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1. Introduction. This paper proposes a notion of metric invariance entropy
in analogy to the topological notion of invariance entropy of deterministic control
systems, cf. Nair, Evans, Mareels, and Moran [15] and the monograph Kawan [11].
We consider control systems in discrete time of the form

Tnt+1 = f(Tn,un),n € Ng={0,1,...}, (1.1)

where f : M x  — M is continuous and M and €2 are metric spaces. Abbreviate
fo = flhw): M — M for w € Q, and for u = (up)nen, € U := QN write the
solutions as

e:Nox MxU—-M, ¢0zu):=x¢nz,u):=f, ,0 0 fu(x)forn>1.

The system should be kept in a given subset @ of M. (In the literature there are
colorful terms to describe this situation: One may think of M \ @ as a “trap” or as
a “hole” in the state space or leaving () means “killing” the system). The notion of
invariance entropy hin,(Q) of a compact subset Q C M describes the average data
rate needed to keep the system in @ (forward in time). It is constructed with some
analogy to topological entropy of dynamical systems. This is done in Nair, Evans,
Mareels, and Moran [15] via the version of Adler, Konheim and McAndrews [1], and
in Kawan [11, 10] via the version due to Bowen and Dinaburg based on spanning sets.
In the presence of hyperbolicity conditions, the invariance entropy has been discussed
in da Silva and Kawan [4]. We refer, e.g., to Walters [18] and Downarowicz [7] for
the entropy theory of dynamical systems. A major difference of entropy in a control
context to entropy for dynamical systems is that the minimal required entropy for the
considered control task is of interest, instead of the total entropy generated by the
dynamical system.

Presumably, the earliest connection between control for deterministic systems and
ergodic theory has been established by Delchamps [5] who studied when quantized
feedbacks for stabilization lead to a nontrivial invariant measure. The contribution
[14] by Mehta, Vaidya and Banaszuk considers measure-theoretic notions of entropy
in the context of fundamental limitations in control. Here, however, the uncertainty
arises due to disturbances, called conditional dither.
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If one wants to construct a metric entropy, the choice of an appropriate probability
measure is crucial. The present paper proposes to use conditionally invariant measures
for this purpose. In the dynamical systems literature, conditionally invariant (also
called relatively invariant) measures have been introduced by Pianigiani and Yorke
[17]; cf. the survey Demers and Young [6] and also Keller and Liverani [12]. For
random systems, the related notion of quasi-stationary distributions (or measures) is
a classical topic; cf. the recent monograph Collett, Martinez, and San Martin [2] and
also Zmarrou and Homburg [19]. Intuitively, quasi-stationary measures describe “the
distribution of trajectories which are on the verge of falling in the trap" [2, p. 15].

Control system (1.1) may be viewed as a skew product dynamical system by
considering the left shift 6 on U given by

(Ou)n, = tup11,n € Ny, for u = (u,) € U. (1.2)

Then S : (u,x) — (Ou, f(z,u0)) is a skew product map on U x M and its iterations
define a skew product dynamical system. Note that the product topology makes
U = QY into a metrizable space which is compact if € is compact. If one wants
to keep system (1.1) in a closed subset @ C M it appears appropriate to look at
conditionally invariant measures p for S on U x M with respect to U x Q. We
construct a metric invariance entropy with respect to such a conditionally invariant
measure. This is done using feedbacks and alternatively (open-loop) time-dependent
control functions and results in two versions of metric entropy, a feedback invariance
p-entropy and a controlled invariance p-entropy. It will be shown that each is invariant
under appropriately defined conjugacies.

The main contribution of the present paper is the construction of metric invari-
ance entropy. Also the existence of quasi-stationary measures is briefly discussed;
they yield special conditionally invariant measures. The constructions for the metric
invariance entropy are conveniently done for general conditionally invariant measures.
In the monograph by Collett, Martinez, and San Martin other sufficient conditions
for the existence of quasi-stationary measures are derived; cf. [2, Proposition 2.10 and
Theorem 2.11]. Demers and Young [6] show that conditionally invariant measures al-
ways exist and discuss their properties mainly for deterministic maps and with regard
to absolutely continuous conditionally invariant measures and their escape rates.

The contents of this paper is as follows: Section 2 discusses conditionally invariant
measures for maps and for control systems; here also quasi-stationary measures are
considered and notation is fixed. Section 3 constructs the metric invariance entropy
and proves invariance under conjugacies.

2. Conditionally invariant measures. In this section we collect some basic
information on conditionally invariant measures and fix some notation.

For a map S : X — X on a metric space (with metric d) and A C X we let
ST1A:={x e X|S(z) € A}.

DEFINITION 2.1. Let S : X — X be a continuous map on a metric space X and
consider a closed subset Y C X. A probability measure p on X endowed with the
Borel o-algebra B(X) is called conditionally invariant with respect to Y with constant
pif0<p=p(p)=p(S Y NY)<1 and

w(S~tANY)

w(A) = LSV NY) for all A € B(X).

Often the number p(u) is considered as an escape rate from Y. Putting A =Y
2



in Definition 2.1 one sees that the topological support of p given by
suppp := {z € X | u(N) > 0 for each open set with x € N}

is contained in Y. Hence, if we identify the probability measures on B(X') which have
support in Y with the set P(Y) of probability measures on the Borel o-algebra B(Y),
a measure p € P(Y) is conditionally invariant if and only if ©(S~'Y) > 0 and

_ w(STHA)

w(A) = 45T for all A € B(Y).

