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1 Introduction

This paper discusses topological conjugacy for skew product �ows on topological
group bundles and semidirect products. One one hand, our results are gener-
alizations of contributions to topological conjugacy of linear and a¢ ne skew
product �ows, which were mainly motivated by bilinear control systems; see
Ayala, Colonius and Kliemann [2] and Colonius and Santana [5], as well as
Kawan, Rocio and Santana [7] for �ows on Lie groups. On the other hand,
there are close analogies to classical (and much more general) results by Lind
[9] in the framework of ergodic skew product systems and splitting theorems.
Our results may be viewed as topological versions of some of Lind�s results.
The contents of this paper is as follows: In Section 2 some basic properties

of topological groups and semidirect products are collected. Section 3 discusses
�ows on semidirect products, in particular, of Lie groups and topological con-
jugacy on theses groups. Section 4 generalizes the discussion of topological
conjugacies to skew product �ows on topological group bundles. Theorem 12
shows that topological skew conjugacy is equivalent to solvability of a certain
functional equation. It is shown that conjugacy results for linear and a¢ ne skew
product which are valid for hyperbolic systems are a special case. Furthermore
the relation to Lind�s [9] functional equation and his splitting theorem for mea-
surable conjugacy is explained. Finally, Section 5 presents an application to
skew-product transformation semigroups and �ber entropy.

2 Preliminaries

In this section we recall some notations (see, e.g., Kechris [8, Appendix I]) and
facts on automorphisms of topological groups.
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Let (H;
) and (G;+) be topological groups. Consider the following contin-
uous action given by homeomorphisms:

� : H �G! G such that �(a; b) = a ? b:

Suppose that for all h1; h2 2 H and g 2 G

eH ? g = g; (h1 
 h2) ? g = h1 ? (h2 ? g), (1)

and for all h 2 H and g1; g2 2 G

h ? eG = eG; h ? (g1 + g2) = h ? g1 + h ? g2; (2)

where eH and eG are the neutral elements of H and G, respectively. A simple
consequence is that for all h 2 H; g 2 G

h? g+h ? (�g) = h ? (g+(�g)) = h ? eG = eG; hence h ? (�g) = �(h ? g): (3)

Furthermore h induces an automorphism (i.e., an invertible topological group
homomorphism) Sh de�ned by Sh(g) := h ? g; g 2 G. The homomorphism
property is (2) and invertibility follows using (1)

(Sh�1 � Sh) (g) = Sh�1 (h ? g) = h�1?(h ? g) =
�
h�1 
 h

�
?g = eH?g = g; g 2 G:

Then the semi-direct product HoG of H with G is given by the group structure
de�ned for (h1; g1); (h2; g2) 2 H �G as

(h1; g1) � (h2; g2) = (h1 
 h2; h1 ? g2 + g1):

Note that the neutral element is (eH ; eG) and the inverse is given by (h; g)�1 =
(h�1; h�1 ?�g).
Clearly, HoG again is a topological group and there is a natural continuous

action of H oG on G given by

(h; g1) � g2 = h ? g2 + g1 for h 2 H; g1; g2 2 G: (4)

An a¢ ne automorphism of G is any map � of the form �(g) = �(g)+h, where
h is a �xed element of G and � is an automorphism of G. Any such � can be
identi�ed with the pair (�; h), � being the automorphic part of � and h = �(eG),
the translation part. If �1 = (�; h1), �2 = (�; h2) are a¢ ne automorphisms, then
�1�2 = (�1�2; �1(h1) + h2), thus the group of a¢ ne automorphisms of G can be
identi�ed with the semidirect product of the automorphism group of G with G,
where the automorphism group of G acts by evaluation on G. If now H acts
by automorphisms on G, then H oG acts by a¢ ne automorphisms on G given
by above equality (4). If H acts on G faithfully (i.e., if h ? g = g for all g, then
h = eH), then H can be viewed as a group of automorphisms of G. In this case
also H oG acts faithfully on G, hence H oG can be viewed as a group of a¢ ne
automorphisms of G.
If H and G are Lie groups, the Lie algebra of H o G is denoted by h o g,

where h is the Lie algebra of H and g is the Lie algebra of G. Note that for
simplicity we use the same product symbol for the group and algebra. As usual
expHoG : ho g! H oG denotes the known exponential map.
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3 Flows on semidirect products of Lie groups

