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1 Introduction

This paper discusses the following problem: Given a controlled invariant subspace V
of a linear control system, what is the minimal amount of information per unit time
(measured via an entropy notion) that has to be transferred to a controller in order to
keep the system in or near V ? This problem connects the analysis of control under
communication constraints to classical geometric control theory. It was motivated by
earlier investigations on invariance entropy (Colonius and Kawan [4]) for a similar
problem, concerning controlled invariance of compact subsets with nonvoid interior
in the state space where geometric structures did not play a role. The joint paper
Colonius and Helmke [3] presented an important insight-the associated entropy for
controlled invariant subspaces coincides with the subspace entropy of the linear flow
associated with the uncontrolled system. The latter entropy notion was introduced in
this paper and several estimates were derived. The present paper extends this line of
research by giving a closer analysis of the subspace entropy.

Since the notion of controlled invariant subspaces is a cornerstone of geometric
control theory, it is hoped that this will contribute to a closer connection of the theory
of control under communication constraints to the more classical parts of state space
control theory.

The contents of this paper is as follows: Section 2 collects results on topological
entropy of linear differential equations and defines subspace entropy. Section 3
defines entropy for controlled invariant subspaces and explains the equivalence to
subspace entropy. Final Section 4 presents the main results of this paper by analyzing
the subspace entropy. It is shown that the subspace entropy is bounded above by the
topological entropy of an induced system; a sufficient condition for equality is given
which leads to a characterization of the subspace entropy (and hence the invariance
entropy) by certain positive eigenvalues of the uncontrolled system.

This problem grew out of a discussion with Uwe, when we returned from a meeting of
the DFG Priority Research Program 1305 “Control of Digitally Connected Dynamical
Systems”. The successful application for funding of this research initiative by
Deutsche Forschungsgemeinschaft (DFG) owes a lot to Uwe’s broad knowledge, his
many fruitful ideas, and his vigor.

Notation. The distance of a point x in a normed vector space to a closed subset M is
defined by dist(x,M) ∶= infy∈M ∥x−y∥.
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2 Topological entropy and subspace entropy
In this section we first recall results on topological entropy of the flow for a linear
differential equations. Then the subspace entropy is defined which is a suitable
modification of the topological entropy. Later we will use it for the uncontrolled
system ẋ = Ax and relate it to the entropy of controlled invariant subspaces. It is
worth to emphasize that an open loop control system does not define a flow, since
the control functions u(⋅) are time-dependent, and hence it is not covered by this
definition.
For a linear map A ∶ X → X on an n-dimensional normed vector space X , let Φ ∶
R×X →X ,Φ(t,x) ∶= etAx, t ∈R, x ∈X , be the induced flow (actually, throughout
this paper, only the semiflow defined for t ≥ 0 will be relevant.) A set R in X is called(T,ε)-spanning if for every x ∈K there is y ∈ R such that for all t ∈ [0,T ] one has

∥Φ(t,x)−Φ(t,y)∥ = ∥etA(x−y∥ < ε.

Denote by rtop(T,ε,K) the minimal cardinality of such a (T,ε,K)-spanning set.

Definition 1. With the notation above, the topological entropy of Φ with respect to
K is defined by

htop(ε,K) ∶= limsup
T→∞

1
T

logrtop(T,ε,K),
htop(K) ∶= lim

ε↘0
htop(ε,K).

and the topological entropy with respect to a subspace V of X is

htop(V) = sup
K⊂V

htop(K),
where the supremum is taken over all compact subsets K ⊂V .

Where appropriate, we also write htop(V ;Φ), if the considered flow has to be specified.
For the topological entropy of linear flows and V =X , a classical result by R. Bowen
[2] shows

htop(X ) ∶= sup
K

htop(K) = n∑
i=1

max(0,Reλi),
where λ1, ...,λn denote the eigenvalues of A; see also Walters [11, Theorem 8.14] and
Matveev and Savkin [8, Theorem 2.4.2] for proofs. The supremum is attained for
any compact set K with nonvoid interior in X .
Since all norms on X are equivalent, we may assume that X is a Hilbert space and
we endow X with the following inner product which is adapted to the decomposition
into the Lyapunov spaces L j,1 ≤ j ≤ l. Recall that a Lyapunov space L j is the sum of
all generalized (real) eigenspaces corresponding to an eigenvalue of A with real part
equal to λ j. We order these Lyapunov exponents such that

λ1 > ... > λl .