Observe that we allow p(S™1Y NY) = 1 for a conditionally invariant measure p on
B(X), hence this includes invariant measures on Y.

The following proposition gives equivalent characterizations of conditionally in-
variant measures.

PROPOSITION 2.2. Let S be a continuous map on X. Fix a closed subset Y of
X and let p € P(X). Suppose that p = p(S™YY NY) > 0. Then the following are
equivalent:

(i) The measure p is conditionally invariant for S with respect to Y.

(i) For every bounded continuous real function f € Cy(X) with f(z) = 0 for
zeX\Y

p(S~Y mY)/ fdp = / foS du.
Y Y
(i4i) The measure p satisfies for every k € N and every A € B(Y)
p(STFY)N..NY)p(A) =p (S"“(A) NS~k Vyn..n Y) : (2.1)
If (i) (or (i), (i) holds, it follows that for all k € N
p(STEFY)N..NY) =p(STY NnY)F = ph. (2.2)

Proof. Let p be conditionally invariant for Y. Then for every A € B(Y) the
characteristic function 1 4 satisfies

o (ST [(1405) 1ydy
/1Ad“7”(A)7 u(S=Y) H(5_1Yﬂ;) '

The same is true for all simple functions, and then also for all integrable, hence for all
bounded continuous functions. This shows that (i) implies (ii). The converse follows
by approximating characteristic functions by continuous functions.

For k = 1, assertion (2.1) reduces to (i). In order to see that conversely (i)
implies (iii), we proceed by induction. Suppose that (iii) holds for k. One finds for
every A€ B(Y)

" (5—1 (s—k’(A) ns—t-Vyn.n Y) N Y)
= u(S~*HANSFY N nSTHY)NY).

Applying this also to A =Y and using (i) one finds, as claimed,

m (S‘(’““)Y NS~ v n..n Y) w(A) = p (S—("’+1)A NS~ v n..n Y) :
3



If (i) holds, assertion (2.2) is valid for k = 1, and if it holds for k it follows by (i) that

p(S7EDY ASTRY 1LY ) = a(STY OY)u(STRY N0 Y)
= u(STY nY)k+L

0

REMARK 2.3. If we introduce the restriction Sy := Sy : Y — X, we can rewrite
the requirement for conditional invariance of p as p(Sy'Y)u(A) = p(Sy'(A)), A €
B(Y), with p = u(S;lY) > 0. Furthermore, with a slight abuse of notation, formula
(2.1) can be written as

H(STFY ) A) = (S5 (4)).

Thus p is a conditionally invariant measure for the map SY with constant p* =
w(SyF(Y)). It is a trivial observation that p(Sy*Y) — 0 for k — oo if p < 1.
Furthermore, p~*u defines a probability measure on S;kY.

The following proposition gives some information on the support of conditionally
invariant measures (cf. Demers and Young [6, p. 380]).

PROPOSITION 2.4. For a conditionally invariant measure i € P(X) with respect
to a compact set’Y one has

suppp C{zx €Y | S™™(z)NY # 0 for all n € N}.

Proof. We first show that for every n € N

suppp C {z € Y| ST (xz)NY # 0}. (2.3)
The set E, :={z €Y | S7"(z) NY = 0} satisfies p(Sy " E,,) = 0, and hence
Sy Ey
p(En) = /u(}:il)n =
(M(SY Y))

The complement of F, in Y is closed: Consider z; — x in Y such that there are
yr € S™"(xr) NY, hence S™(yi) = z. Then a subsequence (y,;) converges to some
y € Y and hence S™(yx,) — S™(y) = x for i — oo. Thus S™™(z)NY # 0. This
shows that F, is open and assertion (2.3) follows. Furthermore, o-additivity implies
u(E) = 0 for the open set

E:={z€Y| thereisn € N with S™"(z)NY =0} = U Ey.
n>1
O

In the rest of this section we consider control systems. Control system (1.1) can
be described by the continuous skew product map S defined by

S:UXM—-UXM,(u,z)— (Qu, f(x,ug)), (2.4)

where the shift 6 is given by (1.2). Similarly to Remark 2.3, we also write Sg :=
Siuxq 1 UXQ — Ux M for the restriction. Thus S™'UXQ)NUXQ) = Sél(u X Q).

DEFINITION 2.5. A conditionally invariant measure p for the map S defined in
(2.4) with respect to a closed subset @ of M is a probability measure on the Borel
o-algebra of U x M such that 0 < p := u(S~*U x Q)N U x Q)) < 1 and

pi(B) = pu(S™'BN (U x Q)) for all B € B(U x M).
4



Thus p is a special case of the measures specified in Definition 2.1 with ¥ =
UxQ C X =Ux M. Any probability measure p with marginal v on U can be
disintegrated in the form

= /u/M 15 (u, 2)ny(dz)v(du), B € BU x M), (2.5)

where 7,, are probability measures on M and for all A € B(M) the real map u +— 1, (A)
is measurable with respect to B({); the measures 7, are uniquely determined v-almost
everywhere; cf. Génssler and Stute [9, p. 196].

As an example we consider random maps of the form

Tpg1 = [(Tnyun), (2.6)
where f : M xQ — M is as above and a probability measure v on the Borel o-algebra
B(£2) of Q is fixed.