In this section we discuss topological conjugacy of �ows on semidirect products
of Lie groups.
Recall the following concepts. Let M be a smooth manifold and X(M) the

space of smooth vector �elds on M . Let X1; X2 2 X(M) be complete vector
�elds and �1 and �2 their associated �ows (or dynamical systems). The �ows
�1 and �2, and the vector �elds X1; X2, are called topologically conjugate if
there exists a homeomorphism h : M ! M such that h(�1(t; x)) = �2(t; h(x))
for all x 2M and t 2 R, and h is called a topological conjugacy.
As in the classical case of linear autonomous di¤erential equations here the

existence of homeomorphic fundamental domains is essential. We de�ne a type
of fundamental domain in a general context: Consider a topological space M
and a �ow � : R�M �!M . A fundamental domain of � is a pair (Z; �) where
Z is a subset of M and � :M ! R is a continuous map such that for all x 2M
it holds that �(t; x) 2 Z if and only if t = �(x).
Let � : H o G ! H be the canonical projection onto the Lie group H. If

�t(h; g) = expHoG(tX)(h; g) is a �ow on HoG, where X = (A;B) 2 hog and
(h; g) 2 H oG, we denote by 
 the �ow on H given by


t(h) = expH(tA)h with h 2 H: (5)

The next result from Moskowitz and Sacksteder [10, Theorem 3.1] describes
the �ow onHoG. In this theorem, the exponential map expHoG for a semidirect
product H oG of arbitrary connected Lie groups H and G is given by

expHoG(h; g) = (expH(h); EDG (g));

where EDG is de�ned as follows: Let g(t) be the solution of

g0(t) = dLg(t)(t) (6)

with g(0) = eG, (t) = exp(tD)0 and  : R! g. De�ne

EDG : g! G; EDG (0) := g(1):

where h is identi�ed with (h; 0) and hence induces a derivation D = adh on the
Lie algebra of G.

Lemma 1 For X = (A;B) 2 ho g, the �ow �t(h; g) = expHoG(tX) � (h; g) on
H oG is given by

expHoG(tX) � (h; g) =
�
expH(tA)h; EDG (tB)

�
:

Let M and P be topological spaces and � :M � P !M the canonical pro-
jection, then we have the following result proved in Kawan, Rocio and Santana
[7, Corollary 4].
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Lemma 2 LetM and P be topological spaces and � :M�P !M the canonical
projection. Assume that e�1 and e�2 are �ows on M , and �1 and �2 are �ows
on M � P such that the diagram

M � P �it����! M � P

�

??y ??y�
M ����!e�it M

commutes for every t 2 R. Suppose that there exist fundamental domains
(fW i; e� i) for the �ows e�i such that fW 1 is homeomorphic to fW 2. Then �1 is
topologically conjugate to �2.

The rest of this section is an adaptation of [7, Proposition 12 and Remark
13].

Proposition 3 Consider the a¢ ne group H o G for Lie groups G and H.
Let � : H o G ! H be the canonical projection. Take �ows �it(h; g) =
expHoG(tXi)(h; g), i = 1; 2, on H o G and suppose that there exist homeo-
morphic fundamental domains for the �ows 
i on H as in (5). Then �1 is
topologically conjugate to �2.

Proof. Let Xi = (Ai; Bi) 2 h o g for i = 1; 2. By Lemma 1, we have that for
every t 2 R

�(�it(h; g)) = �(expHoG(t(Ai; Bi))(h; g)) = expH(tAi)h = 

i
t(h) = 


i
t(�(h; g)):

That is, the following diagram commutes:

H oG
�i
t(�)����! H oG

�

??y ??y�
H ����!


it(�)
H

Then the proposition follows from Lemma 2.
As a consequence we obtain the following corollary.

Corollary 4 If H is a nilpotent or abelian group, then any two �ows on HoG
are topologically conjugate.

Proof. In fact, using the same notation as above, take �ows �it(h; g) =
exp(tXi)(h; g), i = 1; 2, on H o G. Then 
it(h) = expH(tAi)h with h 2 H
are �ows on H. Hence, by Section 3 in [7] there exist fundamental domains
for 
i, i = 1; 2. Therefore, by Proposition 3 it follows that �1 is topologically
conjugate to �2, if H is nilpotent or abelian.
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Another consequence is the following result for a semisimple Lie group
H. Consider the Iwasawa decomposition H = ANK = NAK. Take Xi =
(Ai; Bi) 2 ho g, but with Ai 2 a for i = 1; 2 or Ai 2 n for i = 1; 2, where a and
n are the Lie algebras of A and N , respectively. Then again by Section 3 in [7]
the �ows on H, 
1t (h) = expH(tA1)h and 


2
t (h) = expH(tA2)h are topologically

conjugate. Hence, by the last proposition it follows that these �ows on H oG
are topologically conjugate.

