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1 Introduction

This paper discusses topological conjugacy for skew product flows on topological
group bundles and semidirect products. One one hand, our results are gener-
alizations of contributions to topological conjugacy of linear and affine skew
product flows, which were mainly motivated by bilinear control systems; see
Ayala, Colonius and Kliemann [2] and Colonius and Santana [5], as well as
Kawan, Rocio and Santana [7] for flows on Lie groups. On the other hand,
there are close analogies to classical (and much more general) results by Lind
[9] in the framework of ergodic skew product systems and splitting theorems.
Our results may be viewed as topological versions of some of Lind’s results.

The contents of this paper is as follows: In Section [2] some basic properties
of topological groups and semidirect products are collected. Section [3| discusses
flows on semidirect products, in particular, of Lie groups and topological con-
jugacy on theses groups. Section [] generalizes the discussion of topological
conjugacies to skew product flows on topological group bundles. Theorem [I2]
shows that topological skew conjugacy is equivalent to solvability of a certain
functional equation. It is shown that conjugacy results for linear and affine skew
product which are valid for hyperbolic systems are a special case. Furthermore
the relation to Lind’s [9] functional equation and his splitting theorem for mea-
surable conjugacy is explained. Finally, Section [5] presents an application to
skew-product transformation semigroups and fiber entropy.

2 Preliminaries

In this section we recall some notations (see, e.g., Kechris [8, Appendix I]) and
facts on automorphisms of topological groups.



Let (H,®) and (G, +) be topological groups. Consider the following contin-
uous action given by homeomorphisms:

¢ : H x G — G such that &(a,b) = a*b.
Suppose that for all hy,hy € H and g € G
eg*g=g,(h1 ®ha)xg = hyx(ha*g), (1)
and for all h € H and ¢g1,92 € G
hxeg =eg,hx(g1+g2) = hxg1 + h* g, (2)

where ey and eg are the neutral elements of H and G, respectively. A simple
consequence is that for all h € H,g € G

hxg+h*(—g) =h*(g+(—9g)) = hxeg = eg, hence hx(—g) = —(h*g). (3)

Furthermore h induces an automorphism (i.e., an invertible topological group
homomorphism) S}, defined by S,(g) := hxg,9 € G. The homomorphism
property is and invertibility follows using

(Sh-1051) (9) = Sp-1 (hxg) = h™'x(hxg) = (K" @ h)xg = enxg = g,9 € G.

Then the semi-direct product H x G of H with G is given by the group structure
defined for (h1,91), (ha,92) € H X G as

(h1,91) - (h2,92) = (h1 ® ha, h1 * g2 + g1).

Note that the neutral element is (ey, eq) and the inverse is given by (h,g) ! =

(hila h71 * _g)
Clearly, H x G again is a topological group and there is a natural continuous
action of H x G on G given by

(hyg1) g2 = hxga+ g1 for he H,g1,92 € G. (4)

An affine automorphism of G is any map o of the form o(g) = ((g)+h, where
h is a fixed element of G and ( is an automorphism of G. Any such ¢ can be
identified with the pair (¢, h), ¢ being the automorphic part of ¢ and h = o(eg),
the translation part. If o1 = (¢, h1), 02 = ((, h2) are affine automorphisms, then
o102 = ((1¢2, (1 (h1) + h2), thus the group of affine automorphisms of G can be
identified with the semidirect product of the automorphism group of G with G,
where the automorphism group of G acts by evaluation on G. If now H acts
by automorphisms on G, then H x G acts by affine automorphisms on G given
by above equality . If H acts on G faithfully (i.e., if hx g = g for all g, then
h =ep), then H can be viewed as a group of automorphisms of G. In this case
also H x G acts faithfully on G, hence H x GG can be viewed as a group of affine
automorphisms of G.

If H and G are Lie groups, the Lie algebra of H x G is denoted by h % g,
where § is the Lie algebra of H and g is the Lie algebra of G. Note that for
simplicity we use the same product symbol for the group and algebra. As usual
eXPyyc b X g — H x G denotes the known exponential map.



