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1. Introduction. This paper proposes a notion of metric invariance entropy
in analogy to the topological notion of invariance entropy of deterministic control
systems, cf. Nair, Evans, Mareels, and Moran [15] and the monograph Kawan [11].
We consider control systems in discrete time of the form

xn+1 = f(xn; un); n 2 N0 = f0; 1; : : :g; (1.1)

where f : M � 
 ! M is continuous and M and 
 are metric spaces. Abbreviate
f! := f(�; !) : M ! M for ! 2 
, and for u = (un)n2N0 2 U := 
N0 write the
solutions as

' : N0 �M � U !M; '(0; x; u) := x; '(n; x; u) := fun�1 � � � � � fu0(x) for n � 1:

The system should be kept in a given subset Q of M . (In the literature there are
colorful terms to describe this situation: One may think of M n Q as a �trap�or as
a �hole� in the state space or leaving Q means �killing�the system). The notion of
invariance entropy hinv(Q) of a compact subset Q � M describes the average data
rate needed to keep the system in Q (forward in time). It is constructed with some
analogy to topological entropy of dynamical systems. This is done in Nair, Evans,
Mareels, and Moran [15] via the version of Adler, Konheim and McAndrews [1], and
in Kawan [11, 10] via the version due to Bowen and Dinaburg based on spanning sets.
In the presence of hyperbolicity conditions, the invariance entropy has been discussed
in da Silva and Kawan [4]. We refer, e.g., to Walters [18] and Downarowicz [7] for
the entropy theory of dynamical systems. A major di¤erence of entropy in a control
context to entropy for dynamical systems is that the minimal required entropy for the
considered control task is of interest, instead of the total entropy generated by the
dynamical system.

Presumably, the earliest connection between control for deterministic systems and
ergodic theory has been established by Delchamps [5] who studied when quantized
feedbacks for stabilization lead to a nontrivial invariant measure. The contribution
[14] by Mehta, Vaidya and Banaszuk considers measure-theoretic notions of entropy
in the context of fundamental limitations in control. Here, however, the uncertainty
arises due to disturbances, called conditional dither.
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If one wants to construct a metric entropy, the choice of an appropriate probability
measure is crucial. The present paper proposes to use conditionally invariant measures
for this purpose. In the dynamical systems literature, conditionally invariant (also
called relatively invariant) measures have been introduced by Pianigiani and Yorke
[17]; cf. the survey Demers and Young [6] and also Keller and Liverani [12]. For
random systems, the related notion of quasi-stationary distributions (or measures) is
a classical topic; cf. the recent monograph Collett, Martinez, and San Martin [2] and
also Zmarrou and Homburg [19]. Intuitively, quasi-stationary measures describe �the
distribution of trajectories which are on the verge of falling in the trap" [2, p. 15].

Control system (1.1) may be viewed as a skew product dynamical system by
considering the left shift � on U given by

(�u)n := un+1; n 2 N0, for u = (un) 2 U : (1.2)

Then S : (u; x) 7! (�u; f(x; u0)) is a skew product map on U �M and its iterations
de�ne a skew product dynamical system. Note that the product topology makes
U = 
N0 into a metrizable space which is compact if 
 is compact. If one wants
to keep system (1.1) in a closed subset Q � M it appears appropriate to look at
conditionally invariant measures � for S on U � M with respect to U � Q. We
construct a metric invariance entropy with respect to such a conditionally invariant
measure. This is done using feedbacks and alternatively (open-loop) time-dependent
control functions and results in two versions of metric entropy, a feedback invariance
�-entropy and a controlled invariance �-entropy. It will be shown that each is invariant
under appropriately de�ned conjugacies.

The main contribution of the present paper is the construction of metric invari-
ance entropy. Also the existence of quasi-stationary measures is brie�y discussed;
they yield special conditionally invariant measures. The constructions for the metric
invariance entropy are conveniently done for general conditionally invariant measures.
In the monograph by Collett, Martinez, and San Martin other su¢ cient conditions
for the existence of quasi-stationary measures are derived; cf. [2, Proposition 2.10 and
Theorem 2.11]. Demers and Young [6] show that conditionally invariant measures al-
ways exist and discuss their properties mainly for deterministic maps and with regard
to absolutely continuous conditionally invariant measures and their escape rates.

The contents of this paper is as follows: Section 2 discusses conditionally invariant
measures for maps and for control systems; here also quasi-stationary measures are
considered and notation is �xed. Section 3 constructs the metric invariance entropy
and proves invariance under conjugacies.

2. Conditionally invariant measures. In this section we collect some basic
information on conditionally invariant measures and �x some notation.

For a map S : X ! X on a metric space (with metric d) and A � X we let
S�1A := fx 2 X j S(x) 2 Ag.

Definition 2.1. Let S : X ! X be a continuous map on a metric space X and
consider a closed subset Y � X. A probability measure � on X endowed with the
Borel �-algebra B(X) is called conditionally invariant with respect to Y with constant
� if 0 < � = �(�) := �(S�1Y \ Y ) � 1 and

�(A) =
�(S�1A \ Y )
�(S�1Y \ Y ) for all A 2 B(X).

Often the number �(�) is considered as an escape rate from Y . Putting A = Y
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in De�nition 2.1 one sees that the topological support of � given by

supp� := fx 2 X j �(N) > 0 for each open set with x 2 Ng

is contained in Y . Hence, if we identify the probability measures on B(X) which have
support in Y with the set P(Y ) of probability measures on the Borel �-algebra B(Y ),
a measure � 2 P(Y ) is conditionally invariant if and only if �(S�1Y ) > 0 and

�(A) =
�(S�1A)

�(S�1Y )
for all A 2 B(Y ).

Observe that we allow �(S�1Y \ Y ) = 1 for a conditionally invariant measure � on
B(X), hence this includes invariant measures on Y .

The following proposition gives equivalent characterizations of conditionally in-
variant measures.