Let p(z,A) == vo{w € Q| f(z,w) € A} ,x € M, A € B(M), be the associated
Markov transition probability. Recall that a stationary measure n € P(M) is a
probability measure such that

n(4) = /M p(z, A)n(dz) for all A € B(M). (2.7)

It is well known that the stationary measures uniquely correspond to the invariant
Borel measures v x n,v := 1/(1)\]0, of the skew product map S defined in (2.4); cf. Kifer
[13].

DEFINITION 2.6. Let Q be a closed subset of M. A quasi-stationary measure with
respect to Q for the random map (2.6) is a probability measure n on B(M) such that
0< pr(x,Q)dn <1 and

Jpplar, Ayn(de)
Ty P, Qde)

Putting A = @, one sees that the support of 7 is contained in . Observe that
- 0 p(z, Q)n(dx) is the average probability to exit in one step from @. The measure

n(4) = for all A € B(Q).

1 is stationary if and only if [, p(z, Q)n(dz) = L.

The following proposition shows that quasi-stationary measures correspond to
conditionally invariant measures for S. The proof is included for the reader’s conve-
nience, although it essentially coincides with the one for Zmarrou and Homburg [19,
Lemma 5.2].

PROPOSITION 2.7. A probability measure n € P(Q) is quasi-stationary with
respect to @ for the random map (2.6) if and only if the probability measure p :=

VXN,Vi= 1/(1)\10, 1is conditionally invariant with respect to Q for the skew product map

S in (2.4). In this case, it follows that p = pu(Sg YU x Q)= fQ p(z, Q)n(dx).
Proof. For any probability measure  on M and A € B(M) one has

/MP(CC’A)U(dx) :/M/Q1{w€ﬂ|f(z,w)eA}VO(dw)"](d$>
=/ /1{ueu|f(x,uo)eA}V(du)U(diU) (2.8)

/ /15 Lux Ay (du)n(de)

= (v x 1) (ST (U x 4)).
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Suppose that v x n is conditionally invariant for S with respect to Q. Then 7 is
quasi-stationary, since formula (2.8) implies that for all A € B(Q)

(v x (S Ux A))  Jop(@, A)n(d)
(v xn) (ST U % Q) [z, Q)n(dz)”

Conversely, suppose that n € P(Q) is quasi-stationary, hence

n(A) = xn)UxA) =

z,w))vo(dw)n(de)
, w))vo(dw)n(de)

Take a Borel set V' x A with V Cc U and A C @ and compute

n(A) = for all A € B(Q). (2.9)

(v xn) (STHV x A)) = (v x ) ( U (o} x V) x fl(A,uO))>

ugEN

= (V) (v x 1) ( U ({uo} fl(fhuo)))

ugEN

v [ [ 147 w)ntao )
Together with (2.9) this implies

o) Jiy Jo LalF @) (de)n(da)

= W) Ty Jo 1aUf (@) ro(de)d(@)

(v xn) (STHV x A))

(v xn) (STHU X Q)

This is the assertion for Borel sets of the form B =V x A and hence it follows for all
B € B(U x Q). These arguments also prove the second assertion in the proposition. O

REMARK 2.8. For the random map (2.6) we obtain the following result for the
iterates of Sg. Define for x € Q and A € B(Q) the n-step transition probability

pg)(x,A) iteratively by p(© (x, A) = p(x, A) and

(v xm)(V x A) =v(V)n(A)

v 4) = [ )0 A dy)n =0

Then for a quasi-stationary measure n and for all A € B(Q) and n > 1

/Q P (2, An(der) = (v x 1) (S5™ (U x A)) and 5(A) =

Next we will briefly discuss the existence of quasi-stationary measures.

THEOREM 2.9. Let Q C M be a compact set and consider the random map (2.6)
for a probability measure vy € P(2) on the Borel o-algebra of .

(i) Assume that there is pg > 0 such that for every x € Q one has p(x,Q) > po
and p(x,0Q) = 0. Then there exists a quasi-stationary measure 1 with respect to Q.

(i) If p(x, M \ Q) > 0 for every x € Q, then there is no stationary measure 7
with support contained in Q.



(iii) Let © € Q and suppose that p(x,-) has a density with respect to a probability
measure A with A(0Q) = 0. Then p(x,0Q) = 0 follows.
Proof. (i) Consider the map S : P(Q) — P(Q) given by

. (vxn) (S7HU x A))
Sn)(A) = ,A e B(Q).
N D IRl ZET ) R
In fact, S’n is a probability measure on @, since it is a nonnegative measure on () and

(Sn(Q) =1.
The assumption p(z, Q) > po for all € @ implies that

(v x Sn)(S™HU % Q) = (v x Sn){(u, )| f(w,u0)) € Q}

Z//1{(w>\f(x,uw)eQ}V(dU)(Sn)(dw)

QJU

= [ [ 1t sanearn(do)Snan)
QJIQ

- /Q p(, Q)(Sn)(dz) > po,

since Sn is a probability measure. It follows that the map S can be restricted to a
map on the compact and convex set

P(Q,p0) = {n € P@Q)] (v xn)STHU % Q) > po}-
The map associating to n € P(Q) C C(Q)* the measure
(v xn) (S™HU x A)), A e BQ),

is weak* continuous, cf. Walters [18, Theorem 6.7]. Furthermore, [18, Remark 3(iv) on
p. 149] shows that the map associating to n € P(Q) the real number (v x 1) S~H(U x
Q) is continuous, if for every n € P(Q)