3 Flows on semidirect products of Lie groups

In this section we discuss topological conjugacy of flows on semidirect products
of Lie groups.

Recall the following concepts. Let M be a smooth manifold and X(M) the
space of smooth vector fields on M. Let X7, Xs € ¥(M) be complete vector
fields and ®; and ®, their associated flows (or dynamical systems). The flows
®; and P,, and the vector fields X, X5, are called topologically conjugate if
there exists a homeomorphism h : M — M such that h(®q(t,x)) = ®2(¢, h(z))
for all x € M and t € R, and h is called a topological conjugacy.

As in the classical case of linear autonomous differential equations here the
existence of homeomorphic fundamental domains is essential. We define a type
of fundamental domain in a general context: Consider a topological space M
and a flow ® : Rx M — M. A fundamental domain of ® is a pair (Z,7) where
Z is a subset of M and 7 : M — R is a continuous map such that for all x € M
it holds that ®(t,z) € Z if and only if ¢t = 7(x).

Let 7 : H x G — H be the canonical projection onto the Lie group H. If
Ti(h,g) = expgc(tX)(h,g) is a flow on H x G, where X = (A, B) € h x g and
(h,g) € H x G, we denote by Q the flow on H given by

Q(h) = expy (tA)h with h € H. (5)

The next result from Moskowitz and Sacksteder [I0, Theorem 3.1] describes
the flow on H xG. In this theorem, the exponential map expy,, o for a semidirect
product H x G of arbitrary connected Lie groups H and G is given by

eXpHxG(h” g) = (eXpH(h)7gg(g))7

where £F is defined as follows: Let g(t) be the solution of
9'(t) = dLy)v(t) (6)
with g(0) = eq, v(t) = exp(tD)vo and v : R — g. Define
£G 19— G, £G4 () = g(1).

where h is identified with (h,0) and hence induces a derivation D = adj on the
Lie algebra of G.

Lemma 1 For X = (A,B) € hx g, the flow Y¢(h,g) = expg,c(tX) - (h,g) on
H x G is given by

eXpthG(tX) ' (h7g) = (eXpH(tA)hagg(tB)) .

Let M and P be topological spaces and 7w : M x P — M the canonical pro-
jection, then we have the following result proved in Kawan, Rocio and Santana
[7, Corollary 4].



Lemma 2 Let M and P be topological spaces and w: M X P — M the canonical
projection. Assume that A and A% are flows on M, and A' and A% are flows
on M x P such that the diagram

MxP -2, Mxp

ﬂl lﬂ
A

commutes for every t € R. Suppose that there exist fundamental domains
(W) for the flows A* such that W is homeomorphic to W2. Then A' is
topologically conjugate to A>.

The rest of this section is an adaptation of [7, Proposition 12 and Remark
13].

Proposition 3 Consider the affine group H x G for Lie groups G and H.
Let 1 : H x G — H be the canonical projection. Take flows Yi(h,g) =
expryc(tXi)(h,g), i = 1,2, on H x G and suppose that there exist homeo-
morphic fundamental domains for the flows Q' on H as in (@ Then Y is
topologically conjugate to Y2.

Proof. Let X; = (4;,B;) € h x g for i = 1,2. By Lemma [I} we have that for
every t € R

7(Yi(h, 9)) = m(exppy (A, Bi))(h, 9)) = expp (tA)h = Qi(h) = Qi(n(h, 9)).
That is, the following diagram commutes:

HNG&HNG

H — H
Qi)
Then the proposition follows from Lemma[2 m
As a consequence we obtain the following corollary.

Corollary 4 If H is a nilpotent or abelian group, then any two flows on H x G
are topologically conjugate.

Proof. In fact, using the same notation as above, take flows Yi(h,g) =
exp(tX;)(h,g), i = 1,2, on H x G. Then Qi(h) = expy(tA;)h with h € H
are flows on H. Hence, by Section 3 in [7] there exist fundamental domains
for QF, ¢ = 1,2. Therefore, by Proposition [3|it follows that Y is topologically
conjugate to Y2, if H is nilpotent or abelian. m



Another consequence is the following result for a semisimple Lie group
H. Consider the Iwasawa decomposition H = ANK = NAK. Take X; =
(4;,B;) € hxg, but with A; € afori=1,2 or A; € nfor i = 1,2, where a and
n are the Lie algebras of A and N, respectively. Then again by Section 3 in [7]
the flows on H, Q} (h) = expy (tA;)h and Q?(h) = expy (tAs)h are topologically
conjugate. Hence, by the last proposition it follows that these flows on H x G
are topologically conjugate.