4 Skew product �ows and semidirect products

In this section we generalize our discussion of topological conjugacy to skew
product �ows on topological group bundles.
Consider with T = R or Z a continuous dynamical system #t : B ! B; t 2 T,

on a base space B, which is a metric space, and consider the topological group
bundle H � B. Then let � : T�H � B ! H � B be a continuous map of the
form

�t(h; b) := (�t(h; b); #tb); (7)

where the �rst component satis�es for all s; t 2 T and b 2 B; h 2 H

�0(h; b) = h; �t+s(h; b) = �t(eH;#sb)
 �s(h; b): (8)

Then one �nds for s = 0

�t(h; b) = �t(eH ; b)
 �0(h; b) = �t(eH ; b)
 h;

and hence � satis�es the cocycle property

�t+s(h; b) = �t(eH ; #sb)
 �s(h; b) = �t(�s(h; b); #sb) for all t; s 2 R:

Thus � is a skew product system, and hence this construction provides us with a
class of continuous skew product systems on H�B, where by (8) the associated
cocycle �t is compatible with the group structure on H.

Remark 5 Here and in the following we consider group bundles which are topo-
logically trivial. The results are also valid, when B is a compact metric space
and the considered group bundle is only locally trivial.

Now we will construct �a¢ ne� skew product systems 	 on (H oG) � B
which are compatible with the group structures and with the natural actions of
H on G and of H oG on G.

De�nition 6 A skewing function a : T�B ! G is a continuous map satisfying
a(0; b) = eG and

a(t+s; b) = �t(eH ; #sb)?a(s; b)+a(t; #sb) = (�t(eH ; #sb); a(t; #sb))�a(s; b): (9)
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We think of a as an inhomogeneous term. We use it to de�ne a skew product
system 	 on (H oG)�B. Consider, for t 2 T, the map 	t de�ned by

	t : (H oG)�B! (H oG)�B; 	t(h; g; b) := ( t(h; g; b); #tb)

with  t : (H oG)�B!H oG given by

 t(h; g; b) := (�t(h; b); �t(eH ; b)?g+at(b)) = (�t(h; b); (�t(eH ; b); at(b))�g) (10)

and �t given in (7) and (8). Since a : T � B ! G is continuous, also  :
T�(H oG)�B!HoG and 	 : T�(H oG)�B! (H oG)�B are continuous.
By condition (9) the dynamical system property for 	 or, equivalently, the
cocycle property for the �rst component,

 t+s(h; g; b) =  t( s(h; g; b); #sb) 2 H oG

holds: The left hand side is

 t+s(h; g; b) = (�t+s(h; b); �t+s(eH ; b) ? g + at+s(b)) (11)

and the right hand side is

 t( s(h; g; b); #sb)

=  t((�s(h; b); �s(eH ; b) ? g + as(b)); #sb) (12)

= (�t(�s(h; b); #sb); �t(eH ; #sb) ? [�s(eH ; b) ? g + as(b)] + at(#sb)):

The �rst components of (11) and (12) (i.e., the components in G) coincide.
For the second component (in H) we use the distributive law (2), the cocycle
property of � and the de�ning property (9) of a. It follows that

�t(eH ; #sb) ? [�s(eH ; b) ? g + as(b)] + at(#sb) (13)

= �t(eH ; #sb) ? �s(eH ; b) ? g + �t(eH ; #sb) ? as(b) + at(#sb)

= �t+s(eH ; b) ? g + at+s(b):

Thus 	t is given by the skew product �ow � on G�B (with base �ow # on B
and cocycle �) and the associated skewing map (the a¢ ne term)

a : R�B ! G : (t; b) 7! at(b)

satisfying (9).
We illustrate the constructions above by discussing the relations to linear

and a¢ ne �ows. A linear skew product �ow �t(h; b) = (�t(h; b); #sb) on the
group bundle Gl(d;R)�B ! B with H = Gl(d;R) is de�ned as follows. Here 

is the matrix multiplication in Gl(d;R) and eH = I and for b 2 B; h 2 Gl(d;R)
one has �t(eH ; b) = �t(eH ; b)
 h = �t(I; b)h and