Proposition 2.2. Let S be a continuous map on X. Fix a closed subset Y of
X and let � 2 P(X). Suppose that � = �(S�1Y \ Y ) > 0. Then the following are
equivalent:

(i) The measure � is conditionally invariant for S with respect to Y .
(ii) For every bounded continuous real function f 2 Cb(X) with f(x) = 0 for

x 2 X n Y

�(S�1Y \ Y )
Z
Y

fd� =

Z
Y

f � S d�:

(iii) The measure � satis�es for every k 2 N and every A 2 B(Y )

�
�
S�k(Y ) \ ::: \ Y

�
�(A) = �

�
S�k(A) \ S�(k�1)Y \ ::: \ Y

�
: (2.1)

If (i) (or (ii), (iii)) holds, it follows that for all k 2 N

�
�
S�k(Y ) \ ::: \ Y

�
= �(S�1Y \ Y )k = �k: (2.2)

Proof. Let � be conditionally invariant for Y . Then for every A 2 B(Y ) the
characteristic function 1A satis�esZ

1Ad� = �(A) =
�(S�1A)

�(S�1Y )
=

R
(1A � S) � 1Y d�
�(S�1Y \ Y ) :

The same is true for all simple functions, and then also for all integrable, hence for all
bounded continuous functions. This shows that (i) implies (ii). The converse follows
by approximating characteristic functions by continuous functions.

For k = 1, assertion (2.1) reduces to (i). In order to see that conversely (i)
implies (iii), we proceed by induction. Suppose that (iii) holds for k. One �nds for
every A 2 B(Y )

�
�
S�1

�
S�k(A) \ S�(k�1)Y \ ::: \ Y

�
\ Y

�
= �(S�(k+1)A \ S�kY \ ::: \ S�1(Y ) \ Y ):

Applying this also to A = Y and using (i) one �nds, as claimed,

�
�
S�(k+1)Y \ S�kY \ ::: \ Y

�
�(A) = �

�
S�(k+1)A \ S�kY \ ::: \ Y

�
:
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If (i) holds, assertion (2.2) is valid for k = 1, and if it holds for k it follows by (i) that

�
�
S�(k+1)Y \ S�kY \ ::: \ Y

�
= �(S�1Y \ Y )�

�
S�kY \ ::: \ Y

�
= �(S�1Y \ Y )k+1:

Remark 2.3. If we introduce the restriction SY := SjY : Y ! X, we can rewrite
the requirement for conditional invariance of � as �(S�1Y Y )�(A) = �

�
S�1Y (A)

�
; A 2

B(Y ), with � = �(S�1Y Y ) > 0. Furthermore, with a slight abuse of notation, formula
(2.1) can be written as

�(S�kY Y )�(A) = �
�
S�kY (A)

�
:

Thus � is a conditionally invariant measure for the map SkY with constant �k =
�(S�kY (Y )). It is a trivial observation that �(S�kY Y ) ! 0 for k ! 1 if � < 1.
Furthermore, ��k� de�nes a probability measure on S�kY Y .

The following proposition gives some information on the support of conditionally
invariant measures (cf. Demers and Young [6, p. 380]).

Proposition 2.4. For a conditionally invariant measure � 2 P(X) with respect
to a compact set Y one has

supp� � fx 2 Y j S�n(x) \ Y 6= ; for all n 2 Ng:

Proof. We �rst show that for every n 2 N

supp� � fx 2 Y j S�n(x) \ Y 6= ;g: (2.3)

The set En := fx 2 Y j S�n(x) \ Y = ;g satis�es �(S�nY En) = 0, and hence

�(En) =
�(S�nY En)�
�(S�1Y Y )

�n = 0:
The complement of En in Y is closed: Consider xk ! x in Y such that there are
yk 2 S�n(xk) \ Y , hence Sn(yk) = xk. Then a subsequence (yki) converges to some
y 2 Y and hence Sn(yki) ! Sn(y) = x for i ! 1. Thus S�n(x) \ Y 6= ;. This
shows that En is open and assertion (2.3) follows. Furthermore, �-additivity implies
�(E) = 0 for the open set

E := fx 2 Y j there is n 2 N with S�n(x) \ Y = ;g =
[
n�1

En:

In the rest of this section we consider control systems. Control system (1.1) can
be described by the continuous skew product map S de�ned by

S : U �M ! U �M; (u; x) 7! (�u; f(x; u0)); (2.4)

where the shift � is given by (1.2). Similarly to Remark 2.3, we also write SQ :=
SjU�Q : U�Q! U�M for the restriction. Thus S�1(U�Q)\(U�Q) = S�1Q (U�Q).

Definition 2.5. A conditionally invariant measure � for the map S de�ned in
(2.4) with respect to a closed subset Q of M is a probability measure on the Borel
�-algebra of U �M such that 0 < � := �(S�1(U �Q) \ (U �Q)) � 1 and

��(B) = �(S�1B \ (U �Q)) for all B 2 B(U �M).
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Thus � is a special case of the measures speci�ed in De�nition 2.1 with Y =
U � Q � X = U �M . Any probability measure � with marginal � on U can be
disintegrated in the form

�(B) =

Z
U

Z
M

1B(u; x)�u(dx)�(du); B 2 B(U �M); (2.5)

where �u are probability measures onM and for all A 2 B(M) the real map u 7! �u(A)
is measurable with respect to B(U); the measures �u are uniquely determined �-almost
everywhere; cf. Gänssler and Stute [9, p. 196].

As an example we consider random maps of the form

xn+1 = f(xn; un); (2.6)

where f :M�
!M is as above and a probability measure �0 on the Borel �-algebra
B(
) of 
 is �xed.

Let p(x;A) := �0 f! 2 
 j f(x; !) 2 Ag ; x 2 M; A 2 B(M), be the associated
Markov transition probability. Recall that a stationary measure � 2 P(M) is a
probability measure such that

�(A) =

Z
M

p(x;A)�(dx) for all A 2 B(M). (2.7)

It is well known that the stationary measures uniquely correspond to the invariant
Borel measures � � �; � := �N00 , of the skew product map S de�ned in (2.4); cf. Kifer
[13].