4 Skew product flows and semidirect products

In this section we generalize our discussion of topological conjugacy to skew
product flows on topological group bundles.

Consider with T = R or Z a continuous dynamical system ¥, : B — B,t € T,
on a base space B, which is a metric space, and consider the topological group
bundle H x B. Then let ®: T x H x B — H X B be a continuous map of the
form

(I)t(ha b) = (¢t(h7 b)7 {lgtb)v (7)
where the first component satisfies for all s,¢ € T and b € B,h € H
¢0(h= b) = hv ¢t+s(h7 b) = ¢t(eH,'l98b) ® ¢S(h7 b) (8)

Then one finds for s =0
¢(h,b) = d(er, b) @ ¢o(h,b) = ¢i(en,b) @ h,
and hence ¢ satisfies the cocycle property
Grts(h,b) = de(er, Vsb) @ ¢s(h,b) = dr(¢s(h, ), ¥sb) for all t, s € R.

Thus @ is a skew product system, and hence this construction provides us with a
class of continuous skew product systems on H x B, where by the associated
cocycle ¢; is compatible with the group structure on H.

Remark 5 Here and in the following we consider group bundles which are topo-
logically trivial. The results are also valid, when B is a compact metric space
and the considered group bundle is only locally trivial.

Now we will construct “affine” skew product systems ¥ on (H x G) x B
which are compatible with the group structures and with the natural actions of
H on G and of H x G on G.

Definition 6 A skewing function a : T x B — G is a continuous map satisfying
a(0,b) = e and

a(t+s,b) = di(em,9sb)*a(s,b)+a(t,9sb) = (dr(em, Isb), alt, 9sb))-a(s,b). (9)



We think of a as an inhomogeneous term. We use it to define a skew product
system ¥ on (H x G) x B. Consider, for t € T, the map ¥; defined by

U, : (HxG)x B—(HxG)x B, Uh,g,b) := (¢e(h,g,b), D)
with ¢ : (H X G) x B—H x G given by
Yi(h, g,0) := (04(h, ), di(em, )xg+ar (b)) = (91(h, b), (¢e(er; b), ar(b))-g) (10)

and ¢; given in and . Since a : T x B — G is continuous, also v :
Tx(H xG)xB—-HxGand ¥ : Tx(H x G)xB— (H x G)x B are continuous.
By condition @D the dynamical system property for ¥ or, equivalently, the
cocycle property for the first component,

¢t+s(h7gab) = wt(djs(hﬂgvb)aﬂsb) S H Dol G

holds: The left hand side is

VYivs(h, 9,0) = (¢r4s(h,b), Gris(em, b) x g + arys(b)) (11)
and the right hand side is
Vi(¥s(h, g,b),9sb)
= 1Pt((¢s(h,b), ds(em,b) x g + as(b)), Isb) (12)

(h,
= (01(ds(h, 0),9:b), dr(en, Vsb) % [ps(em, b) + g + as(b)] + ar(Vsh)).

The first components of and (i.e., the components in G) coincide.
For the second component (in H) we use the distributive law , the cocycle
property of ¢ and the defining property @ of a. It follows that

di(er,Vsb) * [ds(em,b) x g + as(b)] + ar(Isb) (13)
= ¢t(eHa ﬂsb) * ¢s(eH, b) *4g + ¢t(eH, ﬂsb) * as(b) + at(ﬁsb)
= ¢irs(em,b) x g+ ar1s(b).