�0(h; b) = h and �t+s(h; b) = �t(I; #sb)�s(h; b); (14)
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hence

�t+s(h; b) = (�t+s(h; b); #t+sb) = (�t(I; #sb)�s(h; b); #t#sb)

= �t(�s(h; b); #sb) = �t(�s(h; b)):

More speci�cally, this �ow may be generated by a homogeneous bilinear control
system in Gl(d;R) of the form

_X =

"
A0 +

mX
i=1

ui(t)Ai

#
X;u 2 U ; (15)

here the controls u = (ui) are taken in

U := fu 2 L1(R;Rm) ju(t) 2 U for almost all t 2 Rg;

where U is a compact convex subset of Rm. Then B = U is a metrizable weak�
compact set and the shift # : Z � U � U ; (t; u) 7! u(t + �) is continuous. Let
Xu(t) be the solution of the ordinary di¤erential equation in (15) with initial
condition Xu(0) = I. Then one has for (h; u) 2 Gl(d;R)� U

�t(h; u) = Xu(t)h = �t(I; u)h: (16)

Then the corresponding skew product �ow � = (#; �) on U � Gl(d;R) is con-
tinuous (see, e.g., Colonius and Kliemann [3, Theorem 9.5.5]).
We note that homogeneous bilinear control systems of special type induce

linear skew product �ows for other Lie groups, e.g., on U � Sl(d;R).

Remark 7 It is well known, that the homogeneous bilinear control system (15)
also induces a semigroup in the Lie group Gl(d;R). This is an entirely di¤erent
construction.

For linear �ows one takes G as the additive group Rd and de�nes a skewing
map a by

at(b) =

Z t

0

�t�� (f(b; �); �� b)d� =

Z t

0

't�� (f(b; �); �� b)d�;

where integration is only performed in Rd (see Colonius and Santana [5, De�n-
ition 2.1 and Remark1]) and

f(b; t+ s) = f(�s(b); t) for all b 2 B and almost all t; s 2 R:

Here eH = Id 2 Gl(d;R) and a(t; b) satis�es (9) (cf. [5, Proposition 1]), hence
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it is indeed a skewing function:

at+s(b) =

Z t+s

0

't+s�� (f(b; �); �� b)d�

=

Z s

0

't+s�� (f(b; �); �� b)d� +

Z t+s

s

't+s�� (f(b; �); �� b)d�

=

Z s

0

�t(I; #s��+� b)�s�� (f(b; �); �� b)d� +

Z t

0

't�� (f(b; � + s); ��+sb)d�

= �t(I; #sb)

Z s

0

�s�� (f(b; �); �� b)d� +

Z t

0

't�� (f(b; � + s); ��+sb)d�

= �t(I; #sb) ?

Z s

0

�t�� (�� b; f(b; �))d� +

Z t

0

't�� (f(�sb; �); ���sb)d�

= �t(eH ; #sb) ? as(b) + at(#sb):

Returning to the general situation, the beautiful thing is that each of the
skew product systems � on H�B and 	 on (HoG)�B induces a skew product
system on G � B. They are de�ned in the following way, beginning with the
�linear��ow �.

De�nition 8 De�ne the following skew product �ow ~�t in G�B

~�t : G�B ! G�B; ~�t(g; b) = (~�t(g; b); #tb)

with
~�t : G�B ! G; ~�t(g; b) = �t(eH ; b) ? g:

This is a system of the form (10), where we take the trivial a¢ ne term
a(b) = eG; b 2 B, and omit the �rst component in H. One also sees that the
�rst component of ~�t is a cocycle, since

~�t+s(g; b) = �t+s(eH ; b) ? g = [�t(eH ; #sb)
 �s(h; b)] ? g

and, using the associated law (1),

~�t(~�s(g; b); #sb)) = �t(eH ; #sb) ? ~�s(g; b) = �t(eH ; #sb) ? [�t(eH ; b) ? g]

= [�t(eH ; #sb)
 �t(eH ; b)] ? g:

Hence ~� is a skew product �ow.
Also for the a¢ ne system 	 there is an induced skew product system in

G�B.

