x, ω) for every x ∈ Rd, which is thus given by
Φ(n, ω) = eLin tn · · · eLi1 t1 for ω = (ij , tj)

∞
j=1 ∈ Ω and n ∈ N∗.
10



Proposition 3.12. There exists a measurable subset Ω̂ ⊂ Ω of full P-measure
and invariant under θ such that

(i) for every ω ∈ Ω̂, the limit Ψ(ω) = limn→∞
(
Φ(n, ω)TΦ(n, ω)

)1/2n
exists and

is a positive definite matrix;
(ii) there exist an integer q ∈ d and q integers d1 > · · · > dq such that, for

every ω ∈ Ω̂, there exist q vector subspaces V1(ω), . . . , Vq(ω) with respective
dimensions d1 > · · · > dq such that

Vq(ω) ⊂ · · · ⊂ V1(ω) = Rd,

and L(ω)Vi(ω) = Vi(θ(ω)) for every i ∈ q;
(iii) for every x0 ∈ Rd \ {0} and ω ∈ Ω̂, the Lyapunov exponents λrd(x0, ω) and

λrc(x0, ω) exist as limits, i.e.,

λrd(x0, ω) = lim
n→∞

1

n
log ‖ϕrd(n;x0, ω)‖ ,

λrc(x0, ω) = lim
t→∞

1

t
log ‖ϕrc(t;x0, ω)‖ ;

(iv) there exist real numbers λd
1 > · · · > λd

q and λc
1 > · · · > λc

q such that, for every

i ∈ q and ω ∈ Ω̂,

λrd(x0, ω) = λd
i ⇐⇒ λrc(x0, ω) = λc

i ⇐⇒ x0 ∈ Vi(ω) \ Vi+1(ω),

where Vq+1(ω) = {0};
(v) for every ω ∈ Ω̂, the eigenvalues of Ψ(ω) are eλ

d
1 > · · · > eλ

d
q , and their

respective algebraic multiplicities are mi = di − di+1, with dq+1 = 0.
Proof. Let us show that Multiplicative Ergodic Theorem can be applied to the

random dynamical system (θ, ϕrd). Recall that there are C ≥ 1, γ > 0 such that,
for every i ∈ N and t ∈ R,

∥∥eLit∥∥ ≤ Ceγ|t|. Then, for ω = (in, tn)∞n=1 ∈ Ω0,

log+
∥∥L(ω)±1

∥∥ ≤ logC + γt1, so that∫
Ω

log+
∥∥L(ω)±1

∥∥dP(ω) ≤ logC + γ

N∑
i=1

piτi <∞.

Then the Multiplicative Ergodic Theorem can be applied to (θ, ϕrd), yielding all the
conclusions for Ψ, q, di, Vi, λrd(x0, ω), and λd

i . The conclusions concerning λrc(x0, ω)
and λc

i in (iv) follow from Proposition 3.8, with λc
i = 1

mλ
d
i . One is now left to show

that the Lyapunov exponent λrc(x0, ω) exists as a limit.
Notice that

∥∥e−Litx∥∥ ≤ Ceγt ‖x‖ for every i ∈ N , x ∈ Rd and t ≥ 0, and hence∥∥eLitx∥∥ ≥ C−1e−γt ‖x‖. Let t > 0 and choose nt ∈ N such that t ∈ (snt(ω), snt+1(ω)].
Then, proceeding as in (3.11), one gets

1

t
log ‖ϕrc(t;x0, ω)‖ ≥ − logC

t
− γ t− snt

t
+

1

t
log ‖ϕrd(nt;x0, ω)‖ .

Using (3.12), we thus obtain that

lim inf
t→∞

1

t
log ‖ϕrc(t;x0, ω)‖ ≥ 1

m
λrd(x0, ω) = λrc(x0, ω),

which yields the existence of the limit.
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4. The maximal Lyapunov exponent. We are interested in this section in
the maximal Lyapunov exponents for systems (2.3) and (3.1), i.e., the real numbers
λc

1 and λd
1 from Proposition 3.12(iv). We denote these numbers by λc

max and λd
max,

respectively. Before proving the main results of this section, we state the following
lemma, which shows that the Gelfand formula for the spectral radius ρ holds uniformly
over compact sets of matrices. This follows from the estimates derived in Green [17,
Section 3.3]. For the reader’s convenience, we provide a proof.