Thus ¥, is given by the skew product flow ® on G x B (with base flow ¢ on B
and cocycle ¢) and the associated skewing map (the affine term)

a:Rx B— G:(tb)— a(b)

satisfying @

We illustrate the constructions above by discussing the relations to linear
and affine flows. A linear skew product flow ®,(h,b) = (¢:(h,b),9sb) on the
group bundle Gl(d,R) x B — B with H = Gl(d,R) is defined as follows. Here ®
is the matrix multiplication in Gl(d,R) and ey = I and for b € B, h € Gl(d,R)
one has ¢(en,b) = ¢r(em,b) ® h = ¢(I,b)h and

@o(h,b) = h and ¢ii5(h,b) = @+(I,95b)ps(h,b), (14)



hence

(pt+s(h7 b) - (¢t+s (ha b)7 19t+sb) = (¢t (I, ﬁsb)gﬁs(h’ b)’ 1925193[))
= ®;(¢5(h,b),9b) = (D (h, b)).

More specifically, this flow may be generated by a homogeneous bilinear control
system in Gl(d,R) of the form

X = X, u el (15)

=1

here the controls u = (u;) are taken in
U:={ue L°R,R")|u(t) € U for almost all t € R},

where U is a compact convex subset of R™. Then B = U is a metrizable weak*
compact set and the shift ¥ : Z x U x U, (t,u) — u(t + -) is continuous. Let
X.(t) be the solution of the ordinary differential equation in with initial
condition X,,(0) = I. Then one has for (h,u) € GI(d,R) x U

be(hyu) = Xo(t)h = ¢y (I, u)h. (16)

Then the corresponding skew product flow ® = (¢, ¢) on U x Gl(d,R) is con-
tinuous (see, e.g., Colonius and Kliemann [3, Theorem 9.5.5]).

We note that homogeneous bilinear control systems of special type induce
linear skew product flows for other Lie groups, e.g., on U x Sl(d, R).

Remark 7 It is well known, that the homogeneous bilinear control system
also induces a semigroup in the Lie group G1(d,R). This is an entirely different

construction.

For linear flows one takes G as the additive group R? and defines a skewing
map a by

ar(b) = /0 By (f(b, 7). 0,b)dr = /0 1r (F(b, 7). 0,b)dr,

where integration is only performed in R? (see Colonius and Santana [5, Defin-
ition 2.1 and Remark1]) and

f(b,t+s) = f(0s(b),t) for all b € B and almost all ¢,s € R.

Here ey = I4 € GI(d,R) and a(t,b) satisfies (9) (cf. [5, Proposition 1]), hence



it is indeed a skewing function:
t+s
aesll) = [ e (F0,7).00)dr
0
s t+s
— [ et 00+ [ e (0,7). 000
0 s
s t
= / Gi(1,0s—r17b)ps—r(f(b,7),0-b)dT + / 1 (f(b, T+ 5),0-15b)dT
0 0
s t
= ¢t(17 ﬁsb) / ¢s—r(f(b7 T), e‘rb)dT + / Spt—T(f(b7 T+ 5)7 er-i-sb)dT
0 0

= ¢(1,94b) */S D, (0,0, f(b,7))dT +/ 01— (f(0sb,7),0,05b)dr
0 0
= d(en, Usb) * as(b) + ar(Vsb).

Returning to the general situation, the beautiful thing is that each of the
skew product systems ® on H x B and ¥ on (H x G) x B induces a skew product
system on G x B. They are defined in the following way, beginning with the
“linear” flow ®.

Definition 8 Define the following skew product flow ®, in G x B
& : G x B — G x B, ®(g,) = (d:(9,b), 9:b)

with R R
¢t :GxB— Ga(vbt(gab) = ¢t(€H,b)*g-

This is a system of the form , where we take the trivial affine term
a(b) = eg,b € B, and omit the first component in H. One also sees that the
first component of @, is a cocycle, since

ét-&-s(g, b) = ¢rrs(em, b) x g = [pi(er,Vsb) @ ¢ps(h,b)] x g
and, using the associated law ,

G1(s(g,b),95D)) = ¢y (err,Vsb) % ds(g,b) = dr(err, 95b) * [pr (e, b) % g]
= [¢i(en,Vsb) @ dr(eq, b)] * g.
Hence @ is a skew product flow.

Also for the affine system ¥ there is an induced skew product system in
G x B.