(vxn)S~HoWU x Q)) = 0. (2.11)
Hence the map S on P(Q) is weak* continuous if (2.11) holds. By (2.4)

(v xn) STHOWU x Q) = (v x n) {(u,2) | f(z,u0)) € OQ}
= (v xn) {(w,z)| f(z,w)) € 9Q}

- / p(, 0Q)(dz) = 0,
Q

since by assumption 0 = p(z, 0Q) for all x € Q. Thus (2.11) holds and S is continuous
on the compact convex subset P(Q, pg) of a locally convex topological vector space.
Then the Schauder-Tychonov fixed point theorem (cf. Dunford/Schwartz [8, p. 456])
shows that S has a fixed point € P(Q, po). This fixed point is quasi-stationary.

(ii) If n is a stationary measure with support contained in @, then fQ p(z, Q)n(dx)
= 1, hence p(z,Q) = 1 for n-almost all z € Q. Clearly, 1 = p(z, M) = p(z,Q) +
plz, M\ Q) for every z € M. If p(, M\ Q) > 0 for all x € @ it follows that
p(z,Q) < 1 for all x € @ and hence, in particular for all € suppny C @. This
contradiction proves (ii).



(iii) If p(z,-) has a density k(z,-) € L*(Q, ), then A\(0Q) = 0 implies p(x, Q) =
faQ k(z,y)A(dy) = 0. O

REMARK 2.10. There are alternative constructions for conditionally invariant
measures in a variety of situations. Demers and Young [6] discuss this mainly for
maps, without taking into account a skew product structure, and with regard to ab-
solutely continuous conditionally invariant measures, cf. in particular [6, Section
5]. For the case of quasi-stationary measures, Collett, Martinez, and San Martin [2,
Proposition 2.10 and Theorem 2.11] prove a general result based on the analysis of an
associated operator Py and require that Py maps the space C(Q),Q compact, of con-
tinuous real valued functions into itself (i.e., it is Feller). For a random map of the
form (2.6), this amounts to the following: Define for bounded measurable functions
h:Q—R

[PL(R)] (2) = h(f (2, w))vo(dw).

/{wEQIf(%w)EQ}

If Py maps continuous functions h into continuous functions, a variant of a theorem
due to Krein (see Oikhberg and Troitsky [16, Theorem 4]) yields the existence of a
positive eigenvector for the dual operator which determines a quasi-stationary measure
1. (The theorem can be applied, since C(Q) is an ordered Banach space which has an
element hg with ||hol| = 1 such that hg > h for all h with ||h]| =1.)

More explicitly, the theorem implies that there is a positive measure 1 on @ such
that Pyn = pn. Thus for all h € C(Q)

(Py)(h) = /Q (Pyh)dn = /Q /{ e M@ () = 8 /Q iy (dz).

We may assume that n is a probability measure. Then for every Borel measurable set

AcCQ

P(x, An(dx) = vo(dw)n(dx) = A).
/Q (z, Ayn(d) /Q /{%W(W)EM o(dw)(dz) = Bn(A)

1t follows that B = fQ P(z,Q)n(dzx) and hence n is quasi-stationary.

The map Py leaves the space of continuous functions invariant in the following
situation: for h € C(Q), continuity of f guarantees that the map (z,w) — h(f(z,w))
is continuous. If x, — x in Q, compactness of Q0 implies that the Hausdorff distance
dp(An, A) — 0 for the compact sets A, == {w € Q|f(zp,w) €Q} and A := {w €
Q|f(x,w) € Q}. If, for example, Q@ C R™ and vy has a density g € L'(Q) with
respect to the Lebesgue measure, it follows that vo(A, AN A) = fAnAAg(w)dw — 0.
Thus [Py (h)] (z,) — [P1(h)] () and the desired continuity of P1h follows.

3. Metric invariance entropy. In this section, we construct two versions of
metric invariance entropy in analogy to metric entropy for dynamical systems: a
feedback version and a version based on controllability properties.

We consider control system (1.1) on M and suppose that @ is a closed subset of
M. Throughout this section, we fix a conditionally invariant measure p with constant
p = p(p) € (0,1] for @ and the skew product map S on U x M; cf. Definition 2.5.
Recall that we write Sq := Sjyyxq : UXQ — U X M for the restriction. Thus forn € N
the measure 4 is conditionally invariant for S¢j with constant p". Since p lives in U x Q@
we construct certain partitions for & x (Q whose entropy with respect to u will be used
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to define the metric invariance entropy. While this seems fairly straightforward for
the component in @), more work will be needed for the U/-component.