76



F. Colonius Festschrift in Honor of Uwe Helmke

Take a basis corresponding to the Jordan normal form: for each j, one has a basis
e j

1, . . . ,e
j
n j of L j which is orthonormal with respect to an inner product in L j. Define

⟨e j1
i1
,e j2

i2
⟩ = { 0 for j1 /= j2 or i1 /= i2

1 for j1 = j2 and i1 = i2.
(1)

In order to simplify the notation a bit, we number the basis elements by 1, . . . ,n and
denote them by x j. They form an orthonormal basis for an inner product on X . Recall
that we can identify the Grassmannian manifoldGkX of k-dimensional subspaces
with the subset of projective space P(⋀kX ) obtained from the indecomposable
elements in the exterior product ⋀kX . We endow GkX with the corresponding
metric.
Following Colonius, San Martin, da Silva [6] we first describe the chain recurrent
components in the Grassmannian; see, e.g., Robinson [9] for a discussion of this
notion for flows on compact metric spaces.

Theorem 2. Let A ∶X →X be a linear map with flow Φt = etA onX . Let Li, i= 1, . . . , l,
be the Lyapunov spaces of A. For k ∈ {1, . . . ,n} define the index set

I(k) = {(k1, . . . ,kl)∣ k1+ . . .+kl = k and 0 ≤ ki ≤ ni = dimLi} . (2)

Then the chain recurrent components (also called Morse sets) of the induced flow on
the GrassmannianGkX are

Mk
k1,...,kl

=Gk1L1⊕ . . .⊕Gkl Ll , (k1, . . . ,kl) ∈ I(k). (3)

Here the sum on the right-hand side denotes the set of all k-dimensional subspaces
V k ⊂X with

dim(V k ∩Li) = ki, i = 1, . . . , l.

In particular, every ω-limit set for the induced flow onGkX is contained in one of
these chain recurrent components.

If A is hyperbolic, i.e., there are no eigenvalues of A on the imaginary axis, then one
can decompose X into the stable and the unstable subspaces, X = X −⊕X +. We
denote by π

± the projection of X to X ± and let Φ
± be the associated restrictions of

Φ.

Theorem 3. Consider a linear flow Φt = etA and assume that A is hyperbolic. Let V
be a k-dimensional subspace. Then the topological entropy with respect to a compact
set K ⊂V satisfies

htop(K,Φ) = htop(π
+K,Φ+).

and the topological entropy of V is

htop(V,Φ) = l∑
i=1

ki max(0,λi),
whereMk

k1,...,kl
⊂GkX is the Morse set that contains the omega limit of the point

V for the induced flowGkΦ on the k-GrassmannianGkX . Furthermore, for every
compact subset K ⊂V with nonvoid interior, htop(K;Φ) equals the volume growth
rate of π

+K under the flow Φ
+.
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We note that the Morse set containing the omega limit of V can be determined in the
following way. Let v1, ...,vk be a basis of V . Then we can express the vi using the
standard basis of X as introduced in (1) by

vi = αi1x1+ ... +αinxn = ∑
αi j /=0

αi jx j.

There is a minimal number of Lyapunov spaces such that

V ⊂ Li1 ⊕ ...⊕Li j ,

and we number them such that λi1 > ... > λi j . Note that generically ∑dimLi j > k.
Then ω(V) is contained in the Morse set Mk

k1,...,kl
, where the ki are recursively

obtained in the following way: k1 is the maximal number of base vectors vi which
have a nontrivial component in L1. Then eliminate these base vectors vi and let k2 be
the maximal number of the remaining vi which have a nontrivial component in L2,
etc.
Next we modify the definition of topological entropy in order to define the subspace
entropy introduced in Colonius and Helmke [3]. Let V be a linear subspace of X and
consider a linear map A ∶X →X with flow Φt = etA. For any compact subset K ⊂V
and for given T,ε > 0 we call R ⊂K a (T,ε)-spanning set, if for all x ∈K there exists
y ∈ R with

max
0≤t≤T

dist(etA(x−y),V) < ε. (4)

Let rsub(T,ε,K,V) denote the minimal cardinality of a such a (T,ε)-spanning set.
If no finite (T,ε)-spanning set exists, we set rsub(T,ε,K,V ;Φ) =∞. If there exists
some (T,ε)-spanning set, then one also finds a finite (T,ε)-spanning set using
compactness of K and continuous dependence on the initial value. Note that the
points y in R will, in general, not lead to solutions etAy which remain for all t ≥ 0 in
the ε-neighborhood of V .

Definition 4. Let A be a linear map on X with associated flow Φt = etA and consider
a subspace V of X . For a compact subset K ⊂V, we consider the exponential growth
rate of rsub(T,ε,K,V) and set

hsub(ε,K,V) ∶= limsup
T→∞

1
T

logrsub(T,ε,K,V),
hsub(K,V) ∶= lim

ε↘0
hsub(ε,K,V),

and define the entropy of V with respect to Φ by

hsub(V) ∶= sup
K

hsub(K,V),
where the supremum is taken over all compact subsets K ⊂V .