Definition 2.6. Let Q be a closed subset of M . A quasi-stationary measure with
respect to Q for the random map (2.6) is a probability measure � on B(M) such that
0 <

R
Q
p(x;Q)d� � 1 and

�(A) =

R
Q
p(x;A)�(dx)R

Q
p(x;Q)�(dx)

for all A 2 B(Q):

Putting A = Q, one sees that the support of � is contained in Q. Observe that
1�
R
Q
p(x;Q)�(dx) is the average probability to exit in one step from Q. The measure

� is stationary if and only if
R
Q
p(x;Q)�(dx) = 1.

The following proposition shows that quasi-stationary measures correspond to
conditionally invariant measures for S. The proof is included for the reader�s conve-
nience, although it essentially coincides with the one for Zmarrou and Homburg [19,
Lemma 5.2].

Proposition 2.7. A probability measure � 2 P(Q) is quasi-stationary with
respect to Q for the random map (2.6) if and only if the probability measure � :=
� � �; � := �N00 ; is conditionally invariant with respect to Q for the skew product map
S in (2.4). In this case, it follows that � = �(S�1Q (U �Q)) =

R
Q
p(x;Q)�(dx).

Proof. For any probability measure � on M and A 2 B(M) one hasZ
M

p(x;A)�(dx) =

Z
M

Z



1f!2
j f(x;!)2Ag�0(d!)�(dx)

=

Z
M

Z
U
1fu2Uj f(x;u0)2Ag�(du)�(dx) (2.8)

=

Z
M

Z
U
1S�1(U�A)�(du)�(dx)

= (� � �) (S�1(U �A)):
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Suppose that � � � is conditionally invariant for S with respect to Q. Then � is
quasi-stationary, since formula (2.8) implies that for all A 2 B(Q)

�(A) = (� � �)(U �A) = (� � �)(S�1(U �A))
(� � �)(S�1(U �Q)) =

R
Q
p(x;A)�(dx)R

Q
p(x;Q)�(dx)

:

Conversely, suppose that � 2 P(Q) is quasi-stationary, hence

�(A) =

R
Q

R


1A(f(x; !))�0(d!)�(dx)R

Q

R


1Q(f(x; !))�0(d!)�(dx)

for all A 2 B(Q): (2.9)

Take a Borel set V �A with V � U and A � Q and compute

(� � �)
�
S�1(V �A)

�
= (� � �)

 [
u02


�
(fu0g � V )� f�1(A; u0)

�!

= �(V ) � (� � �)
 [
u02


�
fu0g � f�1(A; u0)

�!

= �(V ) �
Z
Q

Z



1A(f(x; u0))�0(du0)�(dx):

Together with (2.9) this implies

(� � �)(V �A) = �(V )�(A) = �(V )

�(U)

R
Q

R


1A(f(x; !))�0(d!)�(dx)R

Q

R


1Q(f(x; !))�0(d!)�d(x)

=
(� � �)

�
S�1(V �A)

�
(� � �) (S�1(U �Q)) :

This is the assertion for Borel sets of the form B = V �A and hence it follows for all
B 2 B(U �Q). These arguments also prove the second assertion in the proposition.

Remark 2.8. For the random map (2.6) we obtain the following result for the
iterates of SQ. De�ne for x 2 Q and A 2 B(Q) the n-step transition probability
p
(n)
Q (x;A) iteratively by p(0)(x;A) = p(x;A) and

p
(n+1)
Q (x;A) :=

Z
Q

p
(n)
Q (y;A)p(x; dy); n � 0:

Then for a quasi-stationary measure � and for all A 2 B(Q) and n � 1Z
Q

p
(n)
Q (x;A)�(dx) = (� � �)(S�nQ (U �A)) and �(A) =

R
Q
p
(n)
Q (x;A)�(dx)R

Q
p
(n)
Q (x;Q)�(dx):

: (2.10)

Next we will brie�y discuss the existence of quasi-stationary measures.
Theorem 2.9. Let Q �M be a compact set and consider the random map (2.6)

for a probability measure �0 2 P(
) on the Borel �-algebra of 
.
(i) Assume that there is �0 > 0 such that for every x 2 Q one has p(x;Q) � �0

and p(x; @Q) = 0. Then there exists a quasi-stationary measure � with respect to Q.
(ii) If p(x;M n Q) > 0 for every x 2 Q, then there is no stationary measure �

with support contained in Q.
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(iii) Let x 2 Q and suppose that p(x; �) has a density with respect to a probability
measure � with �(@Q) = 0. Then p(x; @Q) = 0 follows.

Proof. (i) Consider the map Ŝ : P(Q)! P(Q) given by

(Ŝ�)(A) :=
(� � �)

�
S�1(U �A)

�
(� � �) (S�1(U �Q)) ; A 2 B(Q):

In fact, Ŝ� is a probability measure on Q, since it is a nonnegative measure on Q and
(Ŝ�)(Q) = 1.