For motivational purposes consider a sequence of measurable partitions satisfying,
for some fixed 7 € N, for all n,m € N

Wppp = A V ST, (3.1)

It follows that A,, = \/?:_O1 S~ for all n > 1. Recall that for a probability measure
w1 on a space X and measurable partitions 2, € and ® the conditional entropy is, with
¢(x) = zlogz,z € [0,1], defined by

_ uw(AnC) B o p(ANC)
m@e =Y w0 Yo (PEeD) = ¥ wanopEEE,

cece Ae AeA,Ced

and H,(AV C|D) = H,(A|D) + H,(C|AVD) (cf. Walters [18, Theorem 4.3(i)]).
Suppose that p is an invariant measure for a map S. Then, applying repeatedly this
formula, one finds for n € N

n—1 i—1
Hy(n,2) == H,(Up) =Y H, (S‘”Qll \V S‘”%) Z H, (A1 |2;); (3:2)
1=0 =0

here, and in the following, conditioning for \/Z_:l0 is omitted and 2y := {X}. The last
equation in (3.2) follows, since for all ¢ > 0

Hy, (Ui [2;) = H, (ST7A VA ) = H, (S772 %)

This will guide our definition of invariance entropy for a conditionally invariant mea-
sure fi.

The following definition is taken from Kawan [11, Definition 2.8].

DEFINITION 3.1. An invariant partition is a triple C = (P, 1, F) where P is a
finite partition of QQ into Borel measurable sets, T € N, and F : P — Q7 is a map
assigning to each set P in P a control function such that p(k, P, F(P)) C Q for all
kEe{l,..T1}.

Note that F' should be considered as a (piecewise constant) feedback.

REMARK 3.2. Analogously, if P is an open cover of Q, the triple (P, 7, F) is
called an invariant open cover of Q. In the definition of topological feedback entropy
by Nair, Evans, Mareels and Moran [15] invariant open covers replace the open covers
used for topological entropy of dynamical systems.

For an invariant partition C = (P, 7, F) with P = {P,..., P;} we abbreviate
F,:=F(P;) €Q",i=1,...,q, and define for every word a := [ag, a1,...,an—_1], N € N,
with a; € {1, ..., ¢} a control function u, on {0,..., N7 —1} by applying these feedback
maps one after the other:

(Ua)jryp = (Fa;)y, fori=0,..,N—1land k=0,..,7— 1. (3.3)

We also write uq = (Foo, Fay,--ry Fan_,)- The word a is called admissible for C if there
exists a point z € @ with

p(it,x,uq) € Py, for i =0,1,..., N — 1.

The admissible words for C describe the possible sequences of partition elements under
the feedbacks associated with C. For P € P we define

A(P) :={(u,z) eU x Q |z € P and p(k,P,u) CQfork=1,..,7} (3.4)
9



and

A(C) := {A(P)|P € P} with union A(C) = | ] A(P).
PeP

Here and in the following, we will omit the reference to C if the considered invariant
partition is clear from the context. This union is disjoint, and, in general, A will be
a proper subset of U x Q. For (u,z) € A(P), the controls u (on the relevant interval
{0, ...,7—1}) should be considered as feedbacks since they are applied to all elements of
P. Observe that S;," 2 is a measurable partition of the set S5"" A C S5""(Ux Q). A
sequence (Ag, ..., A1) is called admissible if A; = A(P,,) € A and a = [ag, ..., @p—1]
is an admissible word, and we define

n—1
Da=Aon..nS;" 74,1 e \/ S5 (3.5)
1=0

We also call intersections of the form D, admissible. Let
n—1 )
A, = {Da € \_/{) So' U a adm1851ble} JAp = UDten(C) D. (3.6)

Observe that 2; = 2 and, for convenience, we set Ay = U x ). Furthermore, for all
sets D € 2, let

A (D) = {A e

DN S,"" A is admissible }, AM(D) = U
Ani1(D) := DN SG"AN(D), Ani1(D) := DN SG"AY(D).

)

Aeut (D)

Thus for A € 2;7(D,) the intersection
Ao NS T4, 1 nSgTA

corresponds to an admissible word of length n 4 1, hence is admissible. It is imme-
diately clear that 2,11 C 2, V.S5" 2 and that, in general, this inclusion is proper.
Furthermore, A, 1 is the disjoint union of the sets A, 1(D), D € ,,.

The following lemma shows that the sequence 2A,,n € N, satisfies a condition
similar to (3.1).

LEMMA 3.3. (i) For alln,m € N

i C An VS5 (3.7)

More precisely, the collection Uy, 1., consists of all intersections D m N S’é"TDa[m],

where D ) € Uy, corresponds to an admissible word al™ of length m such that the
word a = a™al™ is admissible.

(i) Assume that the invariant partition C = (P, 1, F) satisfies the following prop-
erty: for every x € Q there are P € P and y € P such that p(7,y, F(P)) = x. Then
for every admissible word al™ of length m there exist an admissible word a™ such
that the word a = a™al™ is admissible.

Proof. (i) Consider for an admissible word a

Ao NS T A1 € R
10



with A; = A(P,,). Then, clearly, AgN...N Sé("_l)TAn_l is an element of 2,,, since
[ag, ..., an_1] is an admissible word. Also [ay, ..., @y tm—1] is admissible, since

0T, (T, 2, uq), 0" ua) = p((n + §)T,2,u,) € Pa,,, for j=0,1,....,m — 1.
It follows that
S A NN ST T A

= 55" (An N SG" A ) € 55"

(ii) Let al™ be an admissible word of length m, i.e., there is € Q such that

(T, @, Ugm)) € Pa;m] for j=0,1,...,m — 1.