Lemma 4.1. Let A ⊂Md(R) be a compact set of matrices. Then the limit

lim
n→∞

‖An‖1/n = ρ(A)

is uniform over A.
Proof. Let ε > 0 and define a continuous function F : A →Md(R) by

F (A) =
1

ρ(A) + ε
A.

Then F (A) is compact and for every F (A) ∈ F (A) its spectral radius is ρ(F (A)) =
ρ(A)
ρ(A)+ε < 1. Fix A ∈ A. Then (see, e.g., Horn and Johnson [21, Lemma 5.6.10]) there

is a norm ‖·‖A in Rd with ‖F (A)‖A < 1+ρ(F (A))
2 . Then for all B in a neighborhood

U of A

‖F (B)‖A <
1 + ρ(F (A))

2
.

Since all norms on Md(R) are equivalent, there is βA > 0 such that for all B ∈ U

‖F (B)n‖ ≤ βA ‖F (B)n‖A ≤ βA ‖F (B)‖nA ≤ βA
(

1 + ρ(F (A))

2

)n
.

Then there is N ∈ N∗, depending only on A and ε, such that for all n ≥ N and all
B ∈ U ,

1

ρ(B) + ε
‖Bn‖1/n = ‖F (B)n‖1/n < 1,

implying ‖Bn‖1/n < ρ(B) + ε. Since this holds for every B in a neighborhood U of

A and ‖Bn‖1/n ≥ ρ(B) for every n ∈ N∗, one obtains that the convergence in U is
uniform, and the assertion follows by compactness of A.

We can now prove our first result regarding the characterization of λc
max and λd

max.
Proposition 4.2. For almost every ω ∈ Ω, we have

λd
max = lim

n→∞

1

n
log ‖Φ(n, ω)‖ . (4.1)

Moreover,

λd
max ≤ inf

n∈N∗
1

n

∫
Ω

log ‖Φ(n, ω)‖ dP(ω) = lim
n→∞

1

n

∫
Ω

log ‖Φ(n, ω)‖ dP(ω). (4.2)

Proof. Notice that (4.1) and (4.2) do not depend on the norm inMd(R). We fix in
this proof the norm induced by the Euclidean norm in Rd, given by ‖A‖ =

√
ρ(ATA).

Notice that, in this case,
∥∥ATA

∥∥ =
√
ρ((ATA)2) = ρ(ATA) = ‖A‖2.

12



By Proposition 3.12(v), eλ
d
max is the spectral radius ρ(Ψ(ω)) of Ψ(ω) for almost

every ω ∈ Ω. By continuity of the spectral radius and Proposition 3.12(i), one then
gets that

eλ
d
max = lim

n→∞
ρ
[(

Φ(n, ω)TΦ(n, ω)
)1/2n]

= lim
n→∞

lim
k→∞

∥∥∥(Φ(n, ω)TΦ(n, ω)
)k/2n∥∥∥1/k

,

(4.3)
using also Gelfand’s Formula for the spectral radius. The sequence of matrices((

Φ(n, ω)TΦ(n, ω)
)1/2n)∞

n=1
converges to Ψ(ω), hence this sequence is bounded in

Md(R). By Lemma 4.1, the limit in Gelfand’s Formula is uniform, which shows that
one can take the limit in (4.3) along the line k = 2n to obtain

eλ
d
max = lim

n→∞

∥∥Φ(n, ω)TΦ(n, ω)
∥∥1/2n

= lim
n→∞

‖Φ(n, ω)‖1/n .

Hence (4.1) follows by taking the logarithm.
In order to prove (4.2), fix m ∈ N∗. By (4.1), for almost every ω ∈ Ω,

λd
max = lim

n→∞

1

nm
log ‖Φ(nm,ω)‖ . (4.4)

One has Φ(nm,ω) = Φ(m, θ(n−1)mω) · · ·Φ(m, θmω)Φ(m,ω), and thus

1

nm
log ‖Φ(nm,ω)‖ ≤ 1

nm

n−1∑
k=0

log
∥∥Φ(m, θmkω)

∥∥ . (4.5)

Since θm preserves P and log ‖Φ(m, ·)‖ ∈ L1(Ω,R), Birkhoff’s Ergodic Theorem shows
that

lim
n→∞

1

nm

n−1∑
k=0

log
∥∥Φ(m, θmkω)

∥∥ =
1

m

∫
Ω

log ‖Φ(m,ω)‖ dP(ω). (4.6)

Combining (4.4), (4.5), and (4.6), one obtains the inequality in (4.2). The sequence(∫
Ω

log ‖Φ(n, ω)‖ dP(ω)
)
n

is subadditive, since Φ(n + m,ω) = Φ(m, θnω)Φ(n, ω) for
n,m ∈ N and θ preserves P. This subadditivity implies that the equality in (4.2)
holds.