Definition 9 Define the following skew product system Uy, t € T, in G x B
\i,t :GxB—Gx 37 @t(gab) = (/lzt(g7b)719tb)

given by

Yi(g,b) = ¢s(em,b) x g + ar(b) = (¢¢(em,b),a (b)) - g.



So this is just the G-component of 1 from and a cocycle by equality
(13).

In the remainder of this section we will be concerned with topological con-
jugations of the defined flows. We begin with the definition of topological con-
jugation of skew products flows.

Definition 10 Let T'' = (41, 91) and T? = (42,92) be skew product flows on
topological group bundles H' x B and H? x B2, respectively. We say that 't
and T'? are topologically skew conjugate, or just topologically conjugate, if there
exists a skew homeomorphism

(hg,hg): H* x B' — H* x B?

such that (hg,hg)(T}(z,b)) = I?((hg,hp)(x,b)); i.e., hg : Bt — B2 hy :
H' x B' — H? are maps with

hp(0:b)) = 92 (hp(b)) for allt € T and b € B, (17)
he (v (t,z,b),9;0) = v (t, hg(2,b), hp(b)) for allt € T,b € B, and xz € H'.
(18)

Thus topological skew conjugacy requires that the base flows are topologi-
cally conjugate via the homeomorphism hp and holds.

Our first result, concerned with topological conjugations of these flows, is a
consequence of Lemma

Proposition 11 Consider flows ® on H x B and ¥* on G x B with i = 1,2,
as defined above. Assume that there exist homeomorphic fundamental domains
for the flows ®' and ®2. Then U is topologically conjugate to W2,

Proof. Consider the following diagram

i

(HMG)XBL)(HXIG)XB

ﬂl lﬂ
Hx B A HxB

P}

where 7 : (H X G) x B — H x B is defined as w(h, g,b) = (h,b). Noting that

W(W%(h, g, b)) = ﬂ-((bé(hﬂ b)’ ¢£(6H7 b) *xg + at(b)’ 29tb)
= (¢;(h7b)719tb) = (I)i(ﬂ-(hv.%b))a

one sees that the diagram above commutes. Hence by Lemma [2] the proposition
is proved. m

Next we consider the following question in the setting above. Consider flows
®! and ®2 on H x B with homeomorphic fundamental domains. When does it
follow that the flows ®! and ®2 on G x B are topologically conjugate?



We give an affirmative answer in the case where H a Lie subgroup of a
linear Lie group G and the influence on the cocycle is trivial. This may be
expressed by taking Y : B — H such that Y (9:b) = Y (b) for all ¢ and b. Define
¢y Hx B— H as

t
Gu(h,b) = / Y (9,b)dr - h.
0
We can see that ¢.(h,b) is a cocycle and hence ®;(h,b) = (¢(h,b), ;) is a

skew product. Moreover, note that

t t
o¢(h,b) = / Y (9,b)dr - h = / Y(b)dr + h =tY(b) - h.
0 0
In this case, the action of H in G is given by the matrix product. Hence,
®,:GxB— G x B,
is given by

(i)t(gv b) = (ét(gv b)7 ﬁtb)
= (¢e(em,b) x g,9:b) = (tY () - e - g,:b)
= (tY(b) 9 ﬁtb) = ((bt(ga b)719tb)7

because H C G is a Lie subgroup. So, ® = <i>|BxH. Therefore, if we have home-

omorphic fundamental domains for ! and ®2, then ®! and 2 are topologically
conjugate. In general, the answer to the question posed in this remark depends
on the products of H and G and the action of H on G.