Then there are P=P,,_,,apoint z_1 € P,,_, CQand u_; = F(P,,_,) € Q" such
that

@(Tvx—17F(Pan,—1)) =<
Proceeding inductively, one finds 2y € Q and an admissible word a™ such that

o(nT, xo, Uym ) = x and p(iT, o, Ugm ) € P alr) fori=0,. -1

Hence the word a = al™al™ is admissible. O

The converse inclusion in (3.7) is not valid, since a nonvoid intersection D N
Sé"TD’ with D € 2, and D’ € 2, may not correspond to an admissible word of
length n + m. Furthermore, the collection 2, is not a partition of U x @) and p is not
invariant for Sg.

We will use the following version of the notion of conditional entropy.

DEFINITION 3.4. Let ® and €(D),D € D, be finite families of measurable, pair-
wise disjoint sets in a space X with probability measure m. Let E(D) := Upeep) E
for D € ©, and suppose that for every D € D the collection {DNE|E € (D)} is a
partition of DN E(D). Then the conditional entropy of €(-) given ® is

tae(112) =~ S moneo) 3 o (ERED)

De® Eee(D)

This differs from the usual definition of conditional entropy (it might be called
a conditional pseudo-entropy), since it refers to measurable families, not necessarily
partitions, and in the considered collections {D N E |E € &(D)} the collections of al-

lowed sets £ may depend on D. For every D € ®, the conditional measure %

is a probability measure on D NE(D), and we sum up the corresponding entropies of
the partitions induced by €(D) on D N E(D) with weights m(D N E(D)). Thus the
entropy induced on the complement of the union of all elements of © is disregarded;
and the weights m(D N £(D)) only take into account the probability of the intersec-
tion of D with the union £(D) of the elements of &(D). Naturally, this conditional
entropy can also be written as

m(DNE)
Hon (&( L;DEG%(:D m(DNE)1 B (DA ED)) (3.8)

11



For the definition of invariance entropy we will consider the conditional entropy
H, i, (Sé”%lj‘() |Qll) of the family {Sé”?l;" (D),D e le} given the collection 2;
defined in (3.6). Note that for every D € 2; the collection

{DNS,TAlAe A (D)}
is a partition of DN Sé”.A?’ (D), and every D € ; can be extended to an admissible

intersection of length ¢ + 1 by some element Sé”A. Furthermore, by Remark 2.3,
p~ 11 is a probability measure on Sé” (U x Q), and

P (DN Sg'TAFH(D) N )
“mu(D N Sy AL (D))

defines a probability measure on D N Sé”Aj(D). Thus we sum up the entropies
induced on DN Sé”Aj(D), D € 2;, with weights given by p~*" u(-),

Hy-iry (S5 () |Qli>
u(D NS, A)
= - w(DNS, TA)L -
Z Z P Q )Og (DmSéZTA:,-(D))

Dei acuf (D)

iT _”— (Dﬂs “—A)
==Y pTuDNSTAL (D) > (b( ~Tu(D N Sg AL (D )))

Det; Aeaf (D)

Next we define the metric invariance entropy of an invariant partition in analogy
to condition (3.2).

DEFINITION 3.5. For an invariant partition C = (P, 7, F) of Q the invariance p-
entropy of A(C) up to time nt is defined as the following sum of conditional entropies,

n—1
=" Hyoe (ST 0120 (3.9)
i=0
and the feedback invariance p-entropy of C is

hH(C) = lim ioréf%Hu(n, A(C)). (3.10)

Formula (3.9) measures the average increase of information. Observe that only
the elements of the families SéiTQlj' (D), D € ,;, determine the additional information
in every time step.

The following definition introduces the central concept of this paper.

DEFINITION 3.6. For the skew product map S from (2.4) associated with control
system (1.1) the feedback invariance p-entropy of Q with respect to a conditionally
tnvartant measure [ 18

hi?(Q, 8) = inf hf(C),

where the infimum is taken over all invariant partitions C = (P, 7, F) of Q. If no
invariant partition exists, we set hlfib(Q, S) = 0.

12



REMARK 3.7. For an invariant partition C, the entropy H,-i,, (Sé”i’lj‘() |Qll>

can also be written in a somewhat more concise form. Define

- u(D N E)
Hir ) (i1 ) i w(DNE)log ———F——.
P o D% Ee;m w(Ai1(D))
Then the entropy satisfies
iy (ig %) = Hyiry (57725 () 120:) (3.11)

In fact, for DN Sé”A with D € A; and A € A} (D) one finds with
E=DnS5"A=A;n..n 85" VA1 NS5TA € Uiy

that DNE =DnN Sé”A and Ai+1(D) =DnN Sé”Aj‘(D). Conversely, let E € ;41
and D € U; be given by

E=A4yn..nS; " VAL, nS;TAL D=Agn..n S5 T4,y

Since A;y1 18 the disjoint union of the sets A;11(D), D € U;, it follows that there is a
unique D € A; with E = DﬁSé”A, A € A (D). Thesets A, A" in A (D) are pairwise
disjoint, hence D N SéiTA =DnN Sé”A’ # () implies A = A’. Thus there is a unique
A e df (D) with DNE = DNS,"TA AeUf (D), and Aiy1(D) = DN S, Af (D).
Then (3.11) follows.

REMARK 3.8. If v is an invariant measure for S, the formula for H,(n,A(C))
reduces to (3.2). One may wonder why a general time step 7 € N is used above, while
7 =1 might appear as the natural choice. We look at itineraries of trajectories in the
elements of the partition P at integer multiples iT,i € N. Then on some fized time
interval from 0 to T the choice T > 1 yields less itineraries than 7 = 1.