De�nition 9 De�ne the following skew product system ~	t; t 2 T, in G�B

~	t : G�B ! G�B; ~	t(g; b) := ( ~ t(g; b); #tb)

given by
~ t(g; b) = �t(eH ; b) ? g + at(b) = (�t(eH ; b); at(b)) � g:
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So this is just the G-component of  from (10) and a cocycle by equality
(13).
In the remainder of this section we will be concerned with topological con-

jugations of the de�ned �ows. We begin with the de�nition of topological con-
jugation of skew products �ows.

De�nition 10 Let �1 = (1; #1) and �2 = (2; #2) be skew product �ows on
topological group bundles H1 � B1 and H2 � B2, respectively. We say that �1

and �2 are topologically skew conjugate, or just topologically conjugate, if there
exists a skew homeomorphism

(hH ; hB) : H
1 �B1 ! H2 �B2

such that (hH ; hB)(�1t (x; b)) = �2t ((hH ; hB)(x; b)); i.e., hB : B1 ! B2; hH :
H1 �B1 ! H2 are maps with

hB(#
1
t b)) = #2t (hB(b)) for all t 2 T and b 2 B1; (17)

hH(
1(t; x; b); #1t b) = 2(t; hH(x; b); hB(b)) for all t 2 T; b 2 B1; and x 2 H1:

(18)

Thus topological skew conjugacy requires that the base �ows are topologi-
cally conjugate via the homeomorphism hB and (18) holds.
Our �rst result, concerned with topological conjugations of these �ows, is a

consequence of Lemma 2.

Proposition 11 Consider �ows �i on H �B and 	i on G�B with i = 1; 2,
as de�ned above. Assume that there exist homeomorphic fundamental domains
for the �ows �1 and �2. Then 	1 is topologically conjugate to 	2.

Proof. Consider the following diagram

(H oG)�B 	i
t����! (H oG)�B

�

??y ??y�
H �B ����!

�it

H �B

where � : (H oG)�B ! H �B is de�ned as �(h; g; b) = (h; b). Noting that

�(	it(h; g; b)) = �(�it(h; b); �
i
t(eH ; b) ? g + at(b); #tb)

= (�it(h; b); #tb) = �
i
t(�(h; g; b));

one sees that the diagram above commutes. Hence by Lemma 2 the proposition
is proved.
Next we consider the following question in the setting above. Consider �ows

�1 and �2 on H �B with homeomorphic fundamental domains. When does it
follow that the �ows ~�1 and ~�2 on G�B are topologically conjugate?
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We give an a¢ rmative answer in the case where H a Lie subgroup of a
linear Lie group G and the in�uence on the cocycle is trivial. This may be
expressed by taking Y : B ! H such that Y (#tb) = Y (b) for all t and b. De�ne
�t : H �B ! H as

�t(h; b) =

Z t

0

Y (#� b)d� � h:

We can see that �t(h; b) is a cocycle and hence �t(h; b) = (�t(h; b); #tb) is a
skew product. Moreover, note that

�t(h; b) =

Z t

0

Y (#� b)d� � h =
Z t

0

Y (b)d� + h = tY (b) � h:

In this case, the action of H in G is given by the matrix product. Hence,

~�t : G�B ! G�B;

is given by

~�t(g; b) := (~�t(g; b); #tb)

= (�t(eH ; b) ? g; #tb) = (tY (b) � eH � g; #tb)
= (tY (b) � g; #tb) = (�t(g; b); #tb);

because H � G is a Lie subgroup. So, � = ~�jB�H . Therefore, if we have home-
omorphic fundamental domains for �1 and �2, then ~�1 and ~�2 are topologically
conjugate. In general, the answer to the question posed in this remark depends
on the products of H and G and the action of H on G.
Now we will give conditions implying that the induced �ows ~	t and ~�t are

topologically conjugate. So we need to �nd

(hG; hB) : G�B ! G�B;

conjugating ~	t and ~�t with hB = idB . Clearly, in this case, the only di¢ culty
is in the construction of hG : G�B ! G which must satisfy

hG

�
~ t(g; b); #tb

�
= ~�t(hG(g; b); b) (19)

Theorem 12 The �ows ~	t and ~�t are conjugate if and only if there is a con-
tinuous map b 7! e(b) : B ! G solving the functional equation

e(#tb) = �t(eH ; b) ? e(b) + at(b) = (�t(eH ; b); at(b)) � e(b): (20)