The assumption p(x;Q) � �0 for all x 2 Q implies that

(� � Ŝ�)(S�1(U �Q)) = (� � Ŝ�)f(u; x) j f(x; u0)) 2 Qg

=

Z
Q

Z
U
1f(u;x)j f(x;u0))2Qg�(du)(Ŝ�)(dx)

=

Z
Q

Z



1f(!;x)j f(x;!))2Qg�0(d!)(Ŝ�)(dx)

=

Z
Q

p(x;Q)(Ŝ�)(dx) � �0;

since Ŝ� is a probability measure. It follows that the map Ŝ can be restricted to a
map on the compact and convex set

P(Q; �0) := f� 2 P(Q) j (� � �)S�1(U �Q) � �0g:

The map associating to � 2 P(Q) � C(Q)� the measure

(� � �)
�
S�1(U �A)

�
; A 2 B(Q);

is weak� continuous, cf. Walters [18, Theorem 6.7]. Furthermore, [18, Remark 3(iv) on
p. 149] shows that the map associating to � 2 P(Q) the real number (� � �)S�1(U �
Q) is continuous, if for every � 2 P(Q)

(� � �)S�1(@(U �Q)) = 0: (2.11)

Hence the map Ŝ on P(Q) is weak� continuous if (2.11) holds. By (2.4)

(� � �)S�1(@(U �Q)) = (� � �) f(u; x) j f(x; u0)) 2 @Qg
= (�0 � �) f(!; x) j f(x; !)) 2 @Qg

=

Z
Q

p(x; @Q)�(dx) = 0;

since by assumption 0 = p(x; @Q) for all x 2 Q. Thus (2.11) holds and Ŝ is continuous
on the compact convex subset P(Q; �0) of a locally convex topological vector space.
Then the Schauder-Tychonov �xed point theorem (cf. Dunford/Schwartz [8, p. 456])
shows that Ŝ has a �xed point � 2 P(Q; �0). This �xed point is quasi-stationary.

(ii) If � is a stationary measure with support contained in Q, then
R
Q
p(x;Q)�(dx)

= 1, hence p(x;Q) = 1 for �-almost all x 2 Q. Clearly, 1 = p(x;M) = p(x;Q) +
p(x;M n Q) for every x 2 M . If p(x;M n Q) > 0 for all x 2 Q it follows that
p(x;Q) < 1 for all x 2 Q and hence, in particular for all x 2 supp� � Q. This
contradiction proves (ii).
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(iii) If p(x; �) has a density k(x; �) 2 L1(Q;�), then �(@Q) = 0 implies p(x; @Q) =R
@Q
k(x; y)�(dy) = 0.
Remark 2.10. There are alternative constructions for conditionally invariant

measures in a variety of situations. Demers and Young [6] discuss this mainly for
maps, without taking into account a skew product structure, and with regard to ab-
solutely continuous conditionally invariant measures, cf. in particular [6, Section
5]. For the case of quasi-stationary measures, Collett, Martinez, and San Martin [2,
Proposition 2.10 and Theorem 2.11] prove a general result based on the analysis of an
associated operator P1 and require that P1 maps the space C(Q); Q compact, of con-
tinuous real valued functions into itself (i.e., it is Feller). For a random map of the
form (2.6), this amounts to the following: De�ne for bounded measurable functions
h : Q! R

[P1(h)] (x) :=

Z
f!2
jf(x;!)2Qg

h(f(x; !))�0(d!):

If P1 maps continuous functions h into continuous functions, a variant of a theorem
due to Krein (see Oikhberg and Troitsky [16, Theorem 4]) yields the existence of a
positive eigenvector for the dual operator which determines a quasi-stationary measure
�. (The theorem can be applied, since C(Q) is an ordered Banach space which has an
element h0 with kh0k = 1 such that h0 � h for all h with khk = 1.)

More explicitly, the theorem implies that there is a positive measure � on Q such
that P �1 � = ��. Thus for all h 2 C(Q)

(P �1 �)(h) =

Z
Q

(P1h)d� =

Z
Q

Z
f!2
jf(x;!)2Qg

h(f(x; !))�0(d!)�(dx) = �

Z
Q

h�(dx):

We may assume that � is a probability measure. Then for every Borel measurable set
A � Q Z

Q

P (x;A)�(dx) =

Z
Q

Z
f!2
jf(x;!)2Ag

�0(d!)�(dx) = ��(A):

It follows that � =
R
Q
P (x;Q)�(dx) and hence � is quasi-stationary.

The map P1 leaves the space of continuous functions invariant in the following
situation: for h 2 C(Q), continuity of f guarantees that the map (x; !) 7! h(f(x; !))
is continuous. If xn ! x in Q, compactness of 
 implies that the Hausdor¤ distance
dH(An; A) ! 0 for the compact sets An := f! 2 
 jf(xn; !) 2 Qg and A := f! 2

 jf(x; !) 2 Qg. If, for example, 
 � Rm and �0 has a density g 2 L1(
) with
respect to the Lebesgue measure, it follows that �0(An 4 A) =

R
An4A g(!)d! ! 0.

Thus [P1(h)] (xn)! [P1(h)] (x) and the desired continuity of P1h follows.

3. Metric invariance entropy. In this section, we construct two versions of
metric invariance entropy in analogy to metric entropy for dynamical systems: a
feedback version and a version based on controllability properties.

We consider control system (1.1) on M and suppose that Q is a closed subset of
M . Throughout this section, we �x a conditionally invariant measure � with constant
� = �(�) 2 (0; 1] for Q and the skew product map S on U �M ; cf. De�nition 2.5.
Recall that we write SQ := SjU�Q : U�Q! U�M for the restriction. Thus for n 2 N
the measure � is conditionally invariant for SnQ with constant �

n. Since � lives in U�Q
we construct certain partitions for U �Q whose entropy with respect to � will be used
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to de�ne the metric invariance entropy. While this seems fairly straightforward for
the component in Q, more work will be needed for the U-component.

For motivational purposes consider a sequence of measurable partitions satisfying,
for some �xed � 2 N, for all n;m 2 N

An+m = An _ S�n�Am. (3.1)

It follows that An =
Wn�1
i=0 S

�i�A1 for all n � 1. Recall that for a probability measure
� on a space X and measurable partitions A, C and D the conditional entropy is, with
�(x) = x log x; x 2 [0; 1], de�ned by

H�(A jC ) = �
X
C2C

�(C)
X
A2A

�

�
�(A \ C)
�(C)

�
= �

X
A2A;C2C

�(A \ C) log �(A \ C)
�(C)

;

and H�(A _ C jD ) = H�(A jD ) + H�(C jA _D ) (cf. Walters [18, Theorem 4.3(i)]).
Suppose that � is an invariant measure for a map S. Then, applying repeatedly this
formula, one �nds for n 2 N

H�(n;A1) := H�(An) =
n�1X
i=0

H�

 
S�i�A1

�����
i�1_
`=0

S�`�A1

!
=

n�1X
i=0

H� (Ai+1 jAi ) ; (3.2)

here, and in the following, conditioning for
W�1
`=0 is omitted and A0 := fXg. The last

equation in (3.2) follows, since for all i � 0

H� (Ai+1 jAi ) = H�
�
S�i�A1 _ Ai jAi

�
= H�

�
S�i�A1 jAi

�
:

This will guide our de�nition of invariance entropy for a conditionally invariant mea-
sure �.