In Definition 3.6 the metric invariance entropy hﬁb(Q,S) is defined using the
infimum over all invariant partitions C = (P, 7, F), hence also over all T € N. All
constructions are equally valid if we would take the fived time step T = 1 throughout.
The same is true, if we require that the limit for T — oo is considered, i.e., we could
take the infimum over all invariant partitions C = (P, 1, F) for a fired 7 € N and then
take the limit inferior for T — oo. The definitions above are given for general T € N
in analogy to feedback entropy as defined in Nair, Evans, Mareels and Moran [15].
Also Kawan’s proof of Theorem 8.1} cited below uses in an essential way general time
steps 7. His proof also shows that for the topological invariance entropy it suffices to
take arbitrarily large time steps T.

In the following, we argue why a straightforward generalization of the definition
of entropy to conditionally invariant measures leads to a trivial notion. Recall the
definition of 2, from (3.6) and define for all n € N partitions of U x @ in the following
way:

Ay, = A, U{Z,} where Z, := U x Q) \ |

De,

We will show that limy, oo 2H,(%,) = 0 if p < L. In view of Upm C A V 55" Uy,
13



consider

~Hy@im) = 0 Zorm)) = Y 0 (w0 55" AY)

Ao€R_pn,A1€U

= Z (Ao N S5"" A1) log (Ao)

Ao€™Upn,A1€2U

+ > u(Agn Sy Ar)log

Ao€Un,A1EA N,

(Ao N S5 Ay)
M(Ao)

Observe that 2, is complemented to the partition 2, of U x Q. The corresponding
summands will be negative, hence the first sum is bounded below by

D wlAo NS (U x Q) log u(Ap) = —Hyu(2Ln).

Ao€f,,

For the second summand denote the elements of © = Sémélm by D. We obtain,
using convexity of ¢ and conditional invariance, that it is bounded below by

B /L(AO N SénTAl) M(Ao n SénTAl)
AgNS;" A log ———F— - = A _—
(2, HAn ST A lee = e v
Oeg}wn Aoemn;
Areoy, Aleélnz

> D o 2 nlAnSMA) | = > #ulSy"A)

A€, Aoy, A€,
=p"" > p(A)logpu(A) + p"" log p".
Ae

Then, with b, := p"" log p"" — ¢(11(Zpn1m)), it follows that
Hu@lwrm) < Hu(éln) + p"THM(le) — bn.

Note that wu(Z,+m) — 1 for n — oo, since the sets in 2,1, are contained in

Sé(ner) (U x Q). Thus the term b, tends to 0 for n — oco. A modification of the
subadditivity lemma in Walters [18, Theorem 4.9] shows that this implies, as claimed,
limy, oo L H,(2,) = 0.

Next we introduce a variant of Definition 3.6 where we omit the feedback property
required in A(P). For an invariant partition C = (P, 7, F) and P € P define

B(P) :={(u,z) eU x Q|x € P and p(k,z,u) € Q for k=1,...,7}, (3.12)
and let

B(C) := {B(P) |P € P} with union B(C) = | J B(P).
PeP

This union is disjoint, and, in general, B will be a proper subset of U x Q. Observe
that S,"" is a measurable partition of the set Jpcp So"" B(P) C S5"" (U x Q) for
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all n € N. A sequence (By, ..., B,—1) is called admissible for C if B; = B(P,,) € B
and a = [ag, ..., ap—1] is an admissible word, and we define

n—1
Do =Bon..n 8" VB, e\ S57B, (3.13)

1=0

and let

n—1
B, = {Da € \/ Sé”% la admissible} .

=0

Observe that 21 = 9B. Furthermore, for all sets D € B,, let
BH(D) = {B e B ‘D NSg™" B is admissible }.
As in Lemma 3.3 one shows that
Brtm C By V.SG" By

DEFINITION 3.9. For an invariant partition C = (P, 1, F) of Q the invariance p-
entropy of B(C) up to time nt is defined as the following sum of conditional entropies,

n—1
H(n, B(C) = Y Hy-rmy (557787 ()14 (3.14)
i=0
and the controlled invariance p-entropy of C is

co o1
R (C) = hnnlgnofEHu(n,‘B(C)). (3.15)
This leads to the following notion of metric invariance entropy.
DEFINITION 3.10. For the skew product map S from (2.4) associated with control
system (1.1) the controlled invariance p-entropy of Q with respect to a conditionally
invariant measure (i 18

hi2(Q.S) := inf b7 (C),

where the infimum is taken over all invariant partitions C of Q. If no such invariant
partition ezists, we set hi’(Q,S) = oc.

Next we consider the behavior of the metric invariance entropies under appropri-
ate conjugacies. For notational simplicity, we suppose that the sets of control values
coincide.

DEFINITION 3.11. Consider two control systems of the form (1.1) on My and
Ms, respectively, given by

Tpt1 = f1(Tn,un) and yni1 = fo(Yn, un) with (u,) € U.

Let py and po be conditionally invariant measures with respect to closed subsets Q1 C
My and Q2 C Ms, respectively. A bimeasurable bijection w : Q1 — Q2 is called a
conjugacy of these systems, if

7(f1(z,w)) = fo(nz,w) for allw € Q and x € Q4 (3.16)
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and idy X m: U X Q1 — U X Q2 maps 1 onto po, i.e.,
" ((idu ) ! (B)) — 1s(B) for all B € BU x Qs). (3.17)
In terms of the solutions, conjugacy condition (3.16) means
wp1(n, zg,u) = w2(n, mxo,u) for all n > 0.