Where appropriate, we write hsub(V ;Φ) in order to clarify which flow is consid-
ered. As usual in the context of topological entropy, one sees that, by monotonicity,
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the limit for ε ↘ 0 exists (it might be infinite.) Since all norms on a finite dimen-
sional vector space are equivalent, the entropy does not depend on the norm used
in (4). For simplicity, we require throughout that X is a Hilbert space. One eas-
ily sees that the subspace entropy h(V ;Φ) is invariant under state space similarity,
i.e., h(SV ;SΦS−1) = h(V ;Φ) for S in the set GL(X ) of isomorphisms on X ; here
SΦtS−1 = SetAS−1 = eSAS−1t ,t ≥ 0.

Remark 5. If we choose V = {0} condition (4) is trivial, since only K = {0} is
allowed; furthermore, if we choose V =X , the distance in (4) is always equal to zero.
In particular, the subspace entropy does not recover the usual definition of topological
entropy for the linear flow Φ(t,x) = etAx; see Definition 1.

3 Entropy for controlled invariant subspaces
This section briefly summarize some well-known definitions and facts concerning
controlled invariant subspaces. Then invariance entropy for controlled invariant
subspaces of linear control systems on X is defined and related to the subspace
entropy of linear flows as defined in the previous section.
The notion of controlled invariant subspaces (also called (A,B)–invariant subspaces)
was introduced by Basile and Marro [1]; see the monographs Wonham [12] and
Trentelman, Stoorvogel and Hautus [10] for expositions of the theory.
Consider linear control systems in state space form

ẋ(t) = Ax(t)+Bu(t) (5)

with linear maps A ∶X →X and B ∶Rm→X , where X is an n-dimensional normed
vector space. The solutions ϕ(t,x,u),t ≥ 0, of (5) with initial condition ϕ(0,x,u) = x
are given by the variation-of-constants formula

ϕ(t,x,u) = etAx+∫ t

0
eA(t−s)Bu(s)ds.

Recall that a subspace V is called controlled invariant, if for all x ∈V there is u ∈Rm

with Ax+Bu ∈V , i.e., if AV ⊂V +ImB. Equivalently, there is a linear map F ∶X →Rm,
called a friend of V , such that

(A+BF)V ⊂V.

This also shows that V is controlled invariant iff for every x ∈V there is an (open
loop) continuous control function u ∶ [0,∞)→Rm with ϕ(t,x,u) ∈V for all t ≥ 0. In
fact, differentiating the solution one finds

V ∋ d
dt

ϕ(0,x,u) = Ax+Bu(0).
For the converse, define for x ∈V a control by u(t) = Fe(A+BF)tx,t ≥ 0.

We now introduce the central notion of this paper, invariance entropy for controlled
invariant subspaces of linear control system (5) and relate it to the subspace entropy
defined in the previous section.
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In the following, we consider a fixed controlled invariant subspace V of X with
dimV = k. Furthermore, we admit arbitrary controls in the space C([0,∞),Rm) of
continuous functions u ∶ [0,∞)→Rm.

Definition 6. For a compact subset K ⊂V and for given T,ε > 0 we call a set R ⊂
C([0,∞),Rm) of control functions (T,ε)-spanning if for all x0 ∈ K there is u ∈R
with

dist(ϕ(t,x0,u),V) < ε for all t ∈ [0,T ]. (6)

By rinv(T,ε,K,V) we denote the minimal cardinality of such a (T,ε)-spanning set.
If no finite (T,ε)-spanning set exists, we set rinv(T,ε,K,V) =∞.

In other words, we require for a (T,ε)-spanning set R that, for every initial value
in K, there is a control in R such that up to time T the trajectory remains in the
ε-neighborhood of V . Note that, in contrast to the definitions of topological entropy
and subspace entropy for flows, Definition 4, here a number of control functions is
counted, not a number of initial values. Hence this notion is intrinsic for control
systems.
The following elementary observation shows that one cannot require that there are
finitely many control functions u such that instead of (6) one has ϕ(t,x0,u) ∈V for
all t ∈ [0,T ]. Hence the invariance condition has to be relaxed as indicated above
using ε > 0.

Proposition 7. Let V be a controlled invariant subspace. Furthermore, consider a
neighborhood K of the origin in V , let T > 0, and suppose that there is v ∈V with
eAT v /∈V . Then there is no finite setR of controls such that for every x0 ∈K there is
u ∈R with ϕ(t,x0,u) ∈V for all t ∈ [0,T ].
Proof. We may assume that γv ∈ K for all γ ∈ (0,1)̇. The proof is by contradiction.
Suppose thatR = {u1, ...,ur} is a finite set of controls such that for every x0 ∈V there
is a control u j inR with ϕ(T,x0,u j) ∈V . There is a control inR, say u1, with

ϕ(T,v,u1) = eTAv+∫ T

0
e(T−s)ABu1(s)ds ∈V.

Since eTAv /∈V , it follows that

ϕ(T,0,u1) = ∫ T

0
e(T−s)ABu1(s)ds /∈V.