Under some extra assumptions on the probability measures µi, i ∈ N , one obtains
that the inequality in (4.2) is actually an equality.

Proposition 4.3. Suppose there exists r > 1 such that, for every i ∈ N , one
has

∫
(0,∞)

tr dµi(t) <∞. Then λd
max is given by

λd
max = inf

n∈N∗
1

n

∫
Ω

log ‖Φ(n, ω)‖ dP(ω) = lim
n→∞

1

n

∫
Ω

log ‖Φ(n, ω)‖dP(ω).

Proof. One clearly has, using (4.1), that

λd
max =

∫
Ω

λd
max dP(ω) =

∫
Ω

lim
n→∞

1

n
log ‖Φ(n, ω)‖ dP(ω).

The theorem is proved if we show one can exchange the limit and the integral in
the above expression, which we do by applying Vitali’s convergence theorem (see,
e.g., Rudin [27, Chapter 6]). We are thus left to show that the sequence of functions
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(
1
n log ‖Φ(n, ·)‖

)∞
n=1

is uniformly integrable, i.e., for every ε > 0, there exists δ > 0

such that, for every E ∈ F with P(E) < δ, one has 1
n

∣∣∫
E

log ‖Φ(n, ω)‖ dP(ω)
∣∣ < ε.

For ω = (in, tn)∞n=1 ∈ Ω0 and n ∈ N∗, one has Φ(n, ω) = eLin tn · · · eLi1 t1 . Let
C, γ > 0 be such that

∥∥eLit∥∥ ≤ Ceγt for every i ∈ N and t ≥ 0. Then

log ‖Φ(n, ω)‖ ≤ n logC + γ

n∑
i=1

ti = n logC + γsn(ω),

where sn(ω) =
∑n
i=1 ti. Hence, it suffices to show that the sequence

(
sn
n

)∞
n=1

is
uniformly integrable.

For n ∈ N∗ and E ∈ F, we have, by Hölder’s inequality,∫
E

sn(ω)

n
dP(ω) =

1

n

n∑
i=1

∫
E

ti dP(ω) ≤ 1

n

n∑
i=1

(∫
Ω

tri dP(ω)

) 1
r

P(E)
1
r′ ≤ K 1

r P(E)
1
r′ ,

(4.7)
where r′ ∈ (1,∞) is such that 1

r + 1
r′ = 1 and K = maxi∈N

∫
(0,∞)

tr dµi(t) < ∞.

Equation (4.7) establishes the uniform integrability of
(
sn
n

)∞
n=1

, which yields the re-
sult.

As an immediate consequence of Proposition 3.7, Proposition 3.8, Proposition
4.2, and Proposition 4.3, we obtain the following result.

Corollary 4.4. The maximal Lyapunov exponents λc
max and λd

max satisfy

mλc
max = λd

max ≤ inf
n∈N∗

1

n

∫
Ω

log ‖Φ(n, ω)‖dP(ω). (4.8)

In particular, if

there exists n ∈ N∗ such that

∫
Ω

log ‖Φ(n, ω)‖ dP(ω) < 0, (4.9)

then systems (2.3) and (3.1) are almost surely exponentially stable.
If we have further that there exists r > 1 such that

∫
R+
tr dµi(t) < ∞ for every

i ∈ N , then the inequality in (4.8) is an equality and (4.9) is equivalent to the almost
sure exponential stability of (2.3) and to the almost sure exponential stability of (3.1).