Now we will give conditions implying that the induced flows ¥, and ®, are
topologically conjugate. So we need to find

(ha,hg): G x B— G x B,

conjugating ¥, and ®, with hp = idg. Clearly, in this case, the only difficulty
is in the construction of hg : G x B — G which must satisfy

ha (V1(9,0), 9:b) = di(hci(g,0),b) (19)

Theorem 12 The flows ¥, and ®, are conjugate if and only if there is a con-
tinuous map b — e(b) : B — G solving the functional equation

e(9ib) = ¢i(em, b) x e(b) + ar(b) = (¢i(em, b), ar(b)) - e(b). (20)

Proof. Suppose that equation has a continuous solution e(-). It follows
that (note that G is not necessarily Abelian)

—e(hb) = —ar(b) — ¢i(emr, b) x e(b). (21)

10



Define a map hg : G X B — G as hg(g,b) := g — e(b). Then, using (3), one
computes

h (D09, ), 94b) = ha(Gulen, b) g + a (b)), 9;b)
= ¢i(em,b) x g + ar(b) — e(9:d)
= ¢¢(em,b) x g+ a(b) — ay(b) — ¢p¢(ew, b) x e(b)
= ¢u(em,b) x g — di(em,b) x e(b)
= ¢i(em,b) x g + di(em, b) x (—e(b))
= ¢i(em,b) x (g —e(b)
= ¢i(g —e(b),b)
= di(ha(b,g),b)

Therefore U, is conjugate to P,. By continuity of b — e(b) the map hg is
continuous. The continuous inverse of (hg,idg) is (hg,idp) t(g9,b) = (g9 +
e(b),b), thus this is a homeomorphism.

Conversely, suppose that ®; and ¥, are topologically conjugate with hp =
idg and hg : G x B — G. Then hg satisfies (19)) and hence for all b € B, g €
G,teT

ha(G(ern,b) g +ar(b)). 9:b) = he (i(g.),9ib) = u(hc(9.b),b)
= Guler,b) * halg.b).

Clearly, e : B — G,e(b) := hg(b, g) — g is continuous. Then the same computa-
tion as above shows that e is a solution of the functional equation which is
equivalent to (20). m

In the case of linear flows additional assumptions are necessary in order
to ensure topological conjugacy of ®; and ¥,.

Remark 13 (Linear flows) The conditions above on e(b) € G coincide with
e(b,0) € R? in the case of affine-linear flows on vector bundles, cf. [5, Theorem
2.5, in particular, assumption (iii)] (observe that here Iy € Gl(d,R) = H is the
neutral element ey ): In the proof of [3, Lemma 2.3] it is shown that

t
eww:Aww@@mwgm+wm@»

Note that x = e(b,0) and a(t,b) = fg o(t — s,0b, f(b,s))ds andeg =1 € H =
Gl(d,R). Now by (16) ¢¢(h,u) = X,(t)h, and hence

oi(em,b) xe(b) = X, (t)Ie(b,0) = X, (t)x = ¢(t,b, ),
implying, as claimed,

e(b,t) = a(t,b) + ¢¢(em,b) * e(b,0).

11



Now note that conjugacy of the flows &, and U, also implies conjugacy results
Jor affine flows: In fact, denote the topological conjugacy by ~, consider two
flows W} and W7 of the form

\ijtl(gv b) = (&tlgv b)v ﬁtb) = ((bt(h’ b)7 ¢t(eH7 b) *g+ atl(b))u
7 (v,b) := (V7 (g,b), ;) = (¢¢(h,b), den, b) * g + ai (b))

and take the corresponding linear flows CE and i)f For linear flows on
vector bundles, Ayala, Colonius and Kliemann [3, Corollary 3.4] shows that a
hyperbolicity condition implies topological conjugacy of two linear flows (with
topologically conjugate base flows). In this case i>t1 ~ <i>f Now if the hypothesis
of Theorem is valid, it also follows that i’i ~ éi and hence \i/tl ~ \if?

Next we discuss the relation of our constructions and Theorem [I2] to the
work of Lind [9] on a Splitting Theorem.

Lind considers the following situation. Let U be an invertible measure-
preserving transformation acting on a Lebesgue measure space (X, u). Let G
be a separable compact abelian group equipped with the Borel o-algebra and
Haar measure, and S be a (continuous, algebraic) automorphism of G. Let
a : X — G be measurable, called a skewing map. Since both S and translations
preserve Haar measure, the map U X, S called the skew product of U with S
on the Lebesgue space X x G defined by

(U x4 5)(x,9) := Uz, Sg + a(x))

is measurable and preserve the product of  with Haar measure.