The following de�nition is taken from Kawan [11, De�nition 2.8].
Definition 3.1. An invariant partition is a triple C = (P; �; F ) where P is a

�nite partition of Q into Borel measurable sets, � 2 N, and F : P ! 
� is a map
assigning to each set P in P a control function such that '(k; P; F (P )) � Q for all
k 2 f1; :::; �g.

Note that F should be considered as a (piecewise constant) feedback.
Remark 3.2. Analogously, if P is an open cover of Q, the triple (P; �; F ) is

called an invariant open cover of Q. In the de�nition of topological feedback entropy
by Nair, Evans, Mareels and Moran [15] invariant open covers replace the open covers
used for topological entropy of dynamical systems.

For an invariant partition C = (P; �; F ) with P = fP1; :::; Pqg we abbreviate
Fi := F (Pi) 2 
� ; i = 1; :::; q, and de�ne for every word a := [a0; a1; :::; aN�1]; N 2 N,
with aj 2 f1; :::; qg a control function ua on f0; :::; N��1g by applying these feedback
maps one after the other:

(ua)i�+k := (Fai)k for i = 0; :::; N � 1 and k = 0; :::; � � 1: (3.3)

We also write ua = (Fa0 ; Fa1;:::; FaN�1). The word a is called admissible for C if there
exists a point x 2 Q with

'(i�; x; ua) 2 Pai for i = 0; 1; :::; N � 1:

The admissible words for C describe the possible sequences of partition elements under
the feedbacks associated with C. For P 2 P we de�ne

A(P ) := f(u; x) 2 U �Q jx 2 P and '(k; P; u) � Q for k = 1; :::; � g (3.4)
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and

A(C) := fA(P ) jP 2 P g with union A(C) =
[
P2P

A(P ):

Here and in the following, we will omit the reference to C if the considered invariant
partition is clear from the context. This union is disjoint, and, in general, A will be
a proper subset of U �Q. For (u; x) 2 A(P ), the controls u (on the relevant interval
f0; :::; ��1g) should be considered as feedbacks since they are applied to all elements of
P . Observe that S�n�Q A is a measurable partition of the set S�n�Q A � S�n�Q (U�Q). A
sequence (A0; :::; An�1) is called admissible if Ai = A(Pai) 2 A and a = [a0; :::; an�1]
is an admissible word, and we de�ne

Da = A0 \ ::: \ S�(n�1)�Q An�1 2
n�1_
i=0

S�i�Q A: (3.5)

We also call intersections of the form Da admissible. Let

An :=

(
Da 2

n�1_
i=0

S�i�Q A ja admissible
)
;An :=

[
D2An(C)

D: (3.6)

Observe that A1 = A and, for convenience, we set A0 = U �Q. Furthermore, for all
sets D 2 An let

A+n (D) := fA 2 A
���D \ S�n�Q A is admissibleg; A+n (D) :=

[
A2A+n (D)

A;

An+1(D) := D \ S�n�Q A+n (D); An+1(D) := D \ S�n�Q A+n (D):

Thus for A 2 A+n (Da) the intersection

A0 \ ::: \ S�(n�1)�Q An�1 \ S�n�Q A

corresponds to an admissible word of length n + 1, hence is admissible. It is imme-
diately clear that An+1 � An _ S�n�Q A1 and that, in general, this inclusion is proper.
Furthermore, An+1 is the disjoint union of the sets An+1(D); D 2 An.

The following lemma shows that the sequence An; n 2 N, satis�es a condition
similar to (3.1).

Lemma 3.3. (i) For all n;m 2 N

An+m � An _ S�n�Q Am: (3.7)

More precisely, the collection An+m consists of all intersections Da[n] \ S�n�Q Da[m] ,
where Da[m] 2 Am corresponds to an admissible word a[m] of length m such that the
word a = a[n]a[m] is admissible.

(ii) Assume that the invariant partition C = (P; �; F ) satis�es the following prop-
erty: for every x 2 Q there are P 2 P and y 2 P such that '(�; y; F (P )) = x. Then
for every admissible word a[m] of length m there exist an admissible word a[n] such
that the word a = a[n]a[m] is admissible.

Proof. (i) Consider for an admissible word a

A0 \ ::: \ S�(n+m�1)�Q An+m�1 2 An+m
10



with Ai = A(Pai). Then, clearly, A0 \ ::: \ S
�(n�1)�
Q An�1 is an element of An, since

[a0; :::; an�1] is an admissible word. Also [an; :::; an+m�1] is admissible, since

'(j�; '(n�; x; ua); �
n�ua) = '((n+ j)�; x; ua) 2 Pan+j for j = 0; 1; :::;m� 1:

It follows that

S�n�Q An \ ::: \ S�(n+m�1)�Q An+m�1

= S�n�Q

�
An \ ::: \ S�(m�1)�Q An+m�1

�
2 S�n�Q Am:

(ii) Let a[m] be an admissible word of length m, i.e., there is x 2 Q such that

'(j�; x; ua[m]) 2 P
a
[m]
j
for j = 0; 1; :::;m� 1:

Then there are P = Pan�1 , a point x�1 2 Pan�1 � Q and u�1 = F (Pan�1) 2 
� such
that

'(�; x�1; F (Pan�1)) = x:

Proceeding inductively, one �nds x0 2 Q and an admissible word a[n] such that

'(n�; x0; ua[n]) = x and '(i�; x0; ua[n]) 2 Pa[n]i
for i = 0; :::; n� 1:

Hence the word a = a[n]a[m] is admissible.
The converse inclusion in (3.7) is not valid, since a nonvoid intersection D \

S�n�Q D0 with D 2 An and D0 2 Am may not correspond to an admissible word of
length n+m. Furthermore, the collection An is not a partition of U �Q and � is not
invariant for SQ.