We conclude this section with the following characterization of a weighted sum
of the Lyapunov exponents λd

i , i ∈ N .
Proposition 4.5. Suppose there exists r > 1 such that, for every i ∈ N , one

has
∫

(0,+∞)
tr dµi(t) <∞. Then

q∑
i=1

miλ
d
i =

N∑
i=1

piτi Tr(Li), (4.10)

where mi is as in Proposition 3.12(v).
Proof. Thanks to Proposition 3.12(v), one obtains that, for almost every ω =

(in, tn)∞n=1 ∈ Ω,

det Ψ(ω) =

q∏
i=1

emiλ
d
i ,
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which yields

q∑
i=1

miλ
d
i = log det Ψ(ω) = lim

n→∞
log det

(
Φ(n, ω)TΦ(n, ω)

)1/2n
= lim
n→∞

log

(
n∏
k=1

det eLik tk

)1/n

= lim
n→∞

1

n

n∑
k=1

tk Tr(Lik).

Then

q∑
i=1

miλ
d
i =

∫
Ω

q∑
i=1

miλ
d
i dP(ω) =

∫
Ω

lim
n→∞

1

n

n∑
k=1

tk Tr(Lik) dP(ω)

= lim
n→∞

1

n

n∑
k=1

∫
Ω

tk Tr(Lik) dP(ω) =

N∑
i=1

piτi Tr(Li),

where we exchange limit and integral thanks to Vitali’s convergence theorem and to

the fact that
(
sn(ω)
n

)∞
n=1

=
(

1
n

∑n
k=1 tk

)∞
n=1

is uniformly integrable, as shown in the

proof of Proposition 4.3.

5. Main result. In this section, we use the stability criterion from Corollary
4.4 to study the stabilization by linear feedback laws of (1.1). As stated in the
Introduction, we write (1.1) under the form (1.5), which is a switched control system

with dynamics given by the N equations ẋ = Âx+ B̂iui, i ∈ N .
We consider system (1.5) in a probabilistic setting by taking random signals ααα(ω)

as in Definition 2.3, i.e., the random control system ẋ(t) = Âx(t)+ B̂ααα(ω)(t)uααα(ω)(t)(t).
The problem treated in this section is the arbitrary rate stabilizability of this system
by linear feedback laws ui = KiPix, i ∈ N , where we recall that Pi ∈Mdi,d(R) is the
projection onto the i-th factor of Rd = Rd1 × · · · × RdN . More precisely, we consider
the closed-loop random switched system

ẋ(t) =
(
Â+ B̂ααα(ω)(t)Kααα(ω)(t)Pααα(ω)(t)

)
x(t). (5.1)

We wish to know if, given λ ∈ R, there exist matrices Ki ∈ Mmi,di(R), i ∈ N ,
such that the maximal Lyapunov exponent λc

max of the continuous-time system (5.1),
defined as in Section 4, satisfies λc

max ≤ λ. Our main result is the following, which
states that this is true under the controllability of (Ai, Bi) for every i ∈ N .

Theorem 5.1. Let N ∈ N∗, d1, . . . , dN ,m1, . . . ,mN ∈ N, Ai ∈ Mdi(R), Bi ∈
Mdi,mi(R) for i ∈ N , and assume that (Ai, Bi) is controllable for every i ∈ N . Define

Â and B̂i as in (1.6). Then, for every λ ∈ R, there exist matrices Ki ∈ Mmi,di(R),
i ∈ N , such that the maximal Lyapunov exponent λc

max of the closed-loop random
switched system (5.1) satisfies λc

max ≤ λ.
Proof. Let C ≥ 1, β > 0 be such that, for every i ∈ N and every t ≥ 0,∥∥eAit∥∥ ≤ Ceβt. Thanks to Cheng, Guo, Lin, and Wang [7, Proposition 2.1], we

may assume that C is chosen large enough such that the following property holds:
there exists D ∈ N∗ such that, for every γ ≥ 1 and i ∈ N , there exists a matrix
Ki ∈Mmi,di(R) with ∥∥∥e(Ai+BiKi)t

∥∥∥ ≤ CγDe−γt, ∀t ∈ R+. (5.2)
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Let K̂i = KiPi ∈Mmi,d(R). Then

Â+ B̂iK̂i =



A1 0 · · · 0 · · · 0
0 A2 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · Ai +BiKi · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · AN


,

and thus, for every t ∈ R,

e(Â+B̂iK̂i)t =



eA1t 0 · · · 0 · · · 0
0 eA2t · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · e(Ai+BiKi)t · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · eAN t


.