The skew product U x, S algebraically splits if there is an isomorphism W
on X x G of the form W(z,g) = (z,9 + B(x)), where 8 : X — G is measurable
such that the conjugation relation

(Uxo S)YW =W (U x 5)
holds. This conjugation relation is equivalent to the functional equation
alz) =B(Ux) — SB(x). (22)

Thus the algebraic splitting of U X, S is equivalent to solving this equation for
a measurable function 3, where a, U and S are given. Lind’s main result ([9] p.
237]) shows that this is always possible.

Lind’s Splitting Theorem. Equation has a measurable solution 3
and hence skew products with ergodic automorphisms of compact abelian groups
algebraically split.

The relation to our results is the following. In the discrete-time situation
T = Z, one has

¥y = (91)" for n € Z.

Here U := 9 is homeomorphism on B. Thus we replace the invertible mea-
sure preserving transformation U on the Lebesgue space X in Lind [9] by the
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homeomorphism #; on the metric space B. Condition @D for the affine term
a: Z x G takes the form: For every b one has ay(b) = e¢ and

Aptm (D) = on(er, Umb) * anm (b) + an(9,b) for all n,m € Z.
and condition has the form

T;Z)n(h,gab) = (¢n(h7b)7¢n(eH,b) * g+ an(b)) for n € Z.

As observed at the end of Section [2| the element ¢1(em,b) € H induces an
automorphism ¢ on G via ((g) = ¢1(em,b) xg,9 € G. In Lind’s framework [9],
where ¥, = U, instead of (H x G) x B the space Bx G is considered and instead
of ¢1(em,b) xg,g9 € G, an automorphism S of the group G = H is taken. If we
also write o« = a; the formula

¢1(€H,b) *al(b) =+ a1(191b)

reduces to
Sa(b) + a(Ub).

Here the flows @, and ¥, coincide with ® and ¥, respectively. Alluding to
Lind’s terminology, we consider the skew product of the flow ¢ on B with the
(skew product flow) ® on B x H with skewing function o : B — G. The result
is the skew product system U =0T on BxG.

In Theorem we assume that equation has a continuous solution e,
i.e., there is a continuous map b +— e(b) : B — G with

e(9ib) = ¢i(em, b) x e(b) + ar(b) = (¢i(em, b), ar(b)) - e(b).

We get, with ¢t = 1,91 = U, a1(b) = a(b), and the automorphism S instead of
C(g9) = de(eq,b)xg,9g € G amap e : B— G = H satisying

e(Ub) = Se(b) + a(b).
Thus we look for a solution 3 = e of Lind’s functional equation
a(b) = BUD) — SB(b).

In the measure theoretic framework, the functional equation can always be
solved by a measurable map (. Lind already noted that, in general, the topo-
logical analogue of his Splitting Theorem is not valid (cf. [0, p. 238]). In the
topological framework additional assumptions are necessary, in order to get a
solution (a continuous map S or e : B — @) of Lind’s functional equation. In
the case of linear flows, a hyperbolicity assumption is needed, cf. Remark [13]

Remark 14 When we want to emphasize the dependence of U on the skewing
function a we write it, in analogy to Lind’s motation, as T =9 x, ¢. Thus
Theorem shows that the flow ¥ X, ¢ is topologically conjugate to the flow
¥ X @, i.e., it splits algebraically and topologically.
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Remark 15 The discussion of linear and affine flows shows that here a hyper-
bolicity assumption is required in order to obtain topological conjugacy of the
flows &)tl and \I’tl A similar result for more general skew product flows would
require the development of corresponding spectral theory and hyperbolicity. Of
special interest would be the case of principal fibre bundles.

5 Skew-product transformation semigroups and
fiber entropy

Let S and T be topological semigroups acting on a topological spaces X and on a
topological group (H, ®) respectively. Suppose that S contains the identity eg,
represent the actions by 01 : SXxX — X and 09 : Tx H — H with 01(s,z) = sx
and o3(t, h) = th and assume that both actions are surjective. Now we recall
the definition of skew-product transformation semigroups given in Souza [I1].
This notion is classical and there are several directions of research, for example
in control theory the study of control flows (see e.g. []) and in topological
dynamics the study of dynamics of group actions (see e.g. [0]).