We will use the following version of the notion of conditional entropy.
Definition 3.4. Let D and E(D); D 2 D, be �nite families of measurable, pair-

wise disjoint sets in a space X with probability measure m. Let E(D) :=
S
E2E(D)E

for D 2 D, and suppose that for every D 2 D the collection fD \ E jE 2 E(D)g is a
partition of D \ E(D). Then the conditional entropy of E(�) given D is

Hm(E(�) jD ) = �
X
D2D

m(D \ E(D))
X

E2E(D)

�

�
m(D \ E)
m(D \ E(D))

�
:

This di¤ers from the usual de�nition of conditional entropy (it might be called
a conditional pseudo-entropy), since it refers to measurable families, not necessarily
partitions, and in the considered collections fD \E jE 2 E(D)g the collections of al-
lowed sets E may depend on D. For every D 2 D, the conditional measure m(D\�)

m(D\E(D))
is a probability measure on D \ E(D), and we sum up the corresponding entropies of
the partitions induced by E(D) on D \ E(D) with weights m(D \ E(D)). Thus the
entropy induced on the complement of the union of all elements of D is disregarded;
and the weights m(D \ E(D)) only take into account the probability of the intersec-
tion of D with the union E(D) of the elements of E(D). Naturally, this conditional
entropy can also be written as

Hm(E(�) jD ) = �
X
D2D

X
E2E(D)

m(D \ E) log m(D \ E)
m(D \ E(D)) : (3.8)
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For the de�nition of invariance entropy we will consider the conditional entropy

H��i��

�
S�i�Q A+i (�) jAi

�
of the family

n
S�i�Q A+i (D); D 2 Ai

o
given the collection Ai

de�ned in (3.6). Note that for every D 2 Ai the collection

fD \ S�i�Q A
��A 2 A+i (D)g

is a partition of D\S�i�Q A+i (D), and every D 2 Ai can be extended to an admissible
intersection of length i + 1 by some element S�i�Q A. Furthermore, by Remark 2.3,
��i�� is a probability measure on S�i�Q (U �Q), and

��i��(D \ S�i�Q A+i (D) \ �)
��i��(D \ S�i�Q A+i (D))

de�nes a probability measure on D \ S�i�Q A+i (D). Thus we sum up the entropies
induced on D \ S�i�Q A+i (D); D 2 Ai, with weights given by ��i��(�),

H��i��

�
S�i�Q A+i (�) jAi

�
= �

X
D2Ai

X
A2A+i (D)

��i��(D \ S�i�Q A) log
�(D \ S�i�Q A)

�(D \ S�i�Q A+i (D))

= �
X
D2Ai

��i��(D \ S�i�Q A+i (D))
X

A2A+i (D)

�

 
��i��(D \ S�i�Q A)

��i��(D \ S�i�Q A+i (D))

!
:

Next we de�ne the metric invariance entropy of an invariant partition in analogy
to condition (3.2).

Definition 3.5. For an invariant partition C = (P; �; F ) of Q the invariance �-
entropy of A(C) up to time n� is de�ned as the following sum of conditional entropies,

H�(n;A(C)) =
n�1X
i=0

H��i��

�
S�i�Q A+i (�) jAi

�
; (3.9)

and the feedback invariance �-entropy of C is

hfb� (C) = lim inf
n!1

1

n�
H�(n;A(C)): (3.10)

Formula (3.9) measures the average increase of information. Observe that only
the elements of the families S�i�Q A+i (D); D 2 Ai, determine the additional information
in every time step.

The following de�nition introduces the central concept of this paper.
Definition 3.6. For the skew product map S from (2.4) associated with control

system (1.1) the feedback invariance �-entropy of Q with respect to a conditionally
invariant measure � is

hfb� (Q;S) := infC
hfb� (C);

where the in�mum is taken over all invariant partitions C = (P; �; F ) of Q. If no
invariant partition exists, we set hfb� (Q;S) :=1.
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Remark 3.7. For an invariant partition C, the entropy H��i��
�
S�i�Q A+i (�) jAi

�
can also be written in a somewhat more concise form. De�ne

H��i��(Ai+1 jAi ) := ���i�
X
D2Ai

X
E2Ai+1

�(D \ E) log �(D \ E)
�(Ai+1(D))

:

Then the entropy satis�es

H��i��(Ai+1 jAi ) = H��i��
�
S�i�Q A+i (�) jAi

�
: (3.11)

In fact, for D \ S�i�Q A with D 2 Ai and A 2 A+i (D) one �nds with

E := D \ S�i�Q A = A0 \ ::: \ S�(i�1)�Q Ai�1 \ S�i�Q A 2 Ai+1

that D \E = D \ S�i�Q A and Ai+1(D) = D \ S�i�Q A+i (D). Conversely, let E 2 Ai+1
and D 2 Ai be given by

E = A00 \ ::: \ S
�(i�1)�
Q A0i�1 \ S�i�Q A0i; D = A0 \ ::: \ S�(i�1)�Q Ai�1:

Since Ai+1 is the disjoint union of the sets Ai+1(D); D 2 Ai, it follows that there is a
unique D 2 Ai with E = D\S�i�Q A;A 2 A+i (D). The sets A;A0 in A

+
i (D) are pairwise

disjoint, hence D \ S�i�Q A = D \ S�i�Q A0 6= ; implies A = A0. Thus there is a unique
A 2 A+i (D) with D \ E = D \ S

�i�
Q A;A 2 A+i (D), and Ai+1(D) = D \ S

�i�
Q A+i (D).