Proof. Suppose that equation (20) has a continuous solution e(�). It follows
that (note that G is not necessarily Abelian)

�e(#tb) = �at(b)� �t(eH ; b) ? e(b): (21)
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De�ne a map hG : G � B ! G as hG(g; b) := g � e(b). Then, using (3), one
computes

hG

�
~ t(g; b); #tb

�
= hG(�t(eH ; b) ? g + at(b)); #tb)

= �t(eH ; b) ? g + at(b)� e(#tb)
= �t(eH ; b) ? g + at(b)� at(b)� �t(eH ; b) ? e(b)
= �t(eH ; b) ? g � �t(eH ; b) ? e(b)
= �t(eH ; b) ? g + �t(eH ; b) ? (�e(b))
= �t(eH ; b) ? (g � e(b))
= ~�t(g � e(b); b)
= ~�t(hG(b; g); b):

Therefore ~	t is conjugate to ~�t. By continuity of b 7! e(b) the map hG is
continuous. The continuous inverse of (hG; idB) is (hG; idB)�1(g; b) = (g +
e(b); b), thus this is a homeomorphism.
Conversely, suppose that ~�t and ~	t are topologically conjugate with hB =

idB and hG : G � B ! G. Then hG satis�es (19) and hence for all b 2 B; g 2
G; t 2 T

hG(�t(eH ; b) ? g + at(b)); #tb) = hG

�
~ t(g; b); #tb

�
= ~�t(hG(g; b); b)

= �t(eH ; b) ? hG(g; b):

Clearly, e : B ! G; e(b) := hG(b; g)� g is continuous. Then the same computa-
tion as above shows that e is a solution of the functional equation (21) which is
equivalent to (20).
In the case of linear �ows (14) additional assumptions are necessary in order

to ensure topological conjugacy of ~�t and ~	t.

Remark 13 (Linear �ows) The conditions above on e(b) 2 G coincide with
e(b; 0) 2 Rd in the case of a¢ ne-linear �ows on vector bundles, cf. [5, Theorem
2.5, in particular, assumption (iii)] (observe that here Id 2 Gl(d;R) = H is the
neutral element eH): In the proof of [5, Lemma 2.3] it is shown that

e(b; t) =

Z t

0

'(t� s; �sb; f(b; s))ds+ '(t; b; x):

Note that x = e(b; 0) and a(t; b) =
R t
0
'(t� s; �sb; f(b; s))ds and eH = I 2 H =

Gl(d;R). Now by (16) �t(h; u) = Xu(t)h, and hence

�t(eH ; b) ? e(b) = Xu(t)Ie(b; 0) = Xu(t)x = '(t; b; x);

implying, as claimed,

e(b; t) = a(t; b) + �t(eH ; b) ? e(b; 0):

11



Now note that conjugacy of the �ows ~�t and ~	t also implies conjugacy results
for a¢ ne �ows: In fact, denote the topological conjugacy by �, consider two
�ows ~	1t and ~	

2
t of the form

~	1t (g; b) := (
~ 1t g; b); #tb) = (�t(h; b); �t(eH ; b) ? g + a

1
t (b));

~	2t (v; b) := (
~ 2t (g; b); #tb) = (�t(h; b); �t(eH ; b) ? g + a

2
t (b))

and take the corresponding linear �ows ~�1t and ~�
2
t . For linear �ows (14) on

vector bundles, Ayala, Colonius and Kliemann [2, Corollary 3.4] shows that a
hyperbolicity condition implies topological conjugacy of two linear �ows (with
topologically conjugate base �ows). In this case ~�1t � ~�2t . Now if the hypothesis
of Theorem 12 is valid, it also follows that ~	it � ~�it and hence ~	

1
t � ~	2t .