Since M is irreducible and p is invariant under M , we have pi > 0 for every i ∈ N .
The irreducibility of M also provides the existence of r ≥ N and (i∗1, . . . , i

∗
r) ∈ N

r

such that {i∗1, . . . , i∗r} = N and Mi∗1i
∗
2
· · ·Mi∗r−1i

∗
r
> 0. In order to apply Corollary 4.4,

consider∫
Ω

log ‖Φ(r, ω)‖ dP(ω) =
∑

(i1,...,ir)∈Nr
pi1Mi1i2 · · ·Mir−1ir

·
∫

(0,∞)r
log
∥∥∥e(Â+B̂ir K̂ir )tr · · · e(Â+B̂i1K̂i1 )t1

∥∥∥dµi1(t1) · · · dµir (tr). (5.3)

Since
∑N
i=1 P

T
i Pi = Idd and Pie

(Â+B̂iK̂i)tPT
j = 0 if i 6= j, we have, for every

(i1, . . . , ir) ∈ Nr and (t1, . . . , tr) ∈ Rr+,

e(Â+B̂ir K̂ir )tr · · · e(Â+B̂i1K̂i1 )t1

=

 N∑
jr=1

PT
jrPjr

 e(Â+B̂ir K̂ir )tr · · ·

 N∑
j1=1

PT
j1Pj1

 e(Â+B̂i1K̂i1 )t1

 N∑
j0=1

PT
j0Pj0


=

N∑
i=1

PT
i Pie

(Â+B̂ir K̂ir )tr · · ·PT
i Pie

(Â+B̂i1K̂i1 )t1PT
i Pi

=

N∑
i=1

PT
i e

(Ai+δiirBiKi)tr · · · e(Ai+δii1BiKi)t1Pi. (5.4)

Since, for every i ∈ N and t ≥ 0, we have
∥∥eAit∥∥ ≤ Ceβt and

∥∥e(Ai+BiKi)t
∥∥ ≤

CγDe−γt, we get, for every (i1, . . . , ir) ∈ Nr and (t1, . . . , tr) ∈ Rr+,∥∥∥e(Â+B̂ir K̂ir )tr · · · e(Â+B̂i1K̂i1 )t1
∥∥∥ ≤ NCrγrDeβ∑r

i=1 ti . (5.5)

When (i1, . . . , ir) = (i∗1, . . . , i
∗
r), we can obtain a sharper bound than (5.5). For

i ∈ N , denote by N(i) the nonempty set of all indices k ∈ r such that i∗k = i, and
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denote by n(i) ∈ N∗ the number of elements in N(i). Then∥∥∥PT
i e

(Ai+δii∗rBiKi)tr · · · e(Ai+δii∗1
BiKi)t1Pi

∥∥∥ ≤ Crγn(i)De−γ
∑
k∈N(i) tkeβ

∑
k∈r\N(i) tk ,

which shows, using (5.4), that

∥∥∥e(Â+B̂i∗r K̂i∗r )tr · · · e(Â+B̂i∗1
K̂i∗1

)t1
∥∥∥ ≤ N∑

i=1

Crγn(i)De−γ
∑
k∈N(i) tkeβ

∑
k∈r\N(i) tk

≤ NCrγrDe−γmink∈r tkerβmaxk∈r tk . (5.6)

Let

E0 = max
i∈N

τi,

Emin =

∫
(0,∞)r

min
k∈r

tk dµi∗1 (t1) · · · dµi∗r (tr) > 0,

Emax =

∫
(0,∞)r

max
k∈r

tk dµi∗1 (t1) · · · dµi∗r (tr) <∞.

Then, combining (5.5) and (5.6), we obtain from (5.3) that∫
Ω

log ‖Φ(r, ω)‖ dP(ω) ≤ Nr (log(NCr) + rD log γ + rβE0)

+ pi∗1Mi∗1i
∗
2
· · ·Mi∗r−1i

∗
r

(log(NCr) + rD log γ − γEmin + rβEmax) . (5.7)

The right-hand side of (5.7) tends to −∞ as γ →∞, which can be achieved by (5.2).
Hence it follows from Corollary 4.4 that the maximal Lyapunov exponent of (5.1) can
be made arbitrarily small.