We find for γ ∈ (0,1)
ϕ(T,γv,u1) = γ [eTAv+∫ T

0
e(T−s)ABu1(s)ds]+(1− γ)∫ T

0
e(T−s)ABu1(s)ds

= γϕ(T,v,u1)+(1− γ)ϕ(T,0,u1).
This implies ϕ(T,γv,u1) /∈V for all γ ∈ (0,1). Choose γ1 ∈ (0,1) and let v1 ∶= γ1v.
There is a control inR, say u2 /= u1, such that ϕ(T,v1,u2) ∈V . Iterating the arguments
above one arrives at a contradiction.
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On the other hand, there are always finite (T,ε)-spanning sets of controls as shown
by the following remark.
Remark 8. Let K ⊂V be compact and ε,T > 0. By controlled invariance of V there is
for every x ∈K ⊂V a control function u with ϕ(t,x,u) ∈V for all t ≥ 0. Hence, using
continuous dependence on initial values and compactness of K, one finds finitely
many controls u1, ...,ur such that for every x ∈K there is u j with dist(ϕ(t,x,u j),V)< ε

for all t ∈ [0,T ]. Hence rinv(T,ε,K,V) <∞.

Now we consider the exponential growth rate of rinv(T,ε,K,V) as in Definition 6
for T →∞ and let ε → 0. The resulting invariance entropy is the main subject of the
present paper.

Definition 9. Let V be a controlled invariant subspace for a control system of the
form (5). Then, for a compact subset K ⊂V , the invariance entropy hinv(K,V) is
defined by

hinv(ε,K,V) ∶= limsup
T→∞

1
T

logrinv(T,ε,K,V),
hinv(K,V) ∶= lim

ε↘0
hinv(ε,K,V).

Finally, the invariance entropy of V is defined by

hinv(V ;A,B) ∶= supKhinv(K,V),
where the supremum is taken over all compact subsets K ⊂V .

In the sequel, we will use the shorthand notation hinv(V) for hinv(V ;A,B), when it
is clear which control system is considered. Note that hinv(ε1,K,V) ≤ hinv(ε2,K,V)
for ε2 ≤ ε1. Hence the limit for ε → 0 exists (it might be infinite.) Since all norms
on finite dimensional vector spaces are equivalent, the invariance entropy of V is
independent of the chosen norm. We will show later that every controlled invariant
subspace has finite invariance entropy. It is clear by inspection, that, as the subspace
entropy hsub(V), also the invariance entropy hinv(V) is invariant under state space
similarity; i.e. hinv(SV ;SAS−1,SB) = hinv(V ;A,B) for S ∈GL(X ).
We are interested in the problem to keep the system in the subspace V for all t ≥ 0.
Then the exponential growth rate of the required number of control functions will
give information on the difficulty of this task. A motivation to consider open-loop
controls in this context comes, in particular, from model predictive control (see, e.g.,
Grüne and Pannek [7]), where optimal open-loop controls are computed and applied
on short time intervals.
The following theorem (taken from Colonius and Helmke [3]) shows that the entropy
of a controlled invariant subspace V can be characterized by the entropy of V for
the corresponding uncontrolled system ẋ = Ax. This result will be useful in order to
compute entropy bounds.

Theorem 10. Let V be a controlled invariant subspace for system (5) and consider
the invariance entropy hinv(V) of control system (5) and the subspace entropy hsub(V)
of V of the uncontrolled system Φt = etA. Then

hinv(V) = hsub(V ;Φ).
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Proof. (i) Let K ⊂V be compact, and fix T,ε > 0. Consider a (T,ε,K,V)-spanning
set R = {u1, ...,ur} of controls with minimal cardinality r = rinv(T,ε,K,V). This
means that for every x ∈K there is u j with

dist(ϕ(t,x,u j),V) < ε for all t ∈ [0,T ].
By minimality, we can for every u j pick x j ∈ K with dist(ϕ(t,x j,u j),V) < ε for all
t ∈ [0,T ]. Then, using linearity, one finds for all x ∈K a control u j and a point x j ∈K
such that for all t ∈ [0,T ]

dist(etAx−etAx j,V) = dist(ϕ(t,x,u j)−ϕ(t,x j,u j),V) < 2ε.

This shows that the points x j form a (T,2ε)-spanning set for the subspace entropy,
and hence

rinv(T,ε,K,V) ≥ rsub(T,2ε,K,V).
Letting T tend to infinity, then ε → 0 and, finally, taking the supremum over all
compact subsets K ⊂V , one obtains hinv(V) ≥ hsub(V).

(ii) For the converse inequality, let K be a compact subset of V and T,ε > 0. Let
E = {x1, . . . ,xr} ⊂K be a minimal (T,ε)-spanning set for the subspace entropy which
means that for all x ∈ K there is j ∈ {1, . . . ,r},r = rsub(T,ε,K,V), such that for all
t ∈ [0,T ]

dist(etAx−etAx j,V) = inf
z∈V ∥etAx−etAx j − z∥ < ε.