Next we discuss the relation of our constructions and Theorem 12 to the
work of Lind [9] on a Splitting Theorem.
Lind considers the following situation. Let U be an invertible measure-

preserving transformation acting on a Lebesgue measure space (X;�). Let G
be a separable compact abelian group equipped with the Borel �-algebra and
Haar measure, and S be a (continuous, algebraic) automorphism of G. Let
� : X ! G be measurable, called a skewing map. Since both S and translations
preserve Haar measure, the map U �� S called the skew product of U with S
on the Lebesgue space X �G de�ned by

(U �� S) (x; g) := (Ux; Sg + �(x))

is measurable and preserve the product of � with Haar measure.
The skew product U �� S algebraically splits if there is an isomorphism W

on X �G of the form W (x; g) = (x; g + �(x)), where � : X ! G is measurable
such that the conjugation relation

(U �� S)W =W (U � S)

holds. This conjugation relation is equivalent to the functional equation

�(x) = �(Ux)� S�(x): (22)

Thus the algebraic splitting of U �� S is equivalent to solving this equation for
a measurable function �, where �;U and S are given. Lind�s main result ([9, p.
237]) shows that this is always possible.
Lind�s Splitting Theorem. Equation (22) has a measurable solution �

and hence skew products with ergodic automorphisms of compact abelian groups
algebraically split.
The relation to our results is the following. In the discrete-time situation

T = Z, one has
#n = (#1)

n for n 2 Z:
Here U := #1 is homeomorphism on B. Thus we replace the invertible mea-
sure preserving transformation U on the Lebesgue space X in Lind [9] by the

12



homeomorphism #1 on the metric space B. Condition (9) for the a¢ ne term
a : Z�G takes the form: For every b one has a0(b) = eG and

an+m(b) = �n(eH ; #mb) ? am(b) + an(#mb) for all n;m 2 Z:

and condition (10) has the form

 n(h; g; b) := (�n(h; b); �n(eH ; b) ? g + an(b)) for n 2 Z:

As observed at the end of Section 2, the element �1(eH ; b) 2 H induces an
automorphism � on G via �(g) = �1(eH ; b) ? g; g 2 G. In Lind�s framework [9],
where #1 = U , instead of (H nG)�B the space BnG is considered and instead
of �1(eH ; b) ? g; g 2 G; an automorphism S of the group G = H is taken. If we
also write � = a1 the formula

�1(eH ; b) ? a1(b) + a1(#1b)

reduces to
S�(b) + �(Ub):

Here the �ows ~�t and ~	t coincide with � and 	, respectively. Alluding to
Lind�s terminology, we consider the skew product of the �ow # on B with the
(skew product �ow) � on B �H with skewing function � : B ! G. The result
is the skew product system ~	 = 	 on B �G.
In Theorem 12, we assume that equation (20) has a continuous solution e,

i.e., there is a continuous map b 7! e(b) : B ! G with

e(#tb) = �t(eH ; b) ? e(b) + at(b) = (�t(eH ; b); at(b)) � e(b):

We get, with t = 1; #1 = U; a1(b) = �(b), and the automorphism S instead of
�(g) = �t(eH ; b) ? g; g 2 G a map e : B ! G = H satisfying

e(Ub) = Se(b) + �(b):

Thus we look for a solution � = e of Lind�s functional equation

�(b) = �(Ub)� S�(b):

In the measure theoretic framework, the functional equation can always be
solved by a measurable map �. Lind already noted that, in general, the topo-
logical analogue of his Splitting Theorem is not valid (cf. [9, p. 238]). In the
topological framework additional assumptions are necessary, in order to get a
solution (a continuous map � or e : B ! G) of Lind�s functional equation. In
the case of linear �ows, a hyperbolicity assumption is needed, cf. Remark 13.

Remark 14 When we want to emphasize the dependence of ~	 on the skewing
function a we write it, in analogy to Lind�s notation, as ~	 = # �a �. Thus
Theorem 12 shows that the �ow # �a � is topologically conjugate to the �ow
#� �, i.e., it splits algebraically and topologically.
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Remark 15 The discussion of linear and a¢ ne �ows shows that here a hyper-
bolicity assumption is required in order to obtain topological conjugacy of the
�ows ~�1t and ~	

1
t . A similar result for more general skew product �ows would

require the development of corresponding spectral theory and hyperbolicity. Of
special interest would be the case of principal �bre bundles.