Recall that the main motivation for Theorem 5.1 comes from the stabilizability
of persistently excited systems (1.3) under linear feedback laws. It was proved in [10,
Proposition 4.5] that there are (two dimensional) controllable systems for which the
achievable decay rates under persistently exciting signals through linear feedback laws
are bounded below, even when we consider only persistently exciting signals α taking
values in {0, 1} instead of [0, 1]. Theorem 5.1 implies that, in the probabilistic setting
defined above, one can get arbitrarily large (almost sure) decay rates for the gener-
alization (1.5) of system (1.3), which is in contrast to the situation for persistently
excited systems. An explanation for this fact is that the probability of having a signal
α with very fast switching for an infinitely long time, such as the signals used in the
proof of [10, Proposition 4.5], is zero, and hence such signals do not interfere with the
behavior of the (random) maximal Lyapunov exponent.

Remark 5.2. In order to establish a more precise link between Theorem 5.1
and the case of deterministic persistently excited systems treated in [5, 8, 9, 10, 26],
consider the case of (1.3) with α(t) ∈ {0, 1} and (A,B) controllable. This is a special
case of (1.1) if we let A1 = A,B1 = B and add a trivial second subsystem with
d2 = m2 = 0. In this remark, α denotes the signal α1 from (1.1), instead of the signal
α from (1.5). In order to simplify, we assume that, in the probabilistic model of ααα,
trivial switches do not occur, which amounts to choosing

M =

(
0 1
1 0

)
,
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with the unique invariant probability vector p =
(

1
2 ,

1
2

)
. Notice that the assumptions

of Theorem 5.1 are satisfied in this framework.
In general, such signals ααα(ω) cannot be persistently exciting. In fact, suppose that

the measure µ2 satisfies µ2((0, T ]) < 1 for every T > 0 (recall that µi determines how
long the system remains in the state i, and that i = 2 corresponds to the activation of
the trivial subsystem). Then

P{ω ∈ Ω | ∃T ≥ µ > 0 such that ααα(ω) is a PE (T, µ)-signal} = 0. (5.8)

Indeed, since a (T, µ)-signal is also a (T ′, µ′)-signal for every T ′ ≥ T and 0 < µ′ ≤ µ,
we have

{ω ∈ Ω | ∃T ≥ µ > 0 such that ααα(ω) is a PE (T, µ)-signal}

=
⋃
T>0

⋃
µ∈(0,T ]

{ω ∈ Ω | ααα(ω) is a PE (T, µ)-signal}

=
⋃
T∈N∗

⋃
1
µ∈N∗

{ω ∈ Ω | ααα(ω) is a PE (T, µ)-signal}.

If α is a PE (T, µ)-signal, the PE condition implies that α cannot remain zero during
time intervals longer than T − µ, and thus

{ω ∈ Ω | ααα(ω) is a PE (T, µ)-signal}
⊂ {ω = (in, tn)∞n=1 ∈ Ω | ∀n ∈ N∗, in = 2 =⇒ tn ≤ T − µ}. (5.9)

Since in takes the value 2 infinitely many times for almost every ω ∈ Ω and µ2((0, T −
µ]) < 1, the right-hand side of (5.9) has measure zero, and thus (5.8) holds.

However, one can link the random signals ααα(ω) with a weaker, asymptotic notion
of persistence of excitation. A (deterministic) measurable signal α : R+ → [0, 1] is
said to be asymptotically persistently exciting with constant ρ > 0 if

lim inf
t→∞

1

t

∫ t

0

α(s) ds ≥ ρ.

It follows easily from (1.4) that every persistently exciting (T, µ)-signal is also asymp-
totically persistently exciting with constant ρ = µ

T . Proposition 3.9 implies that, for
almost every ω ∈ Ω,

lim
t→∞

1

t

∫ t

0

ααα(ω)(s) ds =
τ1

τ1 + τ2
,

and thus, in particular, almost every signal ααα(ω) is asymptotically persistently exciting
with constant ρ = τ1

τ1+τ2
> 0.
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Poincaré Probab. Stat., 51 (2015), pp. 1040–1075.

18



[4] P. Bolzern, P. Colaneri, and G. De Nicolao, On almost sure stability of continuous-time
Markov jump linear systems, Automatica J. IFAC, 42 (2006), pp. 983–988.

[5] Antoine Chaillet, Yacine Chitour, Antonio Loŕıa, and Mario Sigalotti, Uniform sta-
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