Since V is controlled invariant, we can assign to each x j, j ∈ {1, . . . ,r}, a control func-
tion u j ∈C([0,∞),Rm) such that ϕ(t,x j,u j) ∈V for all t ≥ 0. Let R ∶= {u1, . . . ,ur}.
Using linearity we obtain that for every x ∈K there is j such that for all t ∈ [0,T ]

dist(ϕ(t,x,u j)−ϕ(t,x j,u j),V) = dist(etAx−etAx j,V) < ε.

Since ϕ(t,x j,u j) ∈V for t ∈ [0,T ], it follows that

dist(ϕ(t,x,u j),V) = inf
z∈V ∥ϕ(t,x,u j)− z∥

≤ ∥ϕ(t,x,u j)−ϕ(t,x j,u j)∥ < ε.

Thus for every x ∈K there is u j ∈R such that for all t ∈ [0,T ] one has dist(ϕ(t,x,u j),
V) < ε . HenceR is (T,ε)-spanning for the invariance entropy and it follows that

rinv(T,ε,K,V) ≤ rsub(T,ε,K,V) for all T,ε > 0,

and consequently hinv(K,V) ≤ hsub(V ;Φ).

In view of this theorem, we will look more closely at the subspace entropy.
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4 Analysis of the subspace entropy
This section presents an analysis of the subspace entropy. The main result is Theorem
20 which shows that the subspace entropy is bounded above by the topological
entropy of an induced system; a sufficient condition for equality is given which leads
to a characterization of the subspace entropy (and hence the invariance entropy) by
certain positive eigenvalues of the uncontrolled system.
First we describe the behavior of the subspace entropy under a semiconjugacy to the
induced flow on a quotient space.

Proposition 11. Let W be an A-invariant subspace for a linear map A on X . Then,
for a subspace V of X the subspace entropies of the flow Φt = etA on X and the
induced flow Φ̄t on the quotient space X /W, respectively, satisfy

hsub(V,Φ) ≥ hsub(V /W,Φ̄).
Proof. Let K ⊂V be compact and for T,ε > 0 consider a (T,ε,K,V ;Φ)-spanning set
R ⊂K. Denote the projection of X to X /W by π , hence πV =V /W . Then the set πR
is (T,ε)-spanning for πK ⊂ πV with respect to the flow Φ̄. In fact, let R = {x1, ...,xr}
and consider πx ∈ πK for some element x ∈K. Then there exists x j ∈ R with

max
0≤t≤T

dist(etA(x−x j),V) < ε.

Denoting the map induced by A on X /W by Ā one finds for all t ∈ [0,T ]
dist(etĀ(πx−πx j),πV) = inf

z∈V ∥etĀ(πx−πx j)−πz∥
= inf

z∈V,w∈W ∥etA(x−x j)− z−w∥
≤ dist(etA(x−x j),V) < ε.

It follows that the minimal cardinality rsub(T,ε,K,V) for Φ is greater than or equal
to the minimal cardinality rsub(T,ε,πK,πV) for Φ̄. Then take the limit superior for
T →∞ and let ε tend to 0. Finally, observe that for every compact set K1 ⊂V /W
there is a compact set K ⊂V with πK = K1. Hence taking the supremum over all
compact K1 ⊂V /W one obtains the assertion.

Note that the map A does not induce a map on the quotient space X /V , since we are
interested in the case where V is not invariant. Nevertheless, condition (4) determines
a distance in X /V .
Next we show that we may assume that all eigenvalues of A have positive real part.
DecomposeX into the center-stable and the unstable subspaces,X =X −,0⊕X +. ThusX −,0 is the sum of all real generalized eigenspaces corresponding to eigenvalues
with nonpositive real part and X + is the sum of all real generalized eigenspaces
corresponding to eigenvalues with positive real part. We denote the corresponding
projections of X by π

−,0 and π
+, respectively, and let Φ

0,− and Φ
+ be the associated

restrictions of Φ.
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Proposition 12. Let V be a subspace ofX . Then the subspace entropy Φ with respect
to V and of Φ

+ with respect to π
+V coincide.

Proof. Decompose Φ into Φ
0,− and Φ

+. The restriction Φ
0,− to the center-stable

subspace has the property, that for a polynomial p(t)
∥Φ

0,−
t (x−y)∥ ≤ p(t)∥x−y∥ ,

hence the subspace entropy here vanishes. Furthermore, the product of spanning sets
for the stable and the unstable part yields spanning sets for the total system, hence

hsub(V,Φ) ≤ hsub(V,Φ+)+hsub(V,Φ0,−) = hsub(V,Φ+).
and clearly, hsub(V,Φ+) ≤ hsub(V,Φ).

Next we show that the subspace entropy is bounded above by the topological entropy
of V .