In the context of the beginning of the previous section, the skew product
transformation semigroup on the product space H x X is given by

$:Sx HxX — HxX with ®(s,h,z) = ($(s,x)h, sz), (23)
where ¢ : S x X — T is a cocycle, i.e., it is continuous and satisfies
de.(x)h = h and ¢, s, (€) = ¢, (522) s, () for all 51,52 € S, € X.
We can also write
¢:Sx HxX — T with ¢5(h,x) = ¢s(x)h.
Next define the following subsemigroup of T
S ={0s, (xn)bs, ,(Tn-1)-- s, (x0) : 55 € S,x; € X,n € N},

As in Section 2| let (G, +) be a topological group, suppose that H acts on
G and take the correspondent actions defined in Section

x:HxG—Gand-: (HxG)xG—G.

Hence we define the skew product flow
U:Sx (HxG)x X—(HxG)x X, Uy(h,g,2) := (¢s(h,g,x),s2) (24)
with ¢ : (H x G) x X—H % G defined as
Vs(h, g,x) := (s (), ¢s(w)en x g + as(x)) = (¢s(2)h, (Ps(2)en, as(x)) - g),
where a : S x X — G is a continuous map (a skewing map) satisfying
ales, ) = eq and as, ., () = @s, (s27)en * a5, () + as, (527).

Now we define fundamental domains in this context.
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Definition 16 Denote by R the topological group generated by S, that is, take
R as the smallest group containing S. A fundamental domain for a skew product
transformation semigroup ® : S x H x X — H X X is a pair (Z,7) where Z is
a subset of H x X and 7 : H x X — R is a continuous map such that for all
(h,z) € H x X, it holds

O(s,(h,x)) € Z if and only if s = 7(x).

Then it is not difficult to prove the following generalization of Proposition

il

Proposition 17 Take the skew product transformation semigroups ®° and ¥?,
with i = 1,2, as defined in and . If there exist homeomorphic funda-
mental domains for ®, i = 1,2, then U is topologically conjugate to U2,

Next we briefly discuss topological entropy in this context.
Consider a continuous skew product flow ® : T x X x B — X x B of the
form denoted by
q)t(l', b) = (th(lE, b), 'l9tb)

Suppose that X and B are metric spaces and B is compact. Furthermore,
denote by Q(b),b € B, a uniformly bounded family of compact subsets of X.

Remark 18 Such a family may be viewed as an analogue to random sets in the
theory of random dynamical systems; cf. Arnold [.

Fix b € B and let T,e > 0. Define a (T, ¢)-spanning set R(T,¢) by the
following: for every « € Q(Y_rb) there is y € R with

(e (z,9_1b), iy, 9_1b) < e for t € [0,T).

Let r(T,e) the minimal cardinality of such a set and define the entropy in the
fiber over b by

(o0, Q()) 1= Timsup = In (T 2,5, Q()), (b, Q) = lim h(e, b, Q()),
T—o00 N0

and, finally,

h := supsup h(b, Q(-))
beB Q(-)

We claim that this fiber entropy is invariant under skew conjugacy (for simplic-
ity, we assume that the skew conjugacy is the identity on B).

Proposition 19 Suppose that ®' and ®? are skew conjugate and let Q*(b),b €
B be as above. Define Q*(b) := h(Q*(b),b),b € B. Then for every b € B

hinu(b7 QQ()) = hinv(b, Ql())
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Proof. We know that

h((bl (ta , b)ﬂ ﬁtb) = ¢2(t7 h(xv b)a b)

It suffices to show that every €5 > 0 there is €; > 0 such that for every T >
0 every (T,e1)-spanning set R for Q!(-) is mapped to a (T,ez)-spanning set
for Q2(-). In fact, this implies hiny (2,0, Q*(+)) < hinv(e1,b, Q()) and hence
Rinw (b, Q2(+)) < Riny(b,Q(+)); the assertion follows by interchanging the roles
of Q'(-) and Q?(-). The rest is straightforward. m
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