With the associated skew product maps S;(u, ) = (Qu, fi(x,up)),i = 1,2, one obtains
the skew conjugacy condition for (u,z) € U x Q1

(idy x m) 0 S1(u, ) = (idy x 7) (Qu, f1(x,uo)) = (Ou, fa(rz, ug)) (3.18)
= Sy 0 (idy x ) (u, ).

Since we may interchange the roles of S, 1 and Ss, po, respectively, conjugacy is an
equivalence relation. The metric invariance entropies turn out to be invariant under
this conjugacy relation.

THEOREM 3.12. Suppose that there is a conjugacy 7 of two control systems of
the form (1.1) on M; and My with associated skew product maps S1 and So and
conditionally invariant measures py and po for closed sets Q1 C My and Q2 C Ma,
respectively. Then the feedback invariance p-entropy and the controlled invariance
w-entropy satisfy

WP (Q1,81) = P (Q2, S2) and hi% (Q1, S1) = hi%(Q2, S2).

Proof. First observe that conjugacy properties (3.17) and (3.18) imply Q2 = Q1
and

p1 = (STHU X Q1)) = pa(S5 (U X Q2)) = pa.

Consider an invariant partition C; = (P1,7, F1) of Q1. Then {n(P)| P € P1} is
a measurable partition of Q2 = 7@ and every measurable partition of Q2 can be
written in this form. For P € P; and u € U with ¢ (k, P,u) C Q1 for k= 1,...,7 one
finds

ok, mP,u) = mp1(k, Pyu)) C Qo for all k € {1,...,7}.

Thus idy; X © maps the invariant partition C; = (P1, 7, F1) to the invariant partition
Co = (Pa, 7, F1) and the collection 2(Cy) of U x @1 is mapped to the corresponding
collection A(Cz) of U x Q2,

A(Cy) = {(idyy x ) A|A € A(Cy) }.
One finds for the entropy
Hy, (n,%(C1)) = Hpy (n,A(C2)),n € N, and ki’ (C1) = k2 (Ca).

It follows that h[f; (Ql, Sl) = h[f; (QQ, SQ)

These arguments also show that h{;’;(Ql, S1) = o if and only if hﬁg (Q2,S2) = oco.
For the controlled invariance p-entropy one argues analogously. O

Finally, we briefly discuss the relation of metric invariance entropy to other no-
tions of invariance entropy. In Kawan [11, Definition 2.2 and Proposition 2.3(ii)] the
following notion is considered.
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DEFINITION 3.13. Consider system (1.1) with skew product map S and let Q C M
be a compact controlled invariant set, i.e., for every x € @ there is w, € Q with
flz,w,) € Q. Fort € N a set R C U is called (1,Q)-spanning if for all x € Q
there is u € R with p(n,z,u) € Q for alln = 1,...,7. By rin(7,Q) we denote
the minimal number of elements such a set can have (if no finite (1, Q)-spanning set
exists, Tiny (7, Q) := 00). The invariance entropy is defined by

.1
Pina (Q7 S) = TILH;O T log riny (7-7 Q)
Write Wy (C) for the set of all admissible words of length N of an invariant
partition C and let
o log#WN(C) . log#WhN(C)
MO = Jim = = N

The following characterization of invariance entropy is given in [11, Theorem 2.3].
THEOREM 3.14. For a compact and controlled invariant set @ it holds that

hine (@, S) = iréf h(C),

where the infimum is taken over all invariant partitions C of Q.

The metric entropies hﬁb(Q,S) and h{°(Q,S) in the present paper have been
constructed in analogy to this result. Instead of counting the sequences corresponding
to admissible words, the conditionally invariant measure has been used to associate a
probability to them, and then a corresponding notion of entropy is considered. One
might expect that the additional information provided by a conditionally invariant
measure would reduce the entropy, i.e., that hﬁb(Q,S) and h{?(Q,S) are bounded
above by hipn, (@, S). This would require to estimate the terms in (3.9) by the number
of admissible words. At present it is not clear to me what the relation is between metric
invariance entropies and h;n, (@, S). The relation of h;p,, (Q, S) to feedback invariance
entropy (cf. Nair, Evans, Mareels, Moran [15]) has been clarified in Colonius, Kawan,
Nair [3].

For given invariant partition C the feedback invariance p-entropy describes the
information associated with itineraries in P of the corresponding trajectories under
feedbacks (leaving the partition elements in (). Controlled invariance p-entropy de-
scribes the information associated with itineraries in P of trajectories for arbitrary
controls. Concerning the relation between these two notions of metric invariance en-
tropy one immediately sees that for an invariant partition C every set A(P) defined
in (3.4) is contained in the corresponding set B(P) defined in (3.12). It is not clear
if this induces a corresponding inequality for the conditional entropies up to time nr
(cf. (3.9) and (3.14)).

Finally, it would be important to compute the metric invariance entropy for special
classes of systems and for specific classes of conditionally invariant measures (e.g., for
those generated by quasi-stationary measures) and to determine relations to the escape
rate p(u) and to a corresponding Perron-Frobenius operator.
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