Proposition 13. Let V be a subspace of X . Then the topological entropy of V and
the subspace entropy of V satisfy hsub(V) ≤ htop(V).

Proof. Let K ⊂ V be compact and for T,ε > 0 consider a (T,ε)-spanning set R ={x1, ...,xr} ⊂K with minimal cardinality r = rtop(T,ε,K). For every x ∈K there exists
x j ∈ R such that for all t ∈ [0,T ]

∥etA(x−x j)∥ < ε.

Then one finds for all t ∈ [0,T ]
dist(etA(x−x j),V) = inf

v∈V ∥etA(x−x j)−v∥ ≤ ∥etA(x−x j)∥ < ε.

It follows that the minimal cardinality rtop(T,ε,K) for the topological entropy is
greater than or equal to the minimal cardinality rsub(T,ε,K,V) for the subspace
entropy. Then take the limit superior for T →∞ and let ε tend to 0. Finally, take the
supremum over all compact sets K ⊂V .

The next proposition shows that only part of the state space X is relevant for the
subspace entropy.

Proposition 14. Let V ⊂X be a subspace. Then the subspace entropies of V as a
subspace of X and of the smallest A-invariant subspace ⟨A∣V ⟩ containing V coincide.

Proof. Let K ⊂ V be compact and consider T,ε > 0. Let R ⊂ K in X be a (T,ε)-
spanning set for the system in X . Thus for every x ∈K there exists y ∈ R with

max
0≤t≤T

dist(etA(x−y),V) < ε.

Since etA(x−y) ∈ ⟨A∣V ⟩, it follows that R is also a (T,ε)-spanning set for the system
in ⟨A∣V ⟩. The converse is obvious.
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Hence it suffices to consider the system in ⟨A∣V ⟩. Next we show that we can also
neglect the largest A-invariant subspace of V , denoted by ker(A;V). We denote the
projection by

π ∶ ⟨A∣V ⟩→ ⟨A∣V ⟩/ker(A;V)
and hence V /ker(A;V) = πV . The linear map A induces a linear map Ā on the
quotient space ⟨A∣V ⟩/ker(A;V) and we let πΦ(t, x̄) ∶= eĀt x̄,t ∈R, x̄ ∈ πV . Note that
for all subspaces W ⊂V with AW ⊂W it follows that W ⊂ ker(A;V). Hence for a
subspace πW ⊂πV with Ā(πW)=AW +ker(A;V)⊂πW =W +ker(A;V) the subspace
W +ker(A;V)⊂V +ker(A;V)⊂V is an A-invariant subspace of V and hence contained
in ker(A;V).

Proposition 15. The subspace entropies of Φ with respect to V and of πΦ with
respect to V /ker(A;V) coincide,

hsub(V ;Φ) = hsub(πV ;πΦ).
Proof. By Proposition 11, the inequality hsub(V ;Φ) ≥ hsub(πV ;πΦ) follows. For the
converse, let K be a compact subset of V . Then, for the projection π of ⟨A∣V ⟩ to the
quotient space ⟨A∣V ⟩/ker(A;V), the set πK is compact and πV =V +ker(A;V). Let
T,ε > 0 be given and denote by E ⊂ πK a minimal (T,ε,πK,πV ;πΦ)-spanning set
with respect to the flow πΦ on ⟨A∣V ⟩/ker(A;V), say E = {πx1, . . . ,πxr} with x j ∈K
and r = rsub(T,ε,πK,πV). Note that V +ker(A;V) =V . Hence it follows that for all
x ∈K there is j ∈ {1, . . . ,r} such that for all t ∈ [0,T ]

inf
z∈V ∥etAx−etAx j − z∥ = dist(etAx−etAx j,V +ker(A;V))

= dist(eĀt
πx−eĀt

πx j,πV) < ε.

We have shown that the set {x1, . . . ,xr} ⊂ K is (T,ε)-spanning for Φ and hence the
minimal cardinality rsub(T,ε,K,V) of such a set is equal to or less than rsub(T,ε,
πK,πV). Thus the assertion follows.

This result shows that we have to project things to πV for every time t. Observe that
dimeĀt(πV) = dim(πV). However, the projection of eĀt(πV) to ⟨A∣V ⟩/πV need not
have constant dimension. Slightly more generally, we have the following situation:
Consider a linear map A on X and a subspace V of X which is not invariant under A.
Due to Proposition 13 we know that the topological entropy is an upper bound. The
following examples show that the subspace entropy may be equal to the topological
entropy or less than the topological entropy.

Example 16. Consider a complex conjugate pair of eigenvalues and a one-dimen-
sional subspace V of the real eigenspace. Let K be a compact neighborhood of the
origin in V . This can be a controlled invariant subspace: Consider V =R×{0} and
with λ > 0

[ ẋ1
ẋ2

] = (λ [ 1 0
0 1 ]+[ 0 −1

1 0 ])[ x1
x2

]+[ 0
1 ]u(t),
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i.e.