Then (3.11) follows.
Remark 3.8. If � is an invariant measure for S, the formula for H�(n;A(C))

reduces to (3.2). One may wonder why a general time step � 2 N is used above, while
� = 1 might appear as the natural choice. We look at itineraries of trajectories in the
elements of the partition P at integer multiples i�; i 2 N. Then on some �xed time
interval from 0 to T the choice � > 1 yields less itineraries than � = 1.

In De�nition 3.6 the metric invariance entropy hfb� (Q;S) is de�ned using the
in�mum over all invariant partitions C = (P; �; F ), hence also over all � 2 N. All
constructions are equally valid if we would take the �xed time step � = 1 throughout.
The same is true, if we require that the limit for � !1 is considered, i.e., we could
take the in�mum over all invariant partitions C = (P; �; F ) for a �xed � 2 N and then
take the limit inferior for � ! 1. The de�nitions above are given for general � 2 N
in analogy to feedback entropy as de�ned in Nair, Evans, Mareels and Moran [15].
Also Kawan�s proof of Theorem 3.14 cited below uses in an essential way general time
steps � . His proof also shows that for the topological invariance entropy it su¢ ces to
take arbitrarily large time steps � .

In the following, we argue why a straightforward generalization of the de�nition
of entropy to conditionally invariant measures leads to a trivial notion. Recall the
de�nition of An from (3.6) and de�ne for all n 2 N partitions of U�Q in the following
way:

~An := An [ fZng where Zn := (U �Q) n
[

D2An
D:

We will show that limn!1
1
nH�(

~An) = 0 if � < 1. In view of An+m � An _ S�n�Q Am

13



consider

�H�(~An+m)� �(�(Zn+m)) �
X

A02An;A12Am

�
�
�(A0 \ S�n�Q A1)

�
=

X
A02An;A12Am

�(A0 \ S�n�Q A1) log�(A0)

+
X

A02An;A12Am

�(A0 \ S�n�Q A1) log
�(A0 \ S�n�Q A1)

�(A0)
:

Observe that An is complemented to the partition ~An of U � Q. The corresponding
summands will be negative, hence the �rst sum is bounded below byX

A02~An

�(A0 \ S�n�Q (U �Q)) log�(A0) � �H�(~An):

For the second summand denote the elements of D = S�n�Q
~Am by D. We obtain,

using convexity of � and conditional invariance, that it is bounded below by

X
A02~An;
A12~Am

�(A0 \ S�n�Q A1) log
�(A0 \ S�n�Q A1)

�(A0)
=

X
A02~An;
A12~Am

�(A0)�

 
�(A0 \ S�n�Q A1)

�(A0)

!

�
X

A12~Am

�

0@ X
A02~An

�(A0 \ S�n�Q A1)

1A =
X

A12~Am

�(�(S�n�Q A1))

= �n�
X
A2~Am

�(A) log�(A) + �n� log �n� :

Then, with bn := �n� log �n� � �(�(Zn+m)), it follows that

H�(~An+m) � H�(~An) + �n�H�(~Am)� bn:

Note that �(Zn+m) ! 1 for n ! 1, since the sets in An+m are contained in
S
�(n+m)
Q (U � Q). Thus the term bn tends to 0 for n ! 1. A modi�cation of the
subadditivity lemma in Walters [18, Theorem 4.9] shows that this implies, as claimed,
limn!1

1
nH�(

~An) = 0.

Next we introduce a variant of De�nition 3.6 where we omit the feedback property
required in A(P ). For an invariant partition C = (P; �; F ) and P 2 P de�ne

B(P ) := f(u; x) 2 U �Q jx 2 P and '(k; x; u) 2 Q for k = 1; :::; � g; (3.12)

and let

B(C) := fB(P ) jP 2 P g with union B(C) =
[
P2P

B(P ):

This union is disjoint, and, in general, B will be a proper subset of U � Q. Observe
that S�n�Q B is a measurable partition of the set

S
P2P S

�n�
Q B(P ) � S�n�Q (U �Q) for

14



all n 2 N. A sequence (B0; :::; Bn�1) is called admissible for C if Bi = B(Pai) 2 B
and a = [a0; :::; an�1] is an admissible word, and we de�ne

Da = B0 \ ::: \ S�(n�1)�Q Bn�1 2
n�1_
i=0

S�i�Q B; (3.13)

and let

Bn :=

(
Da 2

n�1_
i=0

S�i�Q B ja admissible
)
:

Observe that B1 = B. Furthermore, for all sets D 2 Bn let

B+
n (D) := fB 2 B

���D \ S�n�Q B is admissibleg:

As in Lemma 3.3 one shows that

Bn+m � Bn _ S�n�Q Bm:

Definition 3.9. For an invariant partition C = (P; �; F ) of Q the invariance �-
entropy of B(C) up to time n� is de�ned as the following sum of conditional entropies,

H�(n;B(C)) =
n�1X
i=0

H��i��

�
S�i�Q B+

i (�) jBi

�
; (3.14)

and the controlled invariance �-entropy of C is

hco� (C) = lim inf
n!1

1

n�
H�(n;B(C)): (3.15)

This leads to the following notion of metric invariance entropy.
Definition 3.10. For the skew product map S from (2.4) associated with control

system (1.1) the controlled invariance �-entropy of Q with respect to a conditionally
invariant measure � is

hco� (Q;S) := infC
hco� (C);

where the in�mum is taken over all invariant partitions C of Q. If no such invariant
partition exists, we set hco� (Q;S) :=1.

Next we consider the behavior of the metric invariance entropies under appropri-
ate conjugacies. For notational simplicity, we suppose that the sets of control values
coincide.