5 Skew-product transformation semigroups and
�ber entropy

Let S and T be topological semigroups acting on a topological spacesX and on a
topological group (H;
) respectively. Suppose that S contains the identity eS ,
represent the actions by �1 : S�X ! X and �2 : T�H ! H with �1(s; x) = sx
and �2(t; h) = th and assume that both actions are surjective. Now we recall
the de�nition of skew-product transformation semigroups given in Souza [11].
This notion is classical and there are several directions of research, for example
in control theory the study of control �ows (see e.g. [4]) and in topological
dynamics the study of dynamics of group actions (see e.g. [6]).
In the context of the beginning of the previous section, the skew product

transformation semigroup on the product space H �X is given by

� : S �H �X ! H �X with �(s; h; x) = (�(s; x)h; sx); (23)

where � : S �X ! T is a cocycle, i.e., it is continuous and satis�es

�es(x)h = h and �s1s2(x) = �s1(s2x)�s2(x) for all s1; s2 2 S; x 2 X:

We can also write

� : S �H �X ! T with �s(h; x) = �s(x)h:

Next de�ne the following subsemigroup of T :

S = f�sn(xn)�sn�1(xn�1) � � ��s0(x0) : sj 2 S; xj 2 X;n 2 Ng:

As in Section 2, let (G;+) be a topological group, suppose that H acts on
G and take the correspondent actions de�ned in Section 2:

? : H �G! G and � : (H oG)�G! G:

Hence we de�ne the skew product �ow

	 : S � (H oG)�X! (H oG)�X; 	s(h; g; x) := ( s(h; g; x); sx) (24)

with  s : (H oG)�X!H oG de�ned as

 s(h; g; x) := (�s(x)h; �s(x)eH ? g + as(x)) = (�s(x)h; (�s(x)eH ; as(x)) � g);

where a : S �X ! G is a continuous map (a skewing map) satisfying

a(eS ; x) = eG and as1�s2(x) = �s1(s2x)eH ? as2(x) + as1(s2x):

Now we de�ne fundamental domains in this context.
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De�nition 16 Denote by R the topological group generated by S, that is, take
R as the smallest group containing S. A fundamental domain for a skew product
transformation semigroup � : S �H �X ! H �X is a pair (Z; �) where Z is
a subset of H � X and � : H � X ! R is a continuous map such that for all
(h; x) 2 H �X, it holds

�(s; (h; x)) 2 Z if and only if s = �(x):

Then it is not di¢ cult to prove the following generalization of Proposition
11.

Proposition 17 Take the skew product transformation semigroups �i and 	i,
with i = 1; 2, as de�ned in (23) and (24). If there exist homeomorphic funda-
mental domains for �i, i = 1; 2, then 	1 is topologically conjugate to 	2.

Next we brie�y discuss topological entropy in this context.
Consider a continuous skew product �ow � : T � X � B ! X � B of the

form (7) denoted by
�t(x; b) := (�t(x; b); #tb):

Suppose that X and B are metric spaces and B is compact. Furthermore,
denote by Q(b); b 2 B, a uniformly bounded family of compact subsets of X.

Remark 18 Such a family may be viewed as an analogue to random sets in the
theory of random dynamical systems; cf. Arnold [1].

Fix b 2 B and let T; " > 0. De�ne a (T; ")-spanning set R(T; ") by the
following: for every x 2 Q(#�T b) there is y 2 R with

d(�t(x; #�T b); �t(y; #�T b) < " for t 2 [0; T ]:

Let r(T; ") the minimal cardinality of such a set and de�ne the entropy in the
�ber over b by

h("; b;Q(�)) := lim sup
T!1

1

T
ln r(T; "; b;Q(�)); h(b;Q(�)) := lim

"&0
h("; b;Q(�));

and, �nally,
h := sup

b2B
sup
Q(�)

h(b;Q(�))

We claim that this �ber entropy is invariant under skew conjugacy (for simplic-
ity, we assume that the skew conjugacy is the identity on B).

Proposition 19 Suppose that �1 and �2 are skew conjugate and let Q1(b); b 2
B be as above. De�ne Q2(b) := h(Q1(b); b); b 2 B. Then for every b 2 B

hinv(b;Q
2(�)) = hinv(b;Q

1(�)):
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Proof. We know that

h(�1(t; x; b); #tb) = �2(t; h(x; b); b):

It su¢ ces to show that every "2 > 0 there is "1 > 0 such that for every T >
0 every (T; "1)-spanning set R for Q1(�) is mapped to a (T; "2)-spanning set
for Q2(�). In fact, this implies hinv("2; b;Q2(�)) � hinv("1; b;Q

1(�)) and hence
hinv(b;Q

2(�)) � hinv(b;Q
1(�)); the assertion follows by interchanging the roles

of Q1(�) and Q2(�). The rest is straightforward.
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