ẋ1 = λx1−x2

ẋ2 = x1+λx2+u(t)
If we choose u = −x1 − λx2, then every initial point with x2 = 0 remains in this
subspace.
For u = 0, the solution is

[ x1(t)
x2(t) ] = eλ t [ x0

1 cost −x0
2 sint

x0
1 sint +x0

2 cost
] .

Initial values (x0
1,0) ∈V have as second component

x2(t) = eλ t[x0
1 sint +x0

2 cost] = eλ tx0
1 sint.

Hence the projection of the solutions toR2/V , identified with the second component,
gives for K ⊂V

x2(t) = eλ t sint ⋅x0
1, x0

1 ∈K.

The solutions x2(t) move apart with eλ t , if we consider the limit superior: choose
t = (2n+1)π

2 . Hence the subspace entropy is hsub(V) = λ . Observe that the image
of the projection depends, naturally, on t. In R2/V it is one-dimensional, except
for t = nπ,n ≥ 0, where it drops to 0. In this example, the Lyapunov exponent in L j
determines the subspace entropy.

Example 17. Consider with λ > 0

[ ẋ1
ẋ2

] = [ λ 1
0 λ

][ x1
x2

]+[ 0
1 ]u(t).

The eigenspace isR×{0}. The subspace V = {0}×R is controlled invariant, since
we may choose u = −λx2. One has

etA [ 0
1 ] = eλ t [ 1 t

0 1 ][ 0
1 ] = eλ t [ t

1 ] .
Thus etAV →R×{0} in projective space for t →∞. The solution inR2/V identified
withR×{0} is given by

x1(t) = teλ tx0
2.

The solutions x1(t) move apart with eλ t , hence the subspace entropy is given by
hsub(V) = λ . Again, the Lyapunov exponent in L j determines the subspace entropy.
Note that here etAV converges to the orthogonal complement of V .

Example 18. Consider with λ > 0

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 1
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[ u1(t)

u2(t) ] .
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The eigenspace of A is R×{0}×{0}×{0}. The subspace V = {0}×R2×{0} only
contains the trivial A-invariant subspace and V is controlled invariant, since we may
choose u1 = −λx2−x3,u2 = −λx3−x4. One has

etA

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= eλ t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t t2

2
t3

3!

0 1 t t2

2
0 0 1 t
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= eλ t

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,etA

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= eλ t

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t2

2
t
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus etAV →R2 ×{0}×{0} in the Grassmannian G2 for t →∞. The solution in
R

4/V identified withR×{0}×{0}×R is given by

[ x1(t)
x4(t) ] = [ eλ t t2

2
0

] .
The solutions in R4/V move apart with eλ t t2

2 , hence the subspace entropy is given
by hsub(V) = λ . One the other hand, the topological entropy of V inR4 is 2λ . Note
that here dimV = 2 = dimR4/V.
We impose the following assumption: Let v1, ...,vk be an orthonormal basis of V .
Then there is γ > 0 such that for a sequence ti→∞ the absolute value of the volume of
the parallelepiped spanned by π(etiAv1), ...,π(etiAvk) is bounded below by a positive
constant times the absolute value of the volume of the parallelepiped spanned by
etiAv1, ...,etiAvk. More formally, we require:
There are an orthonormal basis v1, ...,vk of V and γ > 0 such that for a sequence
ti→∞

∥π(etiAv1)∧⋯∧π (etiAvk)∥ ≥ γ ∥etiAv1∧⋯∧etiAvk∥ . (7)

Note that this assumption can only hold, if n−k = dimX /V ≥ k = dimV .

Proposition 19. Let V be a subspace of X and suppose that condition (7) holds .
Then for A ∶X →X the subspace entropy is given by

hsub(V) = htop(V).
Proof. In view of Proposition 13 it only remains to show that hsub(V) ≥ htop(V). A
consequence of (7) is that for all i

log∥π(etiAv1)∧⋯∧π (etiAvk)∥ ≥ logγ + log∥etiAv1∧⋯∧etiAvk∥ ,
and hence

limsup
t→∞

1
t

log∥π(etAv1)∧⋯∧π (etAvk)∥ ≥ limsup
t→∞

1
t

log∥etAv1∧⋯∧etAvk∥ . (8)

Let K be a neighborhood of the origin in V . Then K contains a parallelepiped and
we may assume that K contains the parallelepiped P spanned by v1, ...,vk. Then the
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set etAK is a neighborhood of the origin in the k-dimensional subspace etAV and it
contains the parallelepiped spanned by

etAv1, ⋯ ,etAvk.