Definition 3.11. Consider two control systems of the form (1.1) on M1 and
M2, respectively, given by

xn+1 = f1(xn; un) and yn+1 = f2(yn; un) with (un) 2 U :

Let �1 and �2 be conditionally invariant measures with respect to closed subsets Q1 �
M1 and Q2 � M2, respectively. A bimeasurable bijection � : Q1 ! Q2 is called a
conjugacy of these systems, if

�(f1(x; !)) = f2(�x; !) for all ! 2 
 and x 2 Q1 (3.16)
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and idU � � : U �Q1 ! U �Q2 maps �1 onto �2, i.e.,

�1

�
(idU � �)�1 (B)

�
= �2(B) for all B 2 B(U �Q2): (3.17)

In terms of the solutions, conjugacy condition (3.16) means

�'1(n; x0; u) = '2(n; �x0; u) for all n � 0:

With the associated skew product maps Si(u; x) = (�u; fi(x; u0)); i = 1; 2, one obtains
the skew conjugacy condition for (u; x) 2 U �Q1

(idU � �) � S1(u; x) = (idU � �) (�u; f1(x; u0)) = (�u; f2(�x; u0)) (3.18)

= S2 � (idU � �) (u; x):

Since we may interchange the roles of S1; �1 and S2; �2, respectively, conjugacy is an
equivalence relation. The metric invariance entropies turn out to be invariant under
this conjugacy relation.

Theorem 3.12. Suppose that there is a conjugacy � of two control systems of
the form (1.1) on M1 and M2 with associated skew product maps S1 and S2 and
conditionally invariant measures �1 and �2 for closed sets Q1 � M1 and Q2 � M2,
respectively. Then the feedback invariance �-entropy and the controlled invariance
�-entropy satisfy

hfb�1(Q1; S1) = h
fb
�2(Q2; S2) and h

co
�1(Q1; S1) = h

co
�2(Q2; S2):

Proof. First observe that conjugacy properties (3.17) and (3.18) imply Q2 = �Q1
and

�1 = �1(S
�1
1 (U �Q1)) = �2(S�12 (U �Q2)) = �2:

Consider an invariant partition C1 = (P1; �; F1) of Q1. Then f�(P ) j P 2 P1g is
a measurable partition of Q2 = �Q1 and every measurable partition of Q2 can be
written in this form. For P 2 P1 and u 2 U with '1(k; P; u) � Q1 for k = 1; :::; � one
�nds

'2(k; �P; u) = �'1(k; P; u)) � Q2 for all k 2 f1; : : : ; �g:

Thus idU � � maps the invariant partition C1 = (P1; �; F1) to the invariant partition
C2 = (P2; �; F1) and the collection A(C1) of U � Q1 is mapped to the corresponding
collection A(C2) of U �Q2,

A(C2) = f(idU � �)A jA 2 A(C1)g:

One �nds for the entropy

H�1(n;A(C1)) = H�2(n;A(C2)); n 2 N, and hfb�1(C1) = h
fb
�2(C2):

It follows that hfb�1(Q1; S1) = h
fb
�2(Q2; S2).

These arguments also show that hfb�1(Q1; S1) =1 if and only if hfb�2(Q2; S2) =1.
For the controlled invariance �-entropy one argues analogously.

Finally, we brie�y discuss the relation of metric invariance entropy to other no-
tions of invariance entropy. In Kawan [11, De�nition 2.2 and Proposition 2.3(ii)] the
following notion is considered.
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Definition 3.13. Consider system (1.1) with skew product map S and let Q �M
be a compact controlled invariant set, i.e., for every x 2 Q there is !x 2 
 with
f(x; !x) 2 Q. For � 2 N a set R � U is called (�;Q)-spanning if for all x 2 Q
there is u 2 R with '(n; x; u) 2 Q for all n = 1; :::; � . By rinv(�;Q) we denote
the minimal number of elements such a set can have (if no �nite (�;Q)-spanning set
exists, rinv(�;Q) :=1). The invariance entropy is de�ned by

hinv(Q;S) := lim
�!1

1

�
log rinv(�;Q):

Write WN (C) for the set of all admissible words of length N of an invariant
partition C and let

h(C) := lim
N!1

log#WN (C)
N�

= inf
N2N

log#WN (C)
N�

:

The following characterization of invariance entropy is given in [11, Theorem 2.3].
Theorem 3.14. For a compact and controlled invariant set Q it holds that

hinv(Q;S) = inf
C
h(C);

where the in�mum is taken over all invariant partitions C of Q.
The metric entropies hfb� (Q;S) and h

co
� (Q;S) in the present paper have been

constructed in analogy to this result. Instead of counting the sequences corresponding
to admissible words, the conditionally invariant measure has been used to associate a
probability to them, and then a corresponding notion of entropy is considered. One
might expect that the additional information provided by a conditionally invariant
measure would reduce the entropy, i.e., that hfb� (Q;S) and h

co
� (Q;S) are bounded

above by hinv(Q;S). This would require to estimate the terms in (3.9) by the number
of admissible words. At present it is not clear to me what the relation is between metric
invariance entropies and hinv(Q;S). The relation of hinv(Q;S) to feedback invariance
entropy (cf. Nair, Evans, Mareels, Moran [15]) has been clari�ed in Colonius, Kawan,
Nair [3].

For given invariant partition C the feedback invariance �-entropy describes the
information associated with itineraries in P of the corresponding trajectories under
feedbacks (leaving the partition elements in Q). Controlled invariance �-entropy de-
scribes the information associated with itineraries in P of trajectories for arbitrary
controls. Concerning the relation between these two notions of metric invariance en-
tropy one immediately sees that for an invariant partition C every set A(P ) de�ned
in (3.4) is contained in the corresponding set B(P ) de�ned in (3.12). It is not clear
if this induces a corresponding inequality for the conditional entropies up to time n�
(cf. (3.9) and (3.14)).

Finally, it would be important to compute the metric invariance entropy for special
classes of systems and for speci�c classes of conditionally invariant measures (e.g., for
those generated by quasi-stationary measures) and to determine relations to the escape
rate �(�) and to a corresponding Perron-Frobenius operator.
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