The projected set π(etAK) is a neighborhood of the origin in π(etAV) and, for t = ti,
it contains the parallelepiped π(etiAP) spanned by π(etAk v1), ⋯,π (etAk v`). By
Colonius and Kliemann [5, Theorem 5.2.5] one finds

lim
t→∞

1
t

log∥etAv1∧⋯∧etAv`∥ = l∑
i=1

kiλi,

where (k1, ...,kl) is an element of the index set I(k) given by (2).

It remains to relate the volume growth to the subspace entropy. We argue as in
Colonius, San Martin, da Silva [6, Proposition 4.1]:

For t > 0 the k-dimensional volume of π(etAP) satisfies

volk(π(etAK)) ≥ volk(π(etAP)) = ∥π(etAv1)∧⋯∧π (etAvk)∥ .
Let ε > 0,T > 0, and consider a (T,ε)-spanning set R = {x1, ...,xr} ⊂ P of minimal
cardinality r = rsub(T,ε,P,V) for the subspace entropy. Then (by the definition of
spanning sets) the set π(eTAP) is contained in the union of r balls B(π(eTAx j);ε) of
radius ε in X /V ,

B(π(eTAx j);ε) = {z ∈X /V ∣ ∥z−π(eTAx j)∥ < ε}.
Each such ball has volume bounded by c(2ε)n−k, where c > 0 is a constant. Thus

volk(π(eTAP)) ≤ r ⋅c(2ε)n−k.

This yields

logrsub(T,ε,P,V) ≥ logvolk(π(eTAP))− log[c(2ε)d]
= log∥π(eTAv1)∧⋯∧π (eTAvk)∥− log[c(2ε)n−k] ,

and hence

limsup
T→∞

1
T

logrsub(T,ε,P,V)
≥ limsup

T→∞
1
T

log∥π(eTAv1)∧⋯∧π (eTAvk)∥ .
Together with (8) one obtains the assertion for ε → 0.

As a consequence of the discussion above, we obtain the following characterization
of the subspace entropy. It presents a stepwise reduction of the problem.
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Theorem 20. Let A ∶X →X be a linear map on a finite dimensional normed vector
space X and consider a subspace V . Decompose the associated flow Φt ∶= etA into
the center-stable and the unstable parts Φ

−,0 and Φ
+, respectively.

(i) Then the subspace entropy satisfies

hsub(V,Φ) = hsub(V,Φ+).
(ii) Let ⟨A∣V ⟩ and ker(A;V) denote the smallest A-invariant subspace containing V
and the largest A-invariant subspace contained in V , respectively. Then the reduced
flow Φ

red
t = etAred

which is induced on ⟨A∣V ⟩/ker(A;V) satisfies

hsub(V,Φ+) = hsub(V /ker(A;V),Φred).
(iii) The topological entropy of the subspace V / ker(A;V) for the reduced flow Φ

red

is an upper bound of the subspace entropy hsub(V /ker(A;V),Φred),

hsub(V /ker(A;V),Φred) ≤ htop(V /ker(A;V),Φred). (9)

(iv) If the reduced flow Φ
red on ⟨A∣V ⟩/ker(A;V) and the subspace V / ker(A;V)

satisfy assumption (7), then equality holds in (9).
(v) The topological entropy of the subspace V / ker(A;V) for the reduced flow Φ

red is
determined by certain eigenvalues of A: Let k ∶= dimV / ker(A;V). Then

htop(V /ker(A;V),Φred) =∑
i

ki max(0,λi), (10)

where λi are the real parts of the eigenvalues of Ared, and the ki are given by the chain
recurrent componentMk

k1,...,kl
of Φ

red in the k-GrassmannianGk(⟨A∣V ⟩/ker(A;V))
containing the ω-limit set ω(V /ker(A;V)).

Proof. Assertion (i) follows from Proposition 12, (ii) is a consequence of Proposition
15 and (iii) follows from Proposition 13. Assertion (iv) holds by Proposition 19
and (v) follows by Proposition 19 applied to the reduced flow Φ

red. Finally, (v) is a
consequence of the characterization of topological entropy in Theorem 3 applied to
the reduced flow.

In particular, Theorem 20 characterizes the invariance entropy hinv(V) of a controlled
invariant subspace V of a linear control system of the form (5). By Theorem 10 it
coincides with the subspace entropy of Φt = etA. One obtains the following corollary
to Theorem 20.

Corollary 21. The invariance entropy of a controlled invariant subspace V of a
linear control system of the form (5) is bounded above by the topological entropy of
the flow Φ

red induced by A on ⟨A∣V ⟩/ker(A;V), where ⟨A∣V ⟩ and ker(A;V) denote
the smallest A-invariant subspace containing V and the largest A-invariant subspace
contained in V , respectively. Hence

hinv(V) ≤ htop(V /ker(A;V),Φred) =∑
i

ki max(0,λi),
where the sum is over the eigenvalues λi of A as in (10). Equality holds, if the
subspace V / ker(A;V) satisfies assumption (7) for Φ